
Citation: Zhang, W.; Zhang, L.;

Zhang, X.; Wang, Y.; Liu, P.; Gui, G.

Intelligent Unsupervised Network

Traffic Classification Method Using

Adversarial Training and Deep

Clustering for Secure Internet of

Things. Future Internet 2023, 15, 298.

https://doi.org/10.3390/fi15090298

Academic Editor: Michael Sheng

Received: 2 August 2023

Revised: 25 August 2023

Accepted: 28 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Intelligent Unsupervised Network Traffic Classification Method
Using Adversarial Training and Deep Clustering for Secure
Internet of Things †

Weijie Zhang 1,*, Lanping Zhang 2, Xixi Zhang 2,*, Yu Wang 2, Pengfei Liu 2 and Guan Gui 2

1 Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 College of Telecommunications and Information Engineering, Nanjing University of Posts and

Telecommunications, Nanjing 210003, China; 2022010205@njupt.edu.cn (L.Z.); yuwang@njupt.edu.cn (Y.W.);
pfliu@njupt.edu.cn (P.L.); guiguan@njupt.edu.cn (G.G.)

* Correspondence: 202183710035@nuist.edu.cn (W.Z.); 1021010526@njupt.edu.cn (X.Z.);
Tel.: +86-138-6178-2456 (W.Z.)

† This paper is an extended version of our paper published in 2022 IEEE 9th International Conference on
Dependable Systems and Their Applications (DSA), Wulumuqi, China, 4–5 August 2022.

Abstract: Network traffic classification (NTC) has attracted great attention in many applications
such as secure communications, intrusion detection systems. The existing NTC methods based on
supervised learning rely on sufficient labeled datasets in the training phase, but for most traffic
datasets, it is difficult to obtain label information in practical applications. Although unsupervised
learning does not rely on labels, its classification accuracy is not high, and the number of data
classes is difficult to determine. This paper proposes an unsupervised NTC method based on
adversarial training and deep clustering with improved network traffic classification (NTC) and
lower computational complexity in comparison with the traditional clustering algorithms. Here, the
training process does not require data labels, which greatly reduce the computational complexity of
the network traffic classification through pretraining. In the pretraining stage, an autoencoder (AE) is
used to reduce the dimension of features and reduce the complexity of the initial high-dimensional
network traffic data features. Moreover, we employ the adversarial training model and a deep
clustering structure to further optimize the extracted features. The experimental results show that
our proposed method has robust performance, with a multiclassification accuracy of 92.2%, which is
suitable for classification with a large number of unlabeled data in actual application scenarios. This
paper only focuses on breakthroughs in the algorithm stage, and future work can be focused on the
deployment and adaptation in practical environments.

Keywords: network traffic classification; convolutional adversarial autoencoder; Internet of things;
unsupervised learning; deep clustering

1. Introduction

The continuous development and popularity of the Internet of things (IoT) has enabled
different sectors of the economy to combine traditional business models with the Internet,
creating new solutions, e.g., smart transportation, environmental protection, e-government,
safe home, industrial monitoring, etc., [1,2]. However, a large number of interconnected
devices leads to poor synchronization protection and management challenges, which may
affect the overall security and reliability of the network. Therefore, to provide better
services for network users and improve the effectiveness of network management, an
efficient network traffic classification (NTC) and supervision is necessary. In NTC, the
network packets are captured to determine their identity. The effective NTC can guarantee
the quality of network service and intrusion detection system (IDS) [3–5].

Future Internet 2023, 15, 298. https://doi.org/10.3390/fi15090298 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15090298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7428-4980
https://doi.org/10.3390/fi15090298
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15090298?type=check_update&version=1

Future Internet 2023, 15, 298 2 of 20

In the era of big data, NTC has to handle a large quantity of network traffic data,
which leads to a high computational complexity and slow classification time [6]. Early
NTC methods used Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)
ports to distinguish between different network traffic [7]. These methods are simple to use
and have a high classification efficiency. However, with the continuous development of
the Internet, there are many applications in the network environment that do not follow
the established port label or directly hide the ports used by applications. This led to the
gradual elimination of port-based traffic classification methods and the rise of deep packet
inspection (DPI)-based classification technology. DPI-based technologies are not restricted
by network ports and use the unique identifiers in the application layer directly to classify
traffic [8]. However, because the use of application-layer data may violate user privacy,
and the method cannot recognize encrypted data, DPI-based classification technology
has gradually faded out of the NTC field. To address these challenges, researchers have
introduced feature selection techniques [9]. Feature selection is the process of selecting
the most effective subset of features that compose the entire dataset, and a good subset of
features is one that contains features that are highly related to but not related to each other.
These features are also the most common reason why network classification systems use
feature selection technology. Collected network traffic data usually include information
such as source IP, destination IP, source port, destination port, and number of bytes, which
are used to distinguish different types of network traffic. Classifying network traffic based
on these features technically compensates for the basic technical deficiencies of traditional
port-based and DPI-based detection. At the same time, these features do not contain valid
information on the message, thus avoiding the disclosure of user privacy. However, there
are many features of network traffic, and the number of available features identified in
current academic research has reached 240 [10]. For some network traffic, it is too redundant
to use all features for classification, which will not only increase the complexity of the
classification model, but also reduce the classification accuracy.

In this paper, we propose an adversarial autoencoder (CAAE) network to extract
the most relevant features of complex network traffic. The combination of adversarial
training and autoencoder can greatly reduce the feature dimension of the original network
traffic, and at the same time, filter out the most effective feature information. The basic
idea of adversarial training is to continuously generate and learn adversarial samples
during network training. For example, according to the minimax formula, adversarial
samples are searched for by maximizing the loss function in the inner layer, and then
adversarial samples are learned in the outer layer to minimize the loss function. The
neural network obtained through adversarial training has more adversarial robustness
compared to ordinary autoencoders. The collected network traffic samples usually do
not contain category information, so this paper uses an unsupervised clustering model to
study. To avoid the mismatch between the selected features and the clustering model, we
propose an optimization method, DC-CAAE, based on the CAAE feature extraction. Deep
clustering (DC) enables the low-dimensional features to retain the original data structure
and information, while making the differences between different data more obvious, thus
achieving better clustering results [11]. The main contributions of this paper are as follows:

• We propose a new unsupervised NTC method based on adversarial training and deep
clustering, where deep clustering can learn more features on the basis of pretraining,
and maintain the stability of the detector.

• To avoid a cluster collapse due to deep clustering, we apply a combination of cluster
loss and adversarial training loss instead of a single cross-entropy loss. At the same
time, CAAE is introduced to reduce the dimension of the feature, which avoids the
high complexity of the deep learning model caused by the high-dimensional original
network traffic features.

