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Abstract: Edge computing (EC) is a distributed computing approach to processing data
at the network edge, either by the device or a local server, instead of centralized data
centers or the cloud. EC proximity to the data source can provide faster insights, response
time, and bandwidth utilization. However, the distributed architecture of EC makes it
vulnerable to data security breaches and diverse attack vectors. The edge paradigm has
limited availability of resources like memory and battery power. Also, the heterogeneous
nature of the hardware, diverse communication protocols, and difficulty in timely updating
security patches exist. A significant number of researchers have presented countermeasures
for the detection and mitigation of data security threats in an EC paradigm. However, an
approach that differs from traditional data security and privacy-preserving mechanisms al-
ready used in cloud computing is required. Artificial Intelligence (AI) greatly improves EC
security through advanced threat detection, automated responses, and optimized resource
management. When combined with Physical Unclonable Functions (PUFs), AI further
strengthens data security by leveraging PUFs’ unique and unclonable attributes alongside
AI’s adaptive and efficient management features. This paper investigates various edge
security strategies and cutting-edge solutions. It presents a comparison between existing
strategies, highlighting their benefits and limitations. Additionally, the paper offers a de-
tailed discussion of EC security threats, including their characteristics and the classification
of different attack types. The paper also provides an overview of the security and privacy
needs of the EC, detailing the technological methods employed to address threats. Its goal
is to assist future researchers in pinpointing potential research opportunities.

Keywords: edge computing; cloud computing; data centers; bandwidth; artificial intelligence;
PUFs

1. Introduction
The Internet of Things (IoT) is a comprehensive network of interconnected physical de-

vices equipped with sensors, software, and various communication technologies, enabling
them to communicate and share data over the Internet. Powered by smart devices, edge
computing (EC), and big data analytics, IoT is transforming both business operations and
the interactions between service providers and customers [1]. The number of IoT devices
is estimated to nearly double, increasing from 15.9 billion in 2023 to over 32.1 billion by
2030. IoT-based services are rapidly being adopted across various industries and consumer
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markets, including healthcare, industrial automation, automotive, smart cities, logistics,
and agriculture [2,3]. The adoption of IoT has been further driven by the integration of
advanced technologies such as 5G, AI, Blockchain, and EC [4,5]. A typical IoT architecture,
shown in Figure 1, consists of devices, sensors, and actuators in the perception layer, gener-
ating a large amount of data which requires further processing to enable intelligence for
service providers and end users. The network layer transports data from the perception
layer to the network via gateways that might perform preprocessing and often gather
data from other edge devices. Authentication, encryption, malware protection, processing,
and initial decision-making are carried out in this layer. The data processing is either carried
out in the gateway or the cloud, based on the application and implementation. Cloud
computing technology requires sensed data to be uploaded to centralized servers called
data centers for further processing, and the results are transmitted back to the device layer.
Such a centralized processing approach puts enormous pressure on the communication
network regarding bandwidth, latency, and the vulnerability of data security [6].

Figure 1. A typical IoT architecture.

Centrally located servers at data centers offer poor quality of service (QoS) in addition
to the burden imposed on the communication networks, including the following:

• Additional costs are involved due to inefficient utilization of bandwidth and net-
work resources;

• Large-sized data drastically degrade network performance;
• Billions of connected devices on the IoT network make it difficult to manage data

traffic; and
• Time-sensitive IoT applications are bound to become affected due to network-

introduced latency [7,8].

The idea behind “edge computing (EC)” is to minimize communication latency and
bandwidth usage, enable real-time data analysis, reduce operational costs, enhance scala-
bility, and improve service quality [9–12]. Closer EC proximity to the data sources reduces
transmission delays, packet loss, and high energy consumption [10,13,14]. Additionally,
EC offers location-aware services and enhances resource allocation by shifting tasks from
IoT devices with limited resources to more powerful edge servers [15]. Thus, EC is charac-
terized by its heterogeneous distributed network architecture, large-scale data processing,
parallel computing capabilities, and support for mobility services, including location track-
ing. However, EC increases vulnerability to cyberattacks and threats, as sensitive data are
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stored and processed in a distributed environment with limited resources, making it diffi-
cult to implement complex security algorithms [7,16]. Figure 2 shows an edge-based IoT
attack model outlining various threats and vulnerabilities specific to the edge computing
environment in the Internet of Things (IoT) context [17].

Figure 2. IoT attack model.

Additionally, the dynamic nature of the edge in IoT networks makes them more
susceptible to security attacks and difficult to protect. Mostly, the data security threats
and attacks on EC architecture are placed under four categories, i.e., distributed denial-of-
service (DDoS) attacks, side-channel attacks, malware injection attacks, and authentication
and authorization attacks [18]. Xiao et al. provide a classification of security attacks
in an edge environment under six categories, i.e., DDoS attacks, side-channel attacks,
malware injection attacks, authentication and authorization attacks, man-in-the-middle
attacks, and bad-data injection attacks [18]. A threat intelligence report from “Netscout”
reports an upsurge in DDoS attacks during the second half of 2021. About 9.7 million
attacks were identified in 2021, which is 14% higher than in 2019 [19]. The number of
malware attacks on IoT devices has grown from 813 million to 2.9 billion from 2018 to
2020 [20]. Current research on EC security and privacy is focused on techniques such as
data privacy, lightweight security protocols, artificial intelligence (AI) integration, trust
management, and collaborative security. Differential privacy (DP) adds noise to data to
protect individual privacy while allowing aggregate data analysis in five critical areas:
data transmission, data processing, data model training, data publishing, and location
privacy [21–23]. Authors of [24] introduce a hybrid differential privacy model combined
with adaptive gradient compression, providing stronger protection against inference attacks
while transmitting gradient parameters. Implementing secured lightweight encryption
and authentication techniques secures data from side-channel and hardware attacks [25].
Samad et al. proposed an anonymous authentication protocol that utilizes elliptic curve
cryptography (ECC) and signcryption techniques [26]. Several encryption models have
been developed over the years using or combining various techniques like authenticated
encryption (AE) with associated data (AEAD) schemes [27].