• We evaluate the proposed method on network traffic datasets collected in the real envi-
ronment. The experimental results show that this method has a good clustering effect,

Future Internet 2023, 15, 298 3 of 20

and the multiclassification accuracy reaches 92.2%, which is suitable for industrial
scenes with a large number of unlabeled data samples.

2. Related Work
2.1. Traditional NTC Methods

In the early days of NTC development, to solve the problem of traffic classification,
different TCP or UDP protocol ports were used to determine the type of traffic, such as those
specified by the Internet Assigned Numbers Authority (IAIA) [12] or those widely used by
the conventions [13]. However, today more and more traffic cannot be classified by this
scheme. In practical applications, the network ports of servers do not always use the ports
nominally associated with their applications, and such behavior is not always malicious.
For example, users running Web or file transfer protocol (FTP) servers on alternate ports
lack administrator privileges. Users running servers that provide nonweb applications on
port 80/TCP bypass the firewall of the system to avoid security and policy implementation
monitoring [14]. A. Madhukar et al. [15] compared three methods to classify peer-to-peer
(P2P) applications: port-based classification, application layer signature, and transport
layer analysis. Their experiments showed that nearly 70% of Internet traffic could not be
identified simply by port-based methods. DPI technology mainly analyzes the payload
of data packets in the network traffic. If the payload part can match with the known
application program or protocol in some characters, then the network flow can be roughly
considered as the known application program or protocol. The ML-based method uses
an ML algorithm to classify network traffic [16]. Byte sequences and statistical features of
packets or flows in traffic data are the most common features used by ML-based network
flow classifiers. ML-based methods rely on statistical methods to extract features from
datasets, but network traffic data are usually large, and statistical extraction methods are
often prone to lose important information.

2.2. DL-Based NTC Methods

Deep learning has made great progress on complex problems in computer vision and
natural language processing, which also makes more people begin to use deep learning
methods to study network traffic in the field of network security [17]. Deep learning
can directly learn useful features from the original traffic data, which, to a certain extent,
solves the problem of the high cost of artificial feature extraction [18]. R. Zhao et al. [19]
proposed a traffic recognition method for the Internet of things based on a lightweight deep
neural network, which realized an effective feature extraction at a low cost. The extended
compression structure, antiresidual structure, and channel shuffle operation were used
to optimize the classifier to solve the problem of uneven sample distribution. The above
SL-based methods usually need to include a large number of labeled datasets for training.
However, the data obtained in practical applications do not have label information, and
the workload of labeling the data is large, so it is difficult to apply them to NTC practice.
J. Ning et al. [20] proposed a malware classification method based on semi-supervised
learning to reduce the dependence of the classification model on labeled data. Integrated
transfer learning and domain adaptive greatly improved the classification accuracy.

In order to get rid of the dependence on data labels and increase the generalization
of the model, the method based on unsupervised learning has a good application market.
In order to learn features more suitable for unsupervised classification tasks from the
original data, P. Huang et al. [21] imposed a position-preserving constraint on the feature
representation it learned from the original data to better suit the unsupervised classification
task in order to embed the original data into their underlying manifold space. Finally,
k-means was used for clustering, and good performance was obtained. P. Li et al. [22]
proposed an improved stacked AE, which could learn complex relationships on multisource
network flows by stacking several basic Bayesian autoencoders. However, the overlap of
multilayer autoencoders increased the computation time. Both of the above unsupervised
methods optimize the classification model for feature selection, and the performance of the

Future Internet 2023, 15, 298 4 of 20

clustering algorithm cannot be optimized. To address these challenges, S. Shah et al. [23]
proposed an algorithm that combined a nonlinear dimension reduction with clustering
methods. The compressed low-dimensional data of the deep neural network were fed
into the cluster model for retraining. This method combined a dimension reduction with
clustering as a global optimization objective, avoiding cluster mismatch caused by no
clustering training. The deep clustering method improved the accuracy of the clustering. In
conclusion, the deep-learning-based NTC method plays an important role in the complex
network traffic environment, and improving the accuracy of unsupervised network traffic
classification is one of the key points at present. We believe that unsupervised NTC methods
for the Internet of things should follow the following principles:

• Robust classification performance: In a real network scenario, any undetected attack
may cause the network to crash, resulting in huge losses. Hence, the main goal of
NTC method is to continue to accurately classify ordinary traffic and malicious attacks
in normal network scenarios.

• Strong model generalization ability: IoT devices are subject to fast-changing attacks, a
large number of attacks, and attacks that are good at disguising. Hence, it is necessary
to detect with a model that is well adapted to attacks of unknown categories.

• Low model complexity: Network traffic has a large quantity of sample data; hence, it
is necessary to use a simple classification model to reduce the detection cost.

Based on the above principles, we studied an efficient unsupervised network traffic
classification method, focusing on improving the effectiveness of the feature selection and
the accuracy of the deep clustering.

3. Problem Formulation and Dataset Generation
3.1. Problem Description

In unsupervised learning, the label of the sample is unknown, that is, the dependent
variable is not as clearly labeled as in supervised learning, such as number size, animal
species, or flower category. Therefore, in practical applications, unsupervised learning has
a large application market. The types of network traffic attacks become more and more
varied with the beginning of the era of the Internet of Everything (IoE), and unknown
attack types endlessly emerge. Therefore, it is an inevitable trend to optimize the network
traffic classification system using unsupervised networks. In unsupervised learning, when
the output of the system is finite and discrete, the prediction of the system can be regarded
as a classification problem. The classification model or classification decision function
learned from the original data is called a classifier, and the process of classifying from input
to output is called classification. The output results become classes. When the number of
classes is greater than one, it is called a multiclassification problem. This paper mainly
discusses the multiclassification problem.

In unsupervised learning, the problem we have to deal with is to train a reliable
unlabeled feature extractor. There are two main ways to do this. One is to optimize the loss
function of pseudolabels according to the principle of reducing the distance within clusters
and expanding the distance between clusters. The second is to use additional tasks to help
train the feature extractor. For clustering methods with special feature extractors, such as
autoencoders, the loss of reconstruction can be interpreted as an additional task, as shown
in Figure 1.

The process of training reconstruction loss is also a process of data feature dimensional-
ity reduction. The so-called dimension reduction in machine learning refers to the mapping
of data points from the original high-dimensional space to a low-dimensional space using
some mapping method. The feature dimension has a great influence on the computational
complexity of classifier. The computational complexity increases exponentially with the
number of neurons and the number of layers of the neural network [24]. The essence of
dimension reduction is to learn a mapping function f : x→ z, where x is the representation
of the original data points, and at present, most methods use a vector representation. z
is a low-dimensional vector representation of the mapped data points, and z is usually

Future Internet 2023, 15, 298 5 of 20

smaller than x (although increasing the dimension is also possible). f may be explicit
or implicit, linear or nonlinear. Data in the NTC field are often characterized by a large
number of features, a large quantity of data, and complex features. The performance of
traditional linear dimensionality reduction methods such as principal component analysis
(PCA) and linear discriminant analysis (LDA) is poor when extracting complex feature
tasks. Therefore, a nonlinear feature dimensionality reduction method is more suitable for
network traffic classification. The autoencoder feature dimensionality reduction method is
discussed as an example below.

Figure 1. Flowchart of unsupervised-learning-aided NTC method.

An autoencoder is the process of encoding the original data, reducing the dimensions,
and discovering the rules between the data. The whole autoencoder can be described as:

fDecoder(fEncoder(x)) = x′, (1)

where the output x′ is close to the original input x. The purpose of the network is to
reconstruct its input so that its hidden layer can learn the good representation of the input.
If the input is exactly equal to the output, i.e., fDecoder(fEncoder(x)) = x, the network is
meaningless. Therefore, some constraints need to be imposed on the self-encoder so that it
can only be approximately copied. These constraints force the model to consider which
parts of the input data need to be copied first, so it can often learn the useful characteristics
of the data. Generally, there are two kinds of constraints [25]: one is to make the hidden
dimension smaller than the input dimension, which is called undercomplete; the other is to
make the dimension of the hidden layer larger than the dimension of the input data, which
is called overcomplete. In a complex network traffic environment, the undercomplete
method is generally used to reduce the computational complexity. During the training
process, a target loss function is used to measure the similarity between input and output
data, which is expressed as follows:

Loss 1 : frecon(x) = ‖x− fDecoder(fEncoder(x))‖2, (2)

where frecon(·) is the loss function to measure the difference of input data x and output
data x′.

Unsupervised clustering divides datasets into different classes or clusters according to
specific criteria, such as a distance. It makes the data samples in the same cluster as similar
as possible, and the database samples in different clusters as different as possible. That is,
the intraclass distance is the smallest, and the interclass distance is the largest. The specific
implementation process of an unsupervised clustering algorithm can be roughly divided
into the following four steps:

• Randomly set {C1, C2, · · · , Ck} initial cluster centers, and k represents the number of
clusters.

Future Internet 2023, 15, 298 6 of 20

• For each sample data point {x1, x2, · · · , xn}, where n is greater than k, each object has
attributes of m dimensions. Calculate its distance from the center of each cluster and
divide each sample into the nearest cluster.

• Recalculate the average value of each cluster as the new cluster center, and update the
original cluster center.

• Repeat the above two or three steps to iterate continuously until the center of each
cluster does not change.

Generally speaking, in clustering algorithms, the attributes of samples are mainly
represented by their relative distances in the feature space. This makes the concept of
distance very important for clustering. The Euclidean distance from each object to each
cluster center is calculated as follows:

Loss 2 : dis(xi, Cj) =

√
m

∑
t=1

(xit − Cjt)2 (3)

where t represents the tth attribute of each object. Hence, the focus of this paper is to
optimize and adjust the model from the two directions of complex data feature dimension
reduction and unsupervised clustering.

3.2. Dataset Introduction

The USTC-TFC2016 dataset [26] contains 10 types of malware traffic and 10 types
of benign traffic. It takes the original data as input and classifies the original data by
converting it into images. The dataset has a capacity of 3.71 Gb, including 228,762 malware
instances (packets) and 309,980 normal instances (packets), all in pcap format. The collected
network traffic data contains information such as source IP, source port, target IP, target
port and transport level protocol and so on. We process it through four data preprocessing
steps, as shown in Figure 2. In this paper, the original dataset was segmented into a training
set and a testing set, and the split ratio was set to 3:1. The data classes and sample quantity
of the dataset are shown in Table 1.

Figure 2. The detailed process of data preprocessing.

Future Internet 2023, 15, 298 7 of 20

Table 1. Data segmentation of the training set and test set.

Benign
Data

Training
Det

Testing
Set

Malicious
Data

Training
Set

Testing
Set

BitTorrent 5049 1716 Cridex 5595 1805

Facetime 4045 1355 Geodo 4543 1490

FTP 4660 1542 Htbot 4346 1384

Gmail 5828 1938 Miuref 3476 1145

MyDQL 4911 1606 Neris 5714 1940

Outlook 5014 1758 Nsis-ay 4100 1362

Skype 4275 1414 Shifu 6451 2220

SMB 4248 1448 Tinba 5772 1882

Weibo 4510 1496 Virus 4399 1473

World of Warcraft 5313 1782 Zeus 4075 1353

4. The Proposed DC-CAAE Method

In unsupervised clustering tasks, there are mainly two methods to obtain labels [27].
The first method is to embed data into low dimensional features, and then cluster the
embedded features with traditional clustering methods such as k-means algorithm. The
second method jointly optimizes the feature extractor and clustering results. We call these
two methods separation analysis and joint analysis, respectively. A separation analysis means
that learning features and clustering data are executed separately, and low dimensional
features are clustered after the dimensionality reduction of data features. To solve the
problem that the representation learned by the separation analysis is not oriented toward
clustering due to its inherent characteristics, the joint analysis shows its advantages. In this
paper, we propose to use a DC method of joint analysis, which imposes the reconstruction
error as a constraint on the basis of the clustering error. These two constraints improve
the clustering performance, reduce the distance within a cluster and expand the distance
between clusters. The proposed model framework is shown in Figure 3. Algorithm 1
summarizes the process of the proposed method. Details of each processing stage of the
method are shown below.

Figure 3. The model framework of the proposed DC-CAAE method. The model is divided into two
steps, CAAE and DC. First, the CAAE network is used to preliminarily train the feature extractor,
then DC constraints are added to fine-tune the feature extractor so that the extracted features are
oriented toward clustering tasks.

Future Internet 2023, 15, 298 8 of 20

Algorithm 1 Pseudocode of the proposed adversarial-training-based DC-CAAE method
for NTC.

Require: Samples X; reconstruction samples X
′
; potential representation Z; random Gaus-

sian distribution G; pretraining hyperparameters θpre; retraining hyperparameters θre;

maximum epochs of AAE ECAAE; maximum epochs of DC EDC; hyperparameter λ; the

number of batches in a training iteration B.

Ensure: Clustering results C.