Trust management is a critical component of EC, involving the processing and storage
of data at the network’s edge. Blockchain and distributed ledger technologies (DLTs) en-
able decentralized, secure, and transparent trust management. Wang et al. introduced a
blockchain-based secure data aggregation strategy (BSDA) integrating a security label into
the block header, which includes the task’s security level (SL) and completion requirement
(CR) [28]. A blockchain-based protocol introduced in [29] supports conditional anonymity
and efficient key management, overcoming the limitations of traditional cryptographic pro-
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tocols. Authors of [30] propose multiple edge blockchains that interact through a cloudlet
chain operating independently. Collaborative EC enhances privacy by selectively sharing
data or insights among nodes or with the cloud, minimizing overall exposure to sensitive
information. Techniques such as federated learning (FL) allow multiple devices to train ML
models locally on their data without transmitting the raw data to others. This approach
helps organizations comply with data residency and privacy regulations by ensuring that
data remain within designated geographic boundaries. Li et al. have developed algorithms
based on Multi-Armed Bandit (MAB) frameworks by sharing information about server
security risks [31] while proposing an SDN-based framework [32]. Data disturbance and
adversarial training methods are adopted in [33] for generating adversarial samples using
the Firefly Algorithm (FA).

AI-driven techniques enhance intrusion detection, data confidentiality, and access
control in edge environments. Researchers have developed various strategies to secure EC,
including machine learning (ML) algorithms and innovative methods like hybrid feature
analysis. ML is especially effective in detecting real-time anomalies and potential breaches,
offering robust protection against advanced attacks [34,35]. AI chips with computational
accelerators like Field Programmable Gate Arrays (FPGAs), Graphics Processing Units
(GPUs), Tensor Processing Units (TPUs), and Neural Processing Units (NPUs) are inte-
grated into intelligent mobile devices [36]. Field programmable gate arrays (FPGAs) are
suitable for implementing customized hardware logic and real-time image processing for
high-performance edge computation [37]. FPGAs’ characteristics suit EC requirements
like (i) processing of data streams at lower latency, (ii) adaptability to any algorithm due
to their reconfigurable architecture exploiting spatial and temporal parallelism at a finer
granularity, and (iii) thermal stability reducing cooling cost [38]. FPGA-based edge devices
have proven their resilience to physical and side-channel attacks. FPGAs’ inherent ability to
process tasks in parallel and flexibility in handling diverse workloads can match AI and ML
algorithms’ computational and processing needs. FPGAs allow greater flexibility in what
the processor does, they are very useful in building AI accelerators [39]. The FPGA-based
edge reduces the response time by 1.62× for the object application and 1.14× for the face
application compared to CPU-based edge offloading in general [40]. Zhao et al. presented a
novel approach to secure FPGA-based edge devices using a lightweight hardware-assisted
chaos-based stream cipher for protecting FPGA bitstreams [41]. Regarding security, IP
protection techniques implemented on FPGA have better flexibility and require no extra
resource overhead compared to those implemented on a traditional custom circuit. Ngo et
al. implemented a hierarchical decision-making approach combined with an ANN model
as a hardware-accelerated framework on the FPGA for real-time detection of network intru-
sions [42]. An Oscillator Collapse (OC-PUF) designed to utilize manufacturing variations
in FPGAs that generate unique responses to input challenges was tested on Altera DE2-115
FPGA boards, achieving an inter-chip Hamming distance of 46.7% [43]. FPGAs can run
several lightweight cryptographic protocols simultaneously, in addition to advantages like
optimal chip area, speed, and power consumption [44]. Silicon physically unclonable func-
tions (PUFs) implemented on FPGA platforms are flexible, secure, cost-effective, and offer
a quick turnaround. FPGA-based PUFs are diverse and effective in IP protection [45],
RFIDs [46], secured key generation [47], and remote activation [48].

The remainder of this paper is divided into the following sections. Section 2 discusses
the basic edge IoT architecture and key components of the edge ecosystem across three
distinct layers of cloud, edge, and devices. Section 3 comprehensively discusses security,
privacy challenges, associated countermeasures, and defense mechanisms deployed in an
edge paradigm. Section 4 provides the implementation details of PUFs for device-specific
authentication schemes in hardware security, digging into the reasons responsible for
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authentication and trust challenges, access control, and root causes of edge computing
security threats, and also proposes future research directions. Finally, we conclude this
paper in Section 5.

1.1. Motivation

The primary strength of EC in IoT network security lies in its decentralized architecture.
EC reduces the need for data to travel, thus reducing the potential attack surface. Hence,
due to its precise control over data processing locations and methods, the EC can uphold
data privacy regulations like the General Data Protection Regulation (GDPR) or the Califor-
nia Consumer Privacy Act (CCPA). Therefore, EC enables the implementation of security
protocols and analytics directly at the device level, facilitating real-time threat detection
and response. EC is expected to possess flexible, lightweight, secure, and self-adaptive
data analytics mechanisms based on user data sensitivity. However, the decentralized
architecture of EC poses significant trust management challenges due to the issues related
to collecting and managing evidence information from edge devices [49]. ML-enabled EC
can make data-driven inferences, predictions, and decisions based on acquired knowledge
from past data. Also, ML is a preferred choice for IoT services’ privacy and data security
due to its analytical capability. However, ML-based security schemes possess serious limi-
tations due to the need for huge training datasets and privacy issues. So, there is an urgent
need to devise an ML-based security scheme with low computation and communication
costs [50]. ML-based modeling through anomaly detection techniques offers more generic
and robust security solutions against unknown attacks. However, ML-based security so-
lutions may be vulnerable to ever-evolving attacks like adversarial ML [51]. With a large
amount of data generated by edge devices, there is a need for ML models that can run
on resource-constrained edge devices. Also, techniques should exist for compressing the
ML models that can make these models lighter and faster while making them suitable for
edge deployment. Traditional security solutions rely on cryptographic methods where a
secret key is stored within the device. However, the entire security system can be breached
if this key is compromised. In contrast, a Physical Unclonable Function (PUF) uses the
hardware itself as the medium to generate a unique secret key. The core principle of PUFs is
based on the unique, device-level variations introduced during the manufacturing process.
PUFs can be applied in various security protocols, including unique identifiers, secret keys,
device authentication, intellectual property protection, and pseudo-random bit generators
(PRNGs) [52].

1.2. Comparison with Existing Literature

Table 1 lists recently published research articles that comprehensively survey data
security and privacy challenges and their mitigation techniques in the context of EC-based
IoT services. Topics covered include comprehensive trust management frameworks, mecha-
nisms orchestration, and standardization, software-defined networking (SDN), blockchain,
ML techniques, and diverse versions of cryptosystems. PUFs enable the authentication
of integrated circuit (IC) chips by exploiting inherent device variations. These features
include random delay characteristics of wires and transistors due to process variations
during semiconductor manufacturing processes [53]. PUF-enabled RFIDs and processors
are under development that can generate cryptographic keys and make physical cloning
of semiconductors difficult [47]. Majzoobi et al. published a survey on PUF-enabled se-
curity primitives for field programmable gate arrays (FPGAs) that can mitigate IP theft
and tampering at HDL, synthesis, and bitstream levels [54]. Edge machine learning (ML)
implementation models and architectures were surveyed by Merenda et al. [55]. Edge ML
effectively reduces data load on the IoT network while improving privacy. Also, various



Future Internet 2025, 17, 175 6 of 54

security aspects, effective countermeasures through edge artificial intelligence (AI), and the
potential to improve edge AI through blockchain and Deep Reinforcement Learning are
highlighted in [56,57].