1: [Pretraining stage]:

1. for i = 1, 2, · · · , ECAAE do:

2. for t = 1, 2, · · · , B do:

Sample a batch dataset Xb [Forward propagation]:

3. Zpre, X
′
pre ← NetCAAE(Xb, G)

4. Loss 1← LBCE(Xb, X
′
pre)

5. Loss 2← LD(Zpre, G)

[Backward propagation]:

6. Alternately minimize Loss 1, Loss 2

7. Update θpre with Loss 1, Loss 2

2: end for

3: end for

4: Save θpre.

5: [Deep clustering stage]:

6: Randomly initialize the parameters θre

7: Load θpre

1. for i = 1, 2, · · · , EDC do:

2. for t = 1, 2, · · · , B do:

[Forward propagation]:

3. Zre, X
′
re ← NetCAE(X)

4. C ← NetDC(Zre)

5. Loss← (1− λ)LBCE(X, X
′
re) + λLC(X, C)

[Backward propagation]: Update θre with Loss

8: end for

9: end for

10: Save θre.

11: Test and save the performance of the DC-CAAE model

12: Return DC-CAAE model

4.1. CAAE Structure

A CAAE network combines a CAE with adversarial training, and its core is still to use
a generator G and a discriminator D for adversarial learning to distinguish between real
data and fake data. However, unlike an ordinary adversarial training network, the data that
CAAE needs to distinguish are not a natural image but a coded vector z. The real data and
fake data to be identified are generated by the encoder in the CAE and a predefined random

Future Internet 2023, 15, 298 9 of 20

probability distribution, respectively. Finally, the network used for image generation is
not the former generator, but the decoder in the CAE. Its model architecture is shown
in Figure 4.

Figure 4. The framework of the proposed CAAE method.

The x in the CAAE represents the image data of the preprocessed network traffic.
Enter x into a CAE and have the encoder encode it to generate a potential vector z. The
decoder then attempts to decode the potential vector and regenerate the image data x′. The
key to this model is that the encoder and the discriminator form an adversarial network.
The discriminator predicts whether z comes from real or fake data by learning constantly.
The whole process of adversarial learning can be thought of as constantly adjusting the
encoder to bring the resulting data distribution closer to a predefined p(z′).

4.2. The Basic Principles of the CAAE

Set network traffic x as the real picture data after processing, that is, the input of the
CAAE model is multiple network traffic vectors. We can map network traffic x to the
feature vector based on encoder E, that is, E(x) = z, where the dimension of the network
traffic features is 100. The CAAE is a neural network that learns valid features in an
unsupervised learning method. The reconfiguration of generator G forces the encoder to
learn basic potential features, that is, x′ = G(z). The core appeal of our method is to always
maintain the extracted features to convey the characteristics of the original data as much as
possible. Therefore, in this process we want x′ to be as similar as possible to x, which can
be expressed by minimizing the loss function:

LBCE = −(x′ log x + (1− x′) log (1− x)), (4)

At the same time, z is constrained by a random Gaussian distribution. Assume that
p(µ, σ) is an a priori distribution and z′ ∼ p(µ, σ) is used to describe a random Gaussian
process base on p(µ, σ), where µ is the mean and σ is the variance. When the distribution
of the training data is expressed as pdata(x), the specific training implementation on the
encoder and discriminator can be achieved through the maximum-minimum objective
function:

min
E

max
D

V(D, E) = Ez′∼p(µ,σ)(ln D(z
′
))

+ Ez∼pdata(x)(ln (1− D(E(x)))),
(5)

where D(·) is the output function of the discriminant model, the output is a real value
ranging from 0 to 1, which is used to judge whether the data are false or not. The expres-
sion Ez′∼p(µ,σ)(ln D(z

′
)) is to make the real data put into the calculated value output by

the discriminant model D(·) and the whole formula subvalue as large as possible. The
expression Ez∼pdata(x)(ln (1− D(E(x)))) is to make the calculated value of the false data
from the output of the discriminant model D(·) as small as possible and the whole formula

Future Internet 2023, 15, 298 10 of 20

as large as possible. This integration is to make the objective function as large as possible,
so the gradient can be improved according to the objective function during training.

4.3. CAAE Training Process

Before the training starts, we divide the dataset into two parts, the training set and
the test set. The training set is used to train the CAAE network, and the test set is used
to verify the effectiveness of the training. The basic network architecture of the encoder,
generator and discriminator in the CAAE is shown in Table 2.

Table 2. Details of the CAAE model.

Layer Encoder Generator Discriminator

Input Input Input Input

Layer 1 Conv2d (1, 8, 3, 2, 1) Linear (100, 1000) Linear (100, 1000)

Layer 2 Conv2d (8, 16, 3, 2, 1) Linear (1000, 288) Linear (1000, 1000)

Layer 3 Conv2d (16, 32, 3, 2, 0) ConvTranspose2d
(32, 16, 3, 2, 0)

Linear (1000, 1)

Layer 4 Linear (288, 1000) ConvTranspose2d
(16, 8, 3, 2, 1)

None

Layer 5 Linear (1000, 100) ConvTranspose2d
(8, 1, 3, 2, 1)

None

Output Output Output Output

In each batch of the training process, we alternately optimizes (4) and (5), constantly
forcing the resulting potential features to more effectively represent key information about
network traffic.

4.4. Deep Clustering Structure

In this experiment, we analyzed the methods to improve unsupervised clustering per-
formance from the two perspectives of cluster-loss-oriented and feature-oriented performance.
Cluster-loss-oriented performance shows whether there is a loss function that explicitly re-
duces or widens the distance between clusters. The resulting feature extractor is unreliable
during the CAAE training. Therefore, the DC-CAAE-based deep clustering method was
optimized using the traditional cluster loss’s extra constraint feature extractor. The basic
framework of deep clustering is shown in Figure 5.

Figure 5. The framework of the deep clustering algorithm.

4.5. The Basic Principles of Deep Clustering

The hidden features extracted from the CAAE model represent good key features for
expressing network traffic data. To further optimize the encoder parameters, we propose
a new optimization goal using the joint analysis method. For k-means clustering, the core

Future Internet 2023, 15, 298 11 of 20

idea is to make the points within the cluster as close to the center point C as possible. Its
clustering objectives can be expressed as:

LC =
n

∑
i=1
‖E(xi)− Ci‖2, (6)

where i represents the cluster category. To ensure the fairness of the experiment in this
paper, the clustering method uniformly used the k-means clustering method based on the
Euclidean distance. The loss function of the whole DC model consists of the error of the
autoencoder in the CAAE and the error of the k-means clustering. The joint loss function is:

Ljoint =(1− λ)LBCE + λLC

=(1− λ)
(
−(x′ log x + (1− x′) log (1− x))

)
+λ

(
n

∑
i=1
‖E(xi)− Ci‖2

)
,

s.t. λ ∈ [0, 1]

(7)

when λ = 1, the DC model does not calculate the autoencoder loss, it only uses the cluster
loss to adjust the neural network parameters. When λ = 0, the DC model does not calculate
the cluster loss, but only uses the autoencoder loss to optimize the network parameters.
When 0 < λ < 1, the deep clustering uses both the autoencoder loss and cluster loss to
constrain the convolution neural network parameters, which ensures the similarity between
the input and output layers of the autoencoder while keeping the clustering’s resulting
clusters relatively close.

4.6. Deep Clustering Training Process

The DC contains two modules, CAE and clustering. During training, the losses of the
two modules are optimized together via Equation (7). In the backpropagation, the loss
Ljoint is fed back to the encoder to optimize the encoder’s network parameters. After deep
clustering, the features extracted by the coding layer are spatially friendly to clustering.
This process uses the Adam optimizer, and the learning rate was set to 0.0001. The maxi-
mum epoch during DC training was set to 30. The autoencoder network parameters are
then loaded from the previous training step into the neural network for deep clustering.
The intermediate output z and the sample reconstruction result x′ are calculated by a
forward-propagation to obtain the reconstruction error LBCE. Then, the cluster calculation
is performed. It consists in selecting k initial cluster centers, calculating the distance d
between each element in the dataset and each cluster center, obtaining the cluster loss LC,
and dividing the samples into the nearest categories. The deep clustering error Ljoint is
computed jointly, and the network parameters are corrected by backpropagation until the
loss function converges.

4.7. The Benchmark Methods
4.7.1. PCA-Based Methods

PCA [28] is a common data dimension reduction method, which compresses high-
dimensional data by extracting the main feature vectors. PCA maps n-dimensional features
to k-dimensions, where n > k, where k-dimensional features become the principal com-
ponents. In the early research stage of network traffic classification system, PCA was
widely used as a convenient and efficient dimension reduction algorithm. In this paper,
to ensure the fairness of the comparative experiment, the dimensions of the original data
were reduced to 100.

4.7.2. CAE/CVAE-Based Methods

The CAE network was originally designed for unsupervised representation of data.
It can learn a nonlinear function mapping. The use of depth CAE [29] allows the feature

Future Internet 2023, 15, 298 12 of 20

extractor to learn the features one wants to cluster. CAE compresses the data to low
dimensions, and then reconstructs the input to find the representation of low-dimensional
data. CVAE [30] is a variant of CAE. CVAE can solve the problem that CAE cannot generate
arbitrary data. It can directly generate a hidden vector z through the model, and the
generated z contains both data information and noise, so using different z’s can generate
endless new data. The dimensions of the original data were reduced to 100.

4.7.3. DC-Based Methods

Due to the low efficiency of the similarity measurement methods used, the perfor-
mance of traditional clustering methods on high-dimensional data is poor, and the com-
putational complexity on large-scale datasets is high. The dimensionality reduction and
clustering of high-dimensional data are often two separate parts, and such a structure can
lead to mismatches between the dimensionality reduced data features and the clustering
method, never reducing the accuracy of clustering. The research shows [31] that the per-
formance of a feature extractor can be greatly improved by jointly optimizing the data
dimension reduction and clustering tasks. This method is based on the premise that the
sample data are obtained through a potential feature transformation, called deep cluster-
ing [32]. Deep clustering connects data dimensionality reduction and clustering through
deep learning, and the joint training enables the clustering and feature extraction to be
carried out within a unified framework.

5. Simulation Results and Discussions
5.1. Simulation Setup and Evaluation Metrics
5.1.1. Simulation Setup

The server used in this experiment was a Geforce RTX 2080 Ti GPU with 11G of
RAM, the programming language was Python, and the programming framework was
Pytorch. The experimental results were evaluated using Scikit-learn 1.0.2. The dataset used
in the experiment was USTC-TFC2016 [26], with about 120,000 training samples. Detailed
simulation parameters are shown in Table 3.

Table 3. Simulation environment and parameters.

Parameter Value

Dataset USTC-TFC2016

Input data dimension (28, 28, 1)

Hidden feature dimension 100

Environment
Python 3.10.4, Scikit-learn 1.1.0,

Torch 1.11.0, Numpy 1.22.3

Device GeForce RTX 2080 Ti

Pretraining hyperparameters

Optimizer Adam

Weight_decay 0

Batch size 128

Learning rate 0.00001

Epoch 80

Deep clustering hyperparameters

Optimizer Adam

Weight_decay 0

Batch size 128

Learning rate 0.0001

Epoch 30

Future Internet 2023, 15, 298 13 of 20

5.1.2. Evaluation Metrics

The evaluation metrics of machine learning methods vary in different research fields.
This paper studied the unsupervised network traffic clustering problem, so the evaluation
metrics used were also based on the clustering model. The cluster validity evaluation
metrics used in this paper were composed of the internal validity metric silhouette coeffi-
cient and the external validity evaluation metrics normalized mutual information (NMI),
adjusted Rand index (ARI), clustering accuracy (AC), and v-measure, respectively. When
evaluating the classification model, the most common metric is the classification accuracy.
Unsupervised learning’s training process does not involve sample labels, so the accuracy
calculation method is different from that of supervised learning. Assuming there are N
samples, the label produced by the ith sample cluster is pi, and the true label is yi, the
formula for calculating the accuracy is:

AC =
1
N

N

∑
i=1

δ(yi, map(pi)), (8)

where map(·) represents the redistribution of clustering labels, which is generally achieved
by the Hungarian algorithm [33]. δ(·) stands for indicating function

δ(x, y) =
{

1 if x = y
0 otherwise

. (9)

NMI is often used to measure the degree of agreement between two clustering πK and
πL results, and it can be expressed as

NMI(πK, πL) =
∑K

k=1 ∑L
l=1 nk

l log(nnk
l

nknl)√
(∑K

k=1 nk log(nk

n))(∑L
l=1 nl log(nl

n))
, (10)

where nk is the kth cluster generated by the cluster, and nl is the number of data samples
from the lth cluster in the real cluster. nl

k is the number of data samples shared by the kth
cluster result and the lth real cluster. ARI is a real value that reflects the degree of overlap
between the cluster and the actual cluster. The larger the value, the better the clustering
effect. Its mathematical expression is given by

ARI =
RI − E(RI)

max(RI)− E(RI)
, (11)

RI =
a + d

a + b + c + d
, (12)

where a denotes the same class of samples clustered in the same cluster, b denotes different
classes of samples clustered in the same cluster, c denotes the same class of samples
clustered in different clusters, and d denotes different classes of samples clustered in
different clusters. Homogeneity refers to cluster classes with the same class of samples
within a cluster, and completeness refers to samples of the same class being assigned to
the same cluster class. V-measure is the harmonic mean of homogeneity and completeness
used to express the proximity of the two categories. Its mathematical expression is given by

v =
2× h× c

h + c

=
2×

(
1− H(C|K)