Table 1. Existing surveys on EC security.

Reference Scope Focus Limitations

[7,9,55,58–62]
Review of
Opportunities and
Challenges in EC

Conversations on EC-assisted IoT architec-
tures, data security, and privacy-related
challenges alongside insights into potential
future research directions. Implementation
of AI/ML-assisted cryptography algorithms
and protocols is crucial for ensuring reliable
access and control over the network, stor-
age, and computation across numerous dis-
tributed edge nodes.

Limited resources at edge
devices act as a barrier in
terms of scalability and
flexibility issues. Also,
cryptography protocols have
difficulty protecting endless
data streams or as the data
arrives [63].

[16,64–66] Network security
architecture

Secure access service edge (SASE) network
architecture integrated with Virtual Pri-
vate Network (VPN) and software-defined
wide area network (SD-WAN) character-
istics ensures secured web gateways, fire-
walls, and zero-trust network access.

Converging network access
and security into a single
network architectural model
may be a challenge.

[17,47,54,67–69]

ML and deep
learning (DL)
models in the
context of Edge
security

Discussion on centralized, decentralized,
and hybrid architectures implementing AI
at the edge as well as technologies like fed-
erated learning, model compression, gradi-
ent compression, DNN splitting, and gossip-
based training.

Maintaining and updating the
ML models over time
and training on the cloud.

[70–74] Intrusion detection
system

Host-based intrusion detection systems
(HIDSs) monitor individual devices, while
network-based intrusion detection systems
(NIDSs) analyze network traffic for poten-
tial threats.

The limited computational
and storage capabilities of
edge nodes limit the
processing or storage of
large-scale data.

[75–78] PUF-enabled
digital fingerprint

PUFs utilize the distinctive physical traits of
edge devices to offer robust authentication,
secure key management, and tamper resis-
tance while eliminating the need for stored
cryptographic keys.

Highly sensitive to
environmental factors like
temperature, voltage,
and electromagnetic
interference, PUFs exhibit
unique challenge–response
pairs (CRPs) and are
vulnerable to machine
learning attacks.

Ref. [79] proposes a blockchain-enabled FL-based architecture that integrates blockchain
technology with FL for decentralized training and secure data exchanges in UAV networks.
The authors of [59] carried out cryptanalysis of a blockchain-based decentralized security
solution for EC, i.e., DecChain architecture, using the AVISPA simulation tool. The authenti-
cation and transactions between users and service providers are verified through blockchain
mechanisms. An overview of the integration between blockchain and EC systems, pro-
viding a tamper-proof transaction ledger, is discussed in [61,80]. The survey identifies the
critical issues in areas such as scalability, self-organization, security, resource management,
and combining blockchain’s consensus algorithms with EC’s dynamic nature. Zhao et al.
conducted a detailed study on the benefits of integrating EC with cloud computing and per-
formance issues related to resource management, virtualization, and networking in several
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sub-aspects [69]. Authors of [71,74] review the integration of intrusion detection systems
(IDSs) and ML techniques on known signatures for an adaptive and efficient performance.
A Hybrid Intrusion Detection Framework (EHIDF) for addressing security threats in Mobile
Edge Computing (MEC) is proposed in [73], utilizing modules like Signature Detection
Module (SDM), Anomaly Detection Module (ADM), and Hybrid Detection Module (HDM).
The framework was evaluated using the UNSW-NB15 dataset, which includes various
attack types. The researchers in [75] implemented a double PUF-based model on the Xilinx
Virtex5 FPGA for authenticating edge devices and software (IP cores), achieving a 61.96%
reduction in resource utilization along with a performance stability rate of 99.54%. In [76],
XORArbiter PUFs were used for authenticating Edge Data Centres (EDCs) and edge de-
vices, with Raspberry Pi devices simulating EDCs. In [77], a 10-transistor SRAM cell was
utilized to perform both XOR encryption (PUF) and MAC operations within the same cell,
allowing the processing and encryption of DNN model weights. A delay-based PUF, pro-
ducing a 1-bit signature, was synthesized and configured on a 28 nm FPGA using on-chip
resources such as lookup tables (LUTs) and flip-flops, achieving an average uniqueness of
49.7% [78]. A fast and effective data encryption application, called Selective Encryption
and Component-Oriented Deduplication (SEACOD) [81], is discussed in context to the EC
security [82]. A blockchain-based mutual authentication scheme integrated into certificate-
less cryptography, elliptic curve cryptography, and pseudonym-based cryptography that
authenticates transactions between edge servers and IoT devices is presented in [83]. Also,
the key generation negotiation mechanism while considering IoT devices’ mobility is im-
plemented on hyperledger fabric. A review of the current research status in EC security
on access control, key management, privacy protection, attack mitigation, and anomaly
detection is carried out in [84]. The authors advocate the need for innovative proposals in
EC, as already mature cloud computing does not meet recent challenges and requirements.
Access control and key management schemes in Information-centric networking (ICN) and
non-ICN infrastructures are based on traditional schemes, and there is a need for newer
architectures with lighter encryption protocols. A secure searching scheme for desired data
within own/shared data on storage, as well as a searching scheme for IoT smart devices
at the edge of cloud-assisted IoT, is proposed in [85]. The researchers claim that their
proposed data-sharing mechanism, along with secret and public key encryption, improves
data processing time as compared to existing cloud-based systems.

A comprehensive overview of blockchain technology and its application in the net-
work control, storage, and computation at edge nodes, offering network security, data
integrity, and computation verification, is presented in [60,61,86]. A blockchain technology
integrated into the communication layer of an edge network can manage the radio spec-
trum and authentication of edge devices, as well as network access control in the network
layer [86]. Liu et al. proposed blockchain-based data and energy coins on the distributed
consensus principle for the secured data exchange in Electric vehicles cloud and edge
(EVCE) computing [58]. Blockchain-based decentralized framework named “DecChain”
is proposed to eliminate the need for authentication to access third-party services or re-
sources [59]. Also, hardware-assisted blockchain implementation of a defense-in-depth
strategy and proper network segmentation forms the basis for a secured and trusted envi-
ronment for the unidirectional payment channels is investigated in [62,64]. Infrastructure
for cloud access through the adoption of the Secure access service edge (SASE) framework
is used for developing strategies for threat and intrusion detection, network segmentation,
and defense in depth (DiD) [65,66].
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1.3. Novelty and Contribution

The geographical distribution of edge devices increases the chances of security risk
as well as physical interference or damage. In addition, remote accessibility of edge
devices presents opportunities for data theft and sabotages corporate operations. There are
numerous research works available in the literature that address the above-discussed issues.
Some of the research publications are survey conclusions related to the security aspects
of IoT networks without any specific consideration of EC-assisted network deployments.
The contributions made in this survey are listed below:

• We present a summary as well as detailed scrutiny and analysis of security and
privacy-related issues about EC-assisted IoT services. Also, security objectives and
functions on EC-based IoT applications are discussed.

• A classification of data security threats and attacks due to poor design approaches, mis-
configurations, and implementation flaws is discussed. Also, appropriate mitigation
techniques for the detection and prevention of attacks are covered.

• Detailed taxonomy of PUF classification based on silicon and non-silicon-based fabri-
cation is presented, and significant performance and quality matrices are discussed.

• A comprehensive summary of AI/ML-based cryptography techniques for the mitiga-
tion of data security and privacy threats is presented. Also, the significance of reliable
datasets and training data for the development of accurate ML algorithms is discussed
in this survey.

• A discussion about future security research goals, privacy-related open challenges,
and deeper insights into future research directions in the context of the EC-based IoT
ecosystem is offered.

2. Edge Computing
The enormous volume of data generated at IoT sensing nodes can overwhelm any

commercial network, bringing all activities on the network to a halt. This leads to increased
IT costs, dissatisfied customers causing financial and reputational losses, poor productivity
in the industry, and, most importantly, health and safety concerns [87]. EC is the real-time
analysis, processing, and storage of data at a location near the source of data where they are
generated. Therefore, EC utilizes the available technology that moves computation nearer to
the network edge. This involves handling downstream data for cloud services and upstream
data for IoT services. [8]. EC brings computational services, data storage, and retrieval as
well as diverse enterprise applications close to the actual consumers of information. We can
summarize the benefits of EC as it eases the load on the network, cloud, and data center
systems while mitigating latency concerns, offers quicker responses, improves application
performance and customers’ experience. An edge computing platform provides its services
by [88]

• processing the sensed data away from the central cloud or data center in real time;
• caching, buffering, and optimization of the data close to edge nodes;
• transforms raw data from edge nodes into a format that can be processed for further

deeper analysis.

There are numerous applications and services, such as industrial automation, virtual
reality, real-time traffic management, data analytics, and home automation, that leverage
the capabilities of EC. These capabilities include features like mobility support, situational
awareness, minimal latency, and proximity to edge nodes or users [89]. Edge computing
complements cloud computing services through improved user experience in the delay-
sensitive application as well as offloading the cloud platform [90]. Although there exist
similarities between edge and cloud computing, certain distinct characteristics set them
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apart from each other. The location of EC and cloud computing layers in an IoT network
is distinctive. Cloud is located significantly from the nodes/users’ location and induces
high latency compared to EC. Location awareness and mobile support are possible in EC
as it is based on a distributed computing model compared to a centralized model of cloud
computing [91]. An EC is a subset of cloud computing that comprises hosting diverse
services and applications in proximity to sensing nodes and users. As shown in Table 2,
there is a significant difference between cloud computing and EC. Also, an edge (location)
is different from EC (action). Data collection at the edge (location) and forwarding it to a
cloud with limited data processing is not considered to be EC. It is just a case of networking.
However, EC occurs if data collection and processing are carried out at the edge of the EC.

Table 2. Comparison of Cloud and Edge computing.

Characteristics Cloud Computing Edge Computing

Deployment Centralized Distributed
Latency High Low
Computational Unlimited Limited
Storage Unlimited Limited
Scalability High Low
Privacy High risk Data stays at source

Security A robust security plan and proactive
monitoring against attacks is required

It requires, to a lesser degree,
a powerful security plan

2.1. Edge Architecture

Several architectures are proposed for the deployment of the EC layer, but they lack
clear definitions and distinctions among nodes. Recent surveys conducted by researchers
on EC architectures contain numerous outlooks such as mobile edge cloud servers and
networks, application specificity, and considerations regarding resource type, resource man-
agement objectives, resource location, and resource utilization. Also, architectural-related
challenges like scalability and heterogeneity are elaborated. Premsankar et al. classified
all such edge architectures under three categories, i.e., based on the location of resource-
ful servers from edge devices, resources from heterogeneous edge nodes, and classes of
resources at edge and data centers [13].

Figure 3 illustrates a fundamental three-layer architecture for EC. This structure es-
tablishes a connection from devices to an edge server, which in turn links to the entire
network, encompassing both the cloud and data centers. Within this type of EC architecture,
the edge server is situated in a fixed physical location and boasts significant computational
capabilities, albeit less powerful than the conventional data centers employed in cloud com-
puting. Furthermore, there is a discernible demarcation between the device level and the
edge level, which includes the presence of edge servers [92,93]. The lowest layer includes
the IoT sensing nodes responsible for the ingestion of data and applications. It includes
IoT devices like cameras, sensors, controllers, industrial machines, etc. The middle layer
includes the edge computing infrastructure for data processing, routing, and computing
operations. Data generated at the device layer undergo aggregation, analysis, and pro-
cessing at the edge servers before being transmitted to the upper layer or returned to the
device. Although edge computing servers have lower computational ability than cloud
servers, they offer better quality of service (QoS) and lower latency than cloud servers.
At the topmost layer, there are cloud data centers involving a central data center and
interconnected regional data centers. Even in an EC architecture, cloud data centers persist
to serve a crucial role as storage places of information. This layer is accountable for tasks
such as data analytics, artificial intelligence, machine learning, visualization, and more.
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Figure 3. Edge computing architecture.

2.2. Edge Computing Challenges

EC is characterized by higher bandwidth, lower latency, and real-time services, but it is
still in the development stages and lacks a well-defined standard framework. As illustrated
in Figure 4, the number of edge devices is experiencing rapid growth, creating significant
challenges for cloud servers in handling real-time data processing. Statista projects that
by 2030, there will be approximately 6.5 billion consumer-focused edge devices, with their
average processing speeds advancing exponentially. As a distributed computing technology,
EC necessitates well-defined deployment strategies for application workloads on edge
nodes. Deployment strategies should be able to answer key questions like where to place
a workload, connection policies, and heterogeneity of nodes [94]. EC-driven IoT services
create management challenges that organizations should overcome to ensure resilient and
reliable operations. Equipment suppliers, service providers, and software vendors are
required to work collaboratively to offer cohesive interoperability between various network
functions and seamless integration from across edge-to-cloud infrastructure. These factors
present challenges in deploying, scaling up, and managing the EC paradigm [95].