H(C)

)
×
(

1− H(K|C)
H(K)

)
(

1− H(C|K)
H(C)

)
+
(

1− H(K|C)
H(K)

) ,
(13)

Future Internet 2023, 15, 298 14 of 20

where C and K represent clusters and real classes, respectively, H(·|·) represents conditional
entropy. As an internal evaluation metrics of clustering, silhouette coefficient combines
cohesion and separation to evaluate the clustering effect. Its definition formula is as follows:

si =
bi − ai

max(ai, bi)
, (14)

where ai represents the average distance between sample xi and other samples in the same
class, and bi represents the minimum of the average distance between sample xi and other
cluster samples. The average value of si for all samples is the clustered silhouette coefficient,
that is:

SC =
1
N

N

∑
i=1

si. (15)

5.2. Simulation Results and Analysis
5.2.1. Performance Comparison of Unsupervised NTC Methods

In this section, we first compare the accuracy of our DC-CAAE method with PCA,
CAE, CVAE, and the corresponding deep clustering method when the potential spatial
feature dimension is 100. Then, we compare the simulation results of DC-CAAE under
different clustering methods.

It can be seen from the results in Table 4 that the performance of the traditional PCA
dimension reduction algorithm on the USTC-TFC2016 dataset is not good, and the accuracy
of the clustering is only 49.4%. However, the performance significantly improves after using
the deep learning method. The clustering accuracy of CAE is 33.0% higher than that of PCA,
and its silhouette coefficient is 20.0% higher. This shows that in complex network traffic
datasets, the deep learning method will achieve better results than traditional methods.
The combination of the CAAE method and DC proposed in this paper further optimizes
the feature extractor. After adding the deep clustering module, the performance of the
CAE and CVAE models improves. Of course, the CAAE has the greatest improvement.
The clustering accuracy of the DC-CAAE method is 92.2%, which is the highest among all
methods in Table 4. At the same time, considering NMI, silhouette coefficients, ARI, and
V-measure, the DC-CAAE method proposed in this paper still has good advantages.

Table 4. Performance comparison between DC-CAAE and other methods.

Methods NMI AC Silhouette
Coefficient ARI V-Measure

PCA 0.685 0.494 0.326 0.345 0.685

CAE 0.887 0.824 0.526 0.740 0.887

CVAE 0.888 0.830 0.492 0.758 0.889

CAAE 0.882 0.888 0.408 0.796 0.890

DC-CAE 0.873 0.844 0.518 0.736 0.873

DC-CVAE 0.890 0.857 0.481 0.753 0.891

DC-CAAE (proposed) 0.911 0.922 0.422 0.844 0.917

According to the results in Table 4, in order to avoid the dependence of the results on
clustering methods, we used five different clustering algorithms to analyze the stability of
the above feature extractors.

It can be seen from Table 5 that the performance of k-means, minibatch k-means,
spectral clustering, BIRCH, and GMM clustering algorithms on DC-CAAE was similar.
The accuracy of the five clustering algorithms was about 90%, and the error was less
than 2%. It can be seen that the DC-CAAE method proposed in this paper was stable

Future Internet 2023, 15, 298 15 of 20

on the USTC-TFC2016 dataset, and its performance did not change due to the different
clustering methods.

Table 5. The performance of DC-CAAE with different clustering methods.

Methods NMI AC Silhouette
Coefficient ARI V-Measure

Minibatch k-means
clustering

0.894 0.905 0.418 0.829 0.901

Spectral
clustering

0.908 0.908 0.444 0.826 0.915

BIRCH 0.903 0.906 0.427 0.819 0.910

GMM 0.904 0.908 0.428 0.822 0.911

k-Means
clustering 0.911 0.922 0.422 0.844 0.917

5.2.2. Convergence Analysis

It can be seen from the training process that the loss function of the DC-CAAE method
proposed in this paper is a strict convergence process. As shown in Figure 6, the model
loss decreases from about 1000 to 1 and tends to be flat after epoch 15. That is to say, the
model reaches a stable state after that epoch.

Figure 6. Convergence trend of overall cluster loss during training.

5.2.3. t-SNE Feature Visualizations

In order to more intuitively observe the effect of the DC-CAAE on the data dimension-
ality reduction, we visualized the output potential representation z and compressed it to a
two-dimensional plane for observation. Figure 7 shows the clustering space of different
networks, each represented by a different color. All methods reduced the data dimension
to 100 dimensions. It can be seen that the distance between each class of features extracted
by the ordinary CAE is not obvious, and some classes are mixed together. The DC-CAAE
method achieves a more friendly clustering space than the original coded image space and
the space before the joint training.

Future Internet 2023, 15, 298 16 of 20

(a) (b) (c)

(d) (e) (f)

Figure 7. t-SNE feature visualizations for different clustering algorithms. (a) CAE; (b) CVAE;
(c) CAAE; (d) DC-CAE; (e) DC-CVAE; (f) DC-CAAE.

5.2.4. The Influence of the Uncertainty in the Number of Categories on NTC Performance

For unsupervised clustering, there is an inevitable disadvantage, that is, it is difficult
to determine the appropriate number of clusters in advance, resulting in a low clustering
quality. The key to obtain a good clustering effect is to determine the optimal number of
clusters. Therefore, this paper used the elbow method and the silhouette coefficient method
to determine the optimal number of clusters. As a low-complexity linear dimensionality
reduction method, the PCA algorithm is suitable for quickly determining the range of the
optimal number of clusters in this paper. The objective function of k-means clustering is the
squared sum of the distance between the sample and the center point, also known as the
distortion. For a cluster, the lower the distortion, the closer the samples in the cluster are. The
higher the distortion, the farther the samples in the cluster are. The distortion of samples
decreases with the increase in clustering categories. However, if the data of each class of
samples are very different, when the clustering class is close to the real class, the distortion
is greatly reduced, and then tend to be flat. This turning point is considered as a point with
good clustering performance. Based on this indicator, multiple k-means models were trained,
and different k-values (cluster center) were selected for comparison, as shown in Figure 8.

Figure 8. The change in average distortion at different cluster centers.

Future Internet 2023, 15, 298 17 of 20

When k = 20, the distortion is greatly improved, and the maximum curvature value
appears. For a sample set, its silhouette coefficient is the average value of all sample
silhouette coefficients. The closer the distance between samples of the same category, the
farther the distance between samples of different categories, and the higher the score, the
better the classification effect. As can be seen from Figure 9, when k = 18 and k = 20, the
silhouette coefficient has a high peak value. Combined with the elbow method diagram,
when k = 20, the average distortion is relatively small, and the trend is gentle. Therefore,
k = 20 can be considered as the best number of clusters.