Figure 4. Projected edge devices growth.
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Some of the challenges that must be addressed for the widespread adoption of edge
computing are discussed below.

• Heterogeneity. Many hardware devices and communication standards of diverse na-
tures are deployed at edge networks [96]. EC exhibits heterogeneity across multiple
dimensions, including hardware architecture, operating systems, programming lan-
guages, accessibility, and the nature of tasks [97]. First, edge devices are diverse,
generating data in various formats. Second, data are transmitted through various
network access technologies, including 3G, 4G, 5G, WiFi, WiMAX, and LPWAN
technologies like Sigfox [98]. Third, the heterogeneous edge nodes providing ser-
vices encompass a variety of devices such as end-user devices, access points, routers,
and switches [49,91].

• Coordination between communication and computing. The integration of EC into IoT
systems adds significant complexity due to the diverse resource constraints and
operational requirements of edge servers and IoT devices [96]. Mobile edge computing
(MEC) is a computing model that extends cloud computing to the network’s edge [99].
Researchers are exploring the integration of Low Earth Orbit (LEO) satellites with
MEC’s for low-latency computing offloading services by placing MEC servers on LEO
satellites [100] as well as collaborative MECs among connected entities [101]. Network
slicing divides a single physical network into multiple virtualized, independent,
and tailored networks, aligning with the distributed models of EC. It is managed
through the combined optimization of computing and communication resources in
EC environments [102].

• Partitioning and Offloading Tasks. The computational tasks are divided into smaller
sub-tasks, and these tasks are processed either locally on the edge device or offloaded
to more powerful edge servers or the cloud. The overall system performance is en-
hanced by partitioning and offloading tasks while optimally balancing computing and
communication resources [103]. Task offloading is a comprehensive process involving
application partitioning, decision-making regarding offloading, and executing tasks
scattered across the system [104]. The main challenges in designing partitioning and
offloading algorithms involve determining the optimal granularity for partitioning,
managing resource limitations, adapting to dynamic environments, and addressing
the complexity of offloading within blockchain-enabled communication systems [103].
In an MEC system with multiple edge nodes (ENs) serving multiple users, user as-
sociation is pivotal in shaping the task partitioning strategy, necessitating the joint
optimization of task partitioning and user association [105].

• Security and privacy issues. EC is vulnerable to access control, identity authentication, in-
formation security, and privacy protection-related threats [106]. EC characteristics like
geographic distribution, heterogeneity, lower latency, lack of standardized protocols,
and operating software expand its attack surface [49,56,96]. Conventional security
mechanisms such as attribute or group-signature-based access control, homomor-
phic encryption, and public-key-based authentication require higher computational
ability and storage [107]. Securing edge environments is significantly different from
traditional IT security. Implementing security measures on edge devices can poten-
tially hinder their internal operations, impacting the real-time capabilities of edge
computing. As a result, a key challenge in edge computing is finding the right bal-
ance between minimizing latency and meeting security requirements [108]. Edge
operations are typically time-sensitive, safety-critical, and autonomous. The security
models implemented in EC networks must accommodate factors such as longer device
lifespans and support for legacy infrastructure. Quick patching may not always be
possible, particularly if updates require reboots, which could jeopardize safety [109].
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• Monitoring, Accounting, and Billing. It is important to continuously monitor the usage of
EC resources, accounting, and billing-related data for better QoS and charging for EC
services. Traditional monitoring and accounting methods typically rely on monitoring
interfaces on physical nodes, utilizing hardware probes, and correlating data with
control plane and management plane information. However, these approaches often
neglect the requirements of the distributed nature intrinsic in an edge environment.
A sustainable business model for EC services is needed for monitoring, accounting,
and billing purposes. Creating a robust business model proves to be quite challenging
due to the mobile nature of users and the limited scope of services. The key focus for
EC lies in enhancing resource utilization to its fullest extent and effectively monetizing
these resources [110,111].

3. Security and Privacy Challenges
The first level of data processing is at the edge of EC, making them vulnerable to

security attacks and data theft associated with end users. Security measures adopted in IoTs
include advanced security algorithms like attribute-based access control, authentication
based on group signatures, homomorphic encryption, and techniques based on public-key
cryptography. Such algorithms demand sizable computational capabilities and memory
availability on the devices where they are deployed [107]. The cloud can host almost
unlimited resources like memory, computing capabilities, power, etc., but lacks real-time
user experience due to its physical distance from IoT end devices. Some research efforts
have been made in developing and deploying edge-based security architecture designs
like firewalls, Packet filters, intrusion detection systems, side-channel signal analysis,
authentication and authorization protocols, privacy-preserving mechanisms, real-time
traffic monitoring systems (RTMSs), and cryptographic schemes. Adversaries use various
hardware- and software-based techniques to falsify, change, steal, or remove data within
edge networks and infect and manipulate edge nodes, devices, or servers found at the
edge [112].

Numerous security threats that can compromise user privacy and data integrity or
disrupt critical services exist in the edge device layer, communication layer, and edge com-
puting layer in the EC paradigm of IoT network [7,16,113,114]. The commonly identified
edge/communication network attacks are eavesdropping, replay attacks, denial-of-service,
and jamming [9,115]. The vulnerabilities associated with various edge peripherals within
the computing layer are mostly DoS and DDoS attacks [116], whereas ref. [18] has placed
DDoS attacks, side-channel attacks, malware injection attacks, and authentication and
authorization attacks under the EC infrastructure layer.

However, the research outcomes for edge-based IoT security remain in the early stages
of development [107,117]. Initially, EC was assumed to be resilient against cyberattacks
since user data no longer needed to travel to cloud servers. Nonetheless, the edge network
layer’s dynamic nature makes it susceptible to data security threats, as unified security
protocols cannot be uniformly applied [118]. Numerous factors contribute to data security
and privacy concerns in EC. The vicinity of end users to edge nodes increases the risk of
data interception by adversaries. Additionally, the constrained memory and processing
capabilities of edge devices, when compared to cloud computing, impede the application of
complex encryption techniques and thus aggravate security challenges [119]. It is essential
for all stakeholders within an EC ecosystem, like service providers, system and application
developers, and end users, to appreciate data security’s ethical, legal, and financial implica-
tions. Another pressing concern is determining the ownership of sensitive data collected
at edge nodes [120]. Mukherjee et al. proposed a layered security framework shown in
Figure 5 implemented on cloud EC architecture [121]. Authentication features are imple-
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mented at every layer to ensure that only verified end devices can access cloud and edge
services. Additionally, location-specific EC is applied at the edge and end-device levels to
safeguard user privacy. Moreover, firewalls and intrusion detection systems deployed in
both cloud and edge infrastructures help identify and thwart network intrusions. Common
security components can exist across multiple layers due to network layer and device
requirements, and their purpose and functionality might differ [121]. Robust cryptographic
techniques are needed in the cloud edge collaborative architecture, as a huge amount of
data flows through unsecured or least secure public channels with a higher probability of
privacy leakage and unauthorized data access [122].