Figure 9. The change in silhouette coefficient at different cluster centers.

After roughly determining the number of clusters, we verified the reliability of the
proposed method. When k = {5, 10, 15, 20, 25}, the DC-CAAE model proposed in this
paper was used for training. It can be seen from Figure 10 that when k = 20, the accuracy of
the model tends to be stable and the highest, which is consistent with the guess above. To
further determine the specific values of the cluster, on the basis of Figure 10, we expanded
the analysis to around k = 20. Five points, k = {18, 19, 20, 21, 22}, were chosen for the
demonstration. The experimental results are shown in Figure 11.

Figure 10. Performance of the DC-CAAE model at k = {5, 10, 15, 20, 25}.

When k = 22, the accuracy of the clustering is slightly improved compared to when
k = 20. The reasons for this situation are as follows: when the number of clusters is smaller
than the real sample category, the number of cluster centers is small; hence, the samples
of the additional categories will inevitably converge to other categories, resulting in too
large a distance between the same category of samples. When the number of clusters is
greater than the real sample category, the number of cluster centers is large, hence the same
type of samples will be divided into multiple categories. However, this does not affect the
evaluation of the clustering accuracy, and even the accuracy will be improved compared

Future Internet 2023, 15, 298 18 of 20

with the actual number of clusters. However, on the whole, when the cluster category is 20,
the five evaluation indexes are relatively stable, and k = 20 has the best performance.

Figure 11. Performance of the DC-CAAE model at k = {18, 19, 20, 21, 22}.

6. Conclusions

Aiming at the low accuracy of unsupervised learning classification in security appli-
cations of the IoT, this paper proposed an unsupervised NTC method using adversarial
training and deep clustering under complicate IoT environments. The introduction of
the CAAE for reducing the dimension of features can avoid the huge computational cost
caused by the high complexity of high-dimensional original network traffic data features.
The DC cell is the key building block of our model because it not only adapts the extracted
features to the clustering network but also has a lower computational overhead than the
CAAE model. In the multiclassification task, we gave a method to optimize the distance
between clusters and within clusters through the joint analysis of cluster error and feature
learning. It also indicated that the number of clusters could be determined by the elbow
method and silhouette coefficient method when the sample class was unknown. The
experimental results provided showed that the model not only had good network traffic
classification performance but could also run efficiently in an unsupervised environment,
greatly saving the cost of labeling. Therefore, our proposed unsupervised NTC method can
provide a feasible solution for real application scenarios of the IoT and also provide a new
idea to improve the unsupervised clustering accuracy under complex data conditions. In
the future, we plan to study the detection of abnormal network traffic, that is, to identify
and detect unknown malicious attacks in intrusion detection systems and to deploy them
experimentally in a real industrial IoT dataset.

Author Contributions: Conceptualization, W.Z. and L.Z.; methodology, L.Z. and X.Z.; software, W.Z.
and P.L.; validation, L.Z.; formal analysis, X.Z. and Y.W.; investigation, W.Z. and L.Z.; resources, Y.W.;
data curation, P.L.; writing—original draft preparation, W.Z. and L.Z.; writing—review and editing,
X.Z. and G.G.; visualization, X.Z.; supervision, G.G.; project administration, P.L.; funding acquisition,
P.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the State Key Laboratory of Millimeter Waves under
grant number K202219, the Natural Science Foundation of the Jiangsu Higher Education Institutions
of China under grant number 21KJD510001.

Data Availability Statement: The USTC-TFC2016 dataset can be find at https://github.com/yungs
henglu/USTC-TFC2016 (accessed on 18 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/yungshenglu/USTC-TFC2016
https://github.com/yungshenglu/USTC-TFC2016

Future Internet 2023, 15, 298 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

IoE Internet of everything
IoT Internet of things
IDS Intrusion detection system
NTC Network traffic classification
UDP User Datagram Protocol
TCP Transmission Control Protocol
DPI Deep packet inspection
IAIA Internet Assigned Numbers Authority
P2P Peer-to-peer
ML Machine learning
CAAE Convolutional adversarial autoencoder
DC Deep clustering
CAE Convolutional autoencoder
CVAE Convolutional variational autoencoder
OSI Open System Interconnection
FTP File Transfer Protocol
PCA Principal component analysis
LDA Linear discriminant analysis
GMM Gaussian mixture model
NMI Normalized mutual information
AC Clustering accuracy
ARI Adjusted Rand index

References
1. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.A.; Poor, H.V. 6G internet of things: A

comprehensive survey. IEEE Internet Things J. 2022, 9, 359–383. [CrossRef]
2. Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet

Things J. 2021, 8, 11891–11915.
3. Lampe, B.; Meng, W. A survey of deep learning-based intrusion detection in automotive applications. Expert Syst. Appl. 2023, 221,

119771.
4. Li, W.; Meng, W.; Kwok, L.F. Surveying Trust-Based Collaborative Intrusion Detection: State-of-the-Art, Challenges and Future

Directions. IEEE Commun. Surv. Tutor. 2022, 24, 280–305.
5. Zhou, X.; Liang, W.; Li, W.; Yan, K.; Shimizu, S.; Wang, K. Hierarchical adversarial attacks against graph-neural-network-based IoT

network intrusion detection system. IEEE Internet Things J. 2022, 9, 9310–9319.
6. Popoola, S.I.; Ande, R.; Adebisi, B.; Gui, G.; Hammoudeh, M.; Jogunola, O. Federated deep learning for zero-day botnet attack

detection in IoT edge devices. IEEE Internet Things J. 2022, 9, 3930–3944. [CrossRef]
7. Nguyen, T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv.

Tutor. 2008, 10, 56–76. [CrossRef]
8. Dias, K.L.; Pongelupe, M.A.; Caminhas, W.M.; Errico, L. An innovative approach for real-time network traffic classification.

Comput. Netw. 2019, 158, 143–157. [CrossRef]
9. Pasyuk, A.; Semenov, E.; Tyuhtyaev, D. Feature selection in the classification of network traffic flows. In Proceedings of the

International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1–4
October 2019; pp. 1–5.

10. Moore, A.W.; Zuev, D. Internet traffic classification using bayesian analysis techniques. ACM Sigmetrics Perform. Eval. Rev. 2005,
33, 50–60. [CrossRef]

11. Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; Long, J. A Survey of Clustering With Deep Learning: From the Perspective of Network
Architecture. IEEE Access 2018, 6, 39501–39514. [CrossRef]

12. Karagiannis, T.; Broido, A.; Faloutsos, M.; Klaffy, K. Transport Layer Identification of P2P Traffic. In Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement (IMC 2004), Taormina Sicily, Italy, 25–27 October 2004; pp. 121–134.