Figure 5. Security functionalities in a cloud-edge computing architecture.

Implementing a uniform security strategy across all edge nodes is extremely difficult
due to their management by various users. Wei Yu et al. proposed a problem space
of EC-based IoT security defined over three distinct classes, i.e., transmission, storage,
and computation [6],

• Transmission: Jamming attacks, sniffing attacks, worm propagation, distributed
denial-of-service (DDoS), and similar assaults can disrupt data links by choking the
network or observing the data flow.

• Storage: Innumerable sensors and devices produce a gigantic volume of data, which
is then stored across various third-party locations. Such an arrangement poses issues
like data integrity being seriously challenged due to the distribution of data into many
fractions, resulting in data packet losses as well as data corruption. Also, adversaries
can modify or abuse stored data at third-party locations, leading to data leakage and
other privacy issues.

• Computation: The relocation of computational tasks from the cloud to edge nodes in
EC demands an establishment of trust between edge servers and end devices.
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3.1. Classification of Edge Computing Security Threats

According to Statista’s 2017 report, approximately 159,700 cyberattacks targeted edge
networks and were grouped under six distinct groups: side-channel attacks, malware injec-
tion attacks, DDoS attacks, man-in-the-middle attacks, authentication and authorization
attacks, and corrupt data injection attacks. The percentage share of each class of attacks is
shown in Figure 6. User privacy and data security are the most important factors from the
service provider’s perspective. Sensing network data can extract a lot of private and vul-
nerable information. For example, access to the data from the electricity and water meters
can provide information about the occupancy of a house. There are still open challenges
that need to be answered by the EC service providers to protect user-sensitive data.

Figure 6. Percentage share of attacks on edge network.

Figure 7 shows a classification of security and privacy threats, listing their types
and origins across various levels and layers within EC networks. All stakeholders in EC,
including service providers, system and application developers, and end users, must realize
their responsibility against data security threats. Another essential data privacy and security
issue is establishing the ownership of collected data at the network edge. A suggested
solution is to collect and store data at the edge while leaving ownership to the user. Capable
tools and technologies are needed to ensure data privacy and security while meeting EC
requirements. Edge nodes are resource-constrained, making deploying advanced data
security measures difficult due to their resource-intensive nature. Furthermore, the dynamic
nature of the location at the network edge increases vulnerability to security attacks and
illegal access to user data. Table 3 summarizes the security and privacy challenges as well
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as corresponding mitigation techniques against jamming attacks, distributed denial of
service (DDoS) attacks, eavesdropping or sniffing, routing information attacks, physical
attacks, and privacy leakage.

Figure 7. Security threat classification in EC.

Table 3. Classification of edge security threats.

Type of Threat Description Mitigation Strategies

Hardware or software
malware

Unauthorized hardware or software are injected
into the edge network that attack edge servers or
devices. Such malware/trojans interrupt network
services, and attackers gain control over edge de-
vices and their data.

Side-channel signal analysis, Trojan
activation methods, and circuit
modification or replacement are the
techniques utilized in hardware
security [123].

Physical Tampering
and Attacks

Attackers may exploit physical access to EC
nodes/devices to extract significant and sensitive
cryptographic data, manipulate circuits, and alter
or corrupt the software and operating systems.

Techniques such as system analysis
and self-destruction are employed to
inhibit or alleviate the destructive
effects of physical alteration
and attacks.

Routing Information
Attacks

Data throughput, latency, and data paths over a
network are affected due to routing attacks. Exam-
ples of routing information attacks include black
holes, grey holes, wormholes, hello flood, etc.

Monitoring malicious traffic and
detecting policy violations can serve as
effective countermeasures.
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Table 3. Cont.

Type of Threat Description Mitigation Strategies

Distributed Denial of
Service (DDoS)
Attacks

The continuous transmission of junk data packets
toward the target node can exhaust all resources
allocated for handling the malicious data pack-
ets. This may result in genuine requests being
dropped due to the overload of the target node’s
resources [56]. Three significant DDoS attacks on
edge computing devices are outage attacks, sleep
deprivation attacks, and battery-draining attacks.

The Detect-and-filter technique is a
tool against flooding attacks. Also,
behavior control of devices and
policy-based mechanisms within the
network can mitigate DDoS attacks.

Privacy Leakage

Privacy leakage in EC mainly involves three sepa-
rate classes of privacy concerns, i.e., data privacy,
location privacy, and identity privacy. Attackers
might exploit the location awareness of EC nodes
to detect and track device status or to gain access
to classified data, posing further risks to privacy.

To address privacy concerns in EC,
a privacy-preserving algorithm can be
implemented between the cloud server
and the edge server or between the end
nodes and the edge server [124].

Eavesdropping
or Sniffing

An intruder listens over communication channels
to gain access to private data, like the physical
location of specific nodes, access or control infor-
mation of the EC node, like node identification
or node configuration, message identities (IDs),
timestamps, usernames, and passwords.

Data encryption technique at edge
nodes with an asymmetric AES
algorithm before the transmission on
vulnerable channels, the realization of
the connection between the edge nodes
and edge server, and authentication
service between the transmitting and
receiving points could overcome
eavesdropping attacks [9].

Jamming Attacks

The attacker transmits a wide range of signals
with a similar frequency, potentially disrupting
network security. Also, unintentional interference
is thus triggered in wireless networks due to in-
duced noise and collisions.

The significant transmission
parameters like the signal strength of
data packets at the physical layer and
the packet loss ratio at the application
layer serve as indicators of potential
jamming attacks [125].

Integrity Attacks
Against Machine
Learning

ML techniques utilized in EC-assisted Internet of
Things (IoT) are susceptible to two different cate-
gories of data security attacks. Causative attacks in-
volve manipulating and injecting misleading train-
ing datasets to compromise the training process of
ML models and Exploratory attacks, where adver-
saries exploit vulnerabilities.

Researchers propose the use of virtual
machines (VMs) with boundaries for
running ML processes, hence
accelerating the testing and
deployment of ML models,
and systematic study of attacks in
simulated environments
or sandboxes [126,127].

Table 4 lists some possible countermeasures against security attacks on edge networks.

Table 4. Mitigating edge network security threats [119].

Strategy Description

Edge Node Security

Uniform security levels are applied at edge nodes to en-
sure appropriate safety protocols. Different security lev-
els may allow attackers to break through the nodes with
weaker security algorithms.

Full-time Monitoring Warrants nonstop monitoring of edge nodes while offering
network clarity to users through a collaborative interface.



Future Internet 2025, 17, 175 17 of 54

Table 4. Cont.

Strategy Description

Proper Encryption
A complicated algorithm or a secure password exchanged
exclusively between legitimate senders and recipients,
granting access solely to genuine users.

Intrusion Detection System Identifies any abnormality or illegal access and alerts the
user in case of dubious activities.

User Behavior Profiling
Maintaining a record of users’ behavior and keeping track
of activities apart from normal behavior to detect an at-
tacker’s presence.

Cryptographic Techniques Secures significant data using codes that block security
attacks through a secret key.

Data Confidentiality
Mitigates privacy concerns while restricting unautho-
rized data transactions, data loss, data tampering, data
breaches, and related issues.

3.2. Mitigation Strategies Against EC Security Challenges

The countermeasures against security and privacy challenges in an EC-driven IoT
network are discussed in numerous works of literature and can be summarized and placed
under classes as shown in Table 5.

• Cryptographic schemes: The edge layer, which includes local data centers, as well as
sensing devices, is vulnerable to security threats. These edge devices need cyberse-
curity solutions within limited storage and computation capabilities. A Zero-Trust
approach is recommended for securing data in the EC paradigm, with an assumption
that all devices have been compromised and all access has to be strictly monitored
and authenticated. The standard encryption/decryption methods are memory- and
computing-exhaustive [128]. ISO/IEC 29192, Lightweight cryptography is a crypto-
graphic algorithm meant for implementation in constrained environments, including
RFID tags, sensors, contactless smart cards, healthcare devices, etc., for the protection
of communication protocols.

• Secured data aggregation, deduplication, analysis: Data aggregation is a method of clus-
tering the data from various edge nodes by reducing the number of transfers and
hence eliminating redundancy. Secure Data Aggregation (SDA) is a highly secure,
privacy-preserving, and efficient data compression technique using homomorphic
encryption against security attacks such as eavesdropping and forging. The secure
deduplication technique removes matching copies of data while supporting data secu-
rity. It employs Convergent Encryption (CE) for encrypting or decrypting data at the
file level, along with a convergent key [129]. Load distribution is used in EC for even
distribution of computational, network traffic, data storage, and security-related tasks
across edge devices, edge servers, and the cloud. Thus, load distribution prevents
edge devices or servers from becoming overwhelmed by diverse tasks while ensuring
key security measures like encryption, intrusion detection, and access control are in
place. Neto et al. estimated an optimal number of edge nodes that can be assigned to a
particular edge server using Equation (1) and further used it in estimating its security
factor [130].

∆2 =
n

∑
i=1

ωi × ∑δ
φ=1 ϕφ

Kiφ−Kφmin
Kφmax−Kφmin

∑n
j=1 ωj

(1)
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ωi(i = 1, . . . , n) represents the number of edge devices associated with a particular
edge server. Thus, the percentage of devices assigned to edge server i is found by di-
viding ωi by the total number of devices

(
∑n

j=1 ωj

)
. (φ = 1, . . . , δ) is the min–max nor-

malized security Key Performance Indicator (KPI) while φ regulates priority metrics.
• Combined with blockchain: The advantage of implementing blockchain with EC is that it

can offer secure data transfer and processing without needing a centralized server by
deploying distributed ledger technology. Blockchain governs protocols that collabora-
tively make judgments involving transaction execution, exercising mechanisms such
as voting and consensus algorithms [7]. Blockchain is a distributed and secured ledger
technology based on the zero-trust architecture, offering a strong shield against data
privacy and security threats [131]. Blockchains are integrated into EC that documents
transactions in an increasing chain of blocks [132,133]. As shown in Figure 8, each
block is connected to the previous one by referencing its cryptographic hash value,
except the first block, the genesis block. Each block contains a significant piece of
information like the previous hash, timestamp, counter-like mechanism for every hash
estimation called a nonce, Merkle root representing the hash of all the transaction
hashes, and transactions (Tx) for a specific time [134]. Consensus algorithms enthuse
trust in the network through an agreement among the validated nodes while deciding
to generate newer blocks into the blockchain [30].
Medhane et al. proposed a blockchain-enabled Platform-as-a-Service (PaaS) model
that ensures data integrity and security of mobile users in an IoT environment [135].
The behavior detection of blockchain nodes using a technique called T2A2vec is
carried out in [136] by extracting node account features, transaction time, transac-
tion type, and transaction amount. The T2A2vec technique counters tampering of
transaction records and carries out authentication of blockchain nodes. BeCome is
a blockchain-enabled computation offloading measure used in [137] to ensure data
integrity in EC. Also, a nondominated sorting genetic algorithm III (NSGA-III), ad-
ditive weighting (SAW), and multicriteria decision-making (MCDM) are proposed
for optimal resource allocation and offloading strategy. Jangirala et al. have adopted
a Lightweight Blockchain-enabled RFID-based Authentication Protocol for Supply
Chains (LBRAPS) that offers secured and real-time authentication through the in-
tegration of blockchain, RFID techniques, and 5G MEC [138]. A decentralized and
tamper-proof system using Vickrey–Clarke–Groves (VCG) auction theory is proposed
for inducing trust in a collaborative EC while optimizing resource allocation and load
balancing [139]. A blockchain-based secured data aggregation (BSDA) approach is
used in mobile data collectors (MDCs) for task management and framing of block
generation rules [28]. Cheng et al. integrated blockchain, certificateless cryptography,
elliptic curve cryptography, and pseudonym-based cryptography methods in a mutual
authentication scheme between the edge servers and devices citecheng2021blockchain.
Electronic Health Record (EHR) security is ensured by integrating blockchains in
EC while storing users’ data locally on edge devices [140]. A blockchain user or
miner estimates a hash value by solving a computationally intensive proof of work
(PoW) linking any two immediate blocks after neighboring miners reach a consensus.
However, roadblocks are met in resource-limited nodes of the EC network unable to
undertake the mining and consensus process [141].