13. Dusi, M.; Gringoli, F.; Salgarelli, L. Quantifying the accuracy of the ground truth associated with Internet traffic traces. Comput.
Netw. 2011, 55, 1158–1167. [CrossRef]

14. Dreger, H.; Feldmann, A.; Mai, M.; Paxson, V.; Sommer, R.R. Dynamic application layer protocol analysis for network intrusion
detection. In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada, 31 July–4 August 2006; pp. 257–272.

15. Madhukar, A.; Williamson, C. A longitudinal study of P2P traffic classification. In Proceedings of the 14th IEEE International
Symposium on Modeling, Analysis, and Simulation, Monterey, CA, USA, 11–14 September 2006; pp. 179–188.

http://doi.org/10.1109/JIOT.2021.3103320
http://dx.doi.org/10.1109/JIOT.2021.3100755
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1016/j.comnet.2019.04.004
http://dx.doi.org/10.1145/1071690.1064220
http://dx.doi.org/10.1109/ACCESS.2018.2855437
http://dx.doi.org/10.1016/j.comnet.2010.11.006

Future Internet 2023, 15, 298 20 of 20

16. Paxson, V. Empirically derived analytic models of wide-area TCP connections. IEEE/ACM Trans. Netw. 1994, 2, 316–336. [CrossRef]
17. Sadeghzadeh, A.M.; Shiravi, S.; Jalili, R. Adversarial network traffic: Towards evaluating the robustness of deep-learning-based

network traffic classification. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1962–1976. [CrossRef]
18. Ma, W.; Qi, C.; Zhang, Z.; Cheng, J. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave

massive MIMO. IEEE Trans. Commun. 2020, 68, 2838–2849. [CrossRef]
19. Zhao, R.; Gui, G.; Xue, Z.; Yin, J.; Ohtsuki, T.; Adebisi, B.; Gacanin, H. A novel intrusion detection method based on lightweight

neural network for internet of things. IEEE Internet Things J. 2022, 9, 9960–9972.
20. Ning, J.; Gui, G.; Wang, Y.; Yang, J.; Adebisi, B.; Ci, S.; Haris, G.; Gacanin, H. Malware traffic classification using domain adaptation

and ladder network for secure industrial internet of things. IEEE Internet Things J. 2022, 9, 17058–17069.
21. Huang, P.; Huang, Y.; Wang, W.; Wang, L. Deep embedding network for clustering. In Proceedings of the 22nd International

Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1532–1537.
22. Li, P.; Chen, Z.; Yang, L.T.; Gao, J.; Zhang, Q.; Deen, M.J. An improved stacked auto-encoder for network traffic flow classification.

IEEE Netw. 2018, 32, 22–27.
23. Shah, S.; Koltun, V. Deep Continuous Clustering. 2018. Available online: https://arxiv.org/abs/1803.01449 (accessed on 5 March

2018).
24. Srivastava, R.; Greff, K.; Schmidhuber, J. Training very deep networks. In Proceedings of the Neural Information Processing

Systems (NIPS), Red Hook, NY, USA, 7–12 December 2015; pp. 2377–2385.
25. Thies, J.; Alimohammad, A. Compact and low-power neural spike compression using undercomplete autoencoders. IEEE Trans.

Neural Syst. Rehabil. Eng. 2019, 27, 1529–1538. [CrossRef] [PubMed]
26. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation

learning. In Proceedings of the International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 January
2017; pp. 712–717.

27. Ren, Y.; Pu, J.; Yang, Z.; Li, G.; Pu, X.; Yu, P.; He, L. Deep Clustering: A Comprehensive Survey. 2022. Available online:
https://arxiv.org/abs/2210.04142 (accessed on 9 October 2022).

28. Hoang, D.H.; Nguyen, H.D. Detecting anomalous network traffic in IoT networks. In Proceedings of the International Conference
on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 17–20 February 2019; pp. 1143–1152.

29. Peng, X.; Xiao, S.; Feng, J.; Yau, W.-Y.; Yi, Z. Deep subspace clustering with sparsity prior. In Proceedings of the International Joint
Conferences on Artificial Intelligence Organization (IJCAI), New York, NY, USA, 9–15 July 2016; pp. 1925–1931.

30. Yao, R.; Liu, C.; Zhang, L.; Peng, P. Unsupervised anomaly detection using variational auto-encoder based feature extraction. In
Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA,
17–20 June 2019; pp. 1–7.

31. Yang, B.; Fu, X.; Sidiropoulos, N.D.; Hong, M. Towards K-means-friendly spaces: Simultaneous deep learning and clustering.
In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017;
pp. 3861–3870.

32. Guo, X.; Liu, X.; Zhu, E.; Zhu, X.; Li, M.; Xu, X.; Yin, J. Adaptive self-paced deep clustering with data augmentation. IEEE Trans.
Knowl. Data Eng. 2020, 32, 1680–1693. [CrossRef]

33. Rabiner, L. Combinatorial optimization: Algorithms and complexity. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 1258–1259.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/90.330413
http://dx.doi.org/10.1109/TNSM.2021.3052888
http://dx.doi.org/10.1109/TCOMM.2020.2974457
https://arxiv.org/abs/1803.01449
http://dx.doi.org/10.1109/TNSRE.2019.2929081
http://www.ncbi.nlm.nih.gov/pubmed/31331895
https://arxiv.org/abs/2210.04142
http://dx.doi.org/10.1109/TKDE.2019.2911833
http://dx.doi.org/10.1109/TASSP.1984.1164450

	Introduction
	Related Work
	Traditional NTC Methods
	DL-Based NTC Methods

	Problem Formulation and Dataset Generation
	Problem Description
	Dataset Introduction

	The Proposed DC-CAAE Method
	CAAE Structure
	The Basic Principles of the CAAE
	CAAE Training Process
	Deep Clustering Structure
	The Basic Principles of Deep Clustering
	Deep Clustering Training Process
	The Benchmark Methods
	PCA-Based Methods
	CAE/CVAE-Based Methods
	DC-Based Methods

	Simulation Results and Discussions
	Simulation Setup and Evaluation Metrics
	Simulation Setup
	Evaluation Metrics

	Simulation Results and Analysis
	Performance Comparison of Unsupervised NTC Methods
	Convergence Analysis
	t-SNE Feature Visualizations
	The Influence of the Uncertainty in the Number of Categories on NTC Performance

	Conclusions
	References