• Intrusion Detection System (IDS): In EC networks, intrusion detection systems (IDSs)
can play a critical role in detecting malicious actions or attacks. IDSs investigate data
traffic and resource utilization, issuing alerts when suspicious behavior is detected.
IDSs can be characterized into two groups based on their intrusion detection strategies:
signature-based and anomaly-based. Signature-based IDSs cross-check monitored
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events with a database of known intrusion techniques to identify potential threats.
In contrast, anomaly-based IDSs learn the normal activities of the system and report
any abnormalities or inconsistent events [71]. Spadaccino et al. and Gyamfi et al.
discuss supervised and unsupervised ML models for IDSs for the detection of anoma-
lies in IoT networks and deployment challenges of this ML on constrained edge
devices [71,74]. A signature and anomaly-based secured edge computing intrusion
detection system (SEC-IDS) framework is proposed in [73] for improved intrusion
detection. A hybrid LDA-LR (Linear Discriminant Analysis-Logistic Regression) edge
computing model is proposed in [142], utilizing machine learning and an IDS.

Figure 8. Example of a Blockchain structure.

Table 5. Strategies against EC security threats [96].

Strategy Network Layer Limitations

Cryptographic Schemes Communication Layer Power efficiency, computational ability, storage, etc.

Secured data aggregation,
deduplication, analysis Data layer Consumes power, renders sensitive data to intruders’

network bandwidth

Combined with Blockchain Architecture layer Complex system with more computing capability

Intrusion Detection System (IDS) Communication Layer Resource consumption

3.3. AI Role in EC Security

Edge intelligence, or edge AI, represents the blending of machine learning (ML) or
artificial intelligence (AI) with EC. Edge AI enables both model training and inference
directly at the edge through collaboration between edge devices or utilizing local edge
servers near the devices [143]. It is significant for adopting self-learning security solutions
at the edges, thus fostering the development of adaptive and autonomous security mecha-
nisms capable of addressing emerging threats in real time [144]. AI algorithms can handle
highly unpredictable and complex data while ensuring data security against advanced and
evolving threats [145]. Edge intelligence implies a network of interconnected systems and
devices conceived for data collection, storage, processing, and analysis near the physical
location where the data are generated. This methodology aims to enhance the quality and
speed of data processing while improving data privacy and security by preserving sensitive
information nearer to its source [146]. The convergence of AI and EC is seen as a natural
progression due to their clear intersection. EC is centered around coordinating numerous
collaborative edge devices and servers, while AI aims to infuse devices with intelligent
behavior by learning from data, thereby simulating human-like intelligence.

AI is important in ensuring data security through its advanced data processing and
pattern recognition capabilities [147]. The taxonomy of AI presents numerous techniques
like machine learning (ML), Deep Learning (DL), Natural Language Processing (NLP),
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Computer Vision (CV), and Robotics [148]. A Venn diagram shown in Figure 9 demonstrates
the relation between artificial intelligence (AI), machine learning, deep learning (DL), data
science, and data mining techniques [149].

Figure 9. AI taxonomy.

Machine learning (ML), a subset of AI, learns from past data, whereas deep learning
(DL), a more specific area within ML, processes data using several nonlinear transforma-
tions. DL, compared to traditional ML methods, has demonstrated a remarkable ability
to extract and process data, but it also requires sizable computational resources [150]. De-
centralized deep learning (DDL), like federated learning (FL) and swarm learning, is a
promising tool in securing the data processing at edge devices [151]. ML algorithms for
data security can broadly be categorized into transaction algorithms and decision algo-
rithms. Transaction algorithms handle data exploration and preprocessing tasks, while
decision algorithms are used to manage business decisions [152]. A major advantage of DL
over traditional ML techniques is its ability to automatically extract complex, high-level
features from data. DL uses hierarchical neural network models that automatically learn
from unstructured data, such as images, sound, text, and video [35]. Wang et al. have
discussed numerous techniques which optimize DL models for EC, such as model pruning,
quantization, early exit methods, and approaches in DL tasks distribution between cloud
and edge nodes [102]. Data science covers various aspects of data processing, including
collection, storage, analysis, cleaning, visualization, interpretation, decision-making, value
creation, and effectively reporting relevant insights. Data mining aims to uncover newer,
hidden patterns and knowledge from data [153].

AI and EC are mutually beneficial to each other as they enable real-time dynamic
adjusting and self-optimizing execution of IoT applications. The bottom-to-top arrow
shown in Figure 10 represents optimization and the development of EC that requires the
assistance of AI algorithms (e.g., computation offloading optimization). Alternatively,
the top-to-bottom arrow indicates the need for EC deployment closer to edge devices,
hence meeting the latency-sensitive requirements of AI applications [154]. Deng et al.
have placed edge intelligence in two groups. The first group, named “AI for Edge”, or
Intelligence, enables EC and utilizes AI technology in resource allocation, whereas the
second group, “AI on Edge”, or AI models at the Edge, carries out training of the models
and inference at the edge [36]. A hierarchical framework proposed in [155] distributes data
fusion and AI processing across three levels, i.e., edge nodes, edge servers, and the cloud.
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Data fusion eliminates data redundancy by combining data from multiple sources and thus
improving AI performance. The authors of [156] proposed a hybrid learning framework,
as current AI-based anomaly detection systems often report false detections. The proposed
framework utilizes the Stackelberg game model combined with expert-guided ML rules
for higher detection accuracy and minimal false detections. Mitigation techniques against
data security and privacy threats are grouped into software-based and hardware-based
approaches. In software-based security mechanisms, authentication keys are stored in the
non-volatile memories of devices. However, innovations in hardware designs and compu-
tational abilities have facilitated data adversaries to breach the security measures adopted
under software approaches. Alternatively, hardware-based techniques utilize dedicated
hardware-integrated circuits or processors to accomplish cryptographic functions and store
access keys. One of the principal challenges with hardware-based security techniques is
their susceptibility to man-in-the-middle attacks. In such attacks, hackers can clone the
device if the hardware security module becomes compromised. To address these limita-
tions, Gassend et al. proposed hardware-based physically unclonable functions (PUFs)
as a security primitive [157]. PUFs leverage intrinsic manufacturing alterations within
devices to craft a unique fingerprint of the hardware, rendering it extremely challenging
for hackers to reproduce these intrinsic characteristics. However, data acquired from PUFs
are vulnerable to environmental factors and the physical conditions of the tested devices.
Subsequently, numerous versions of PUFs have been proposed in the literature to enable
device identification and authentication, compliant with a tolerable margin of error [158].

Figure 10. EC and AI: benefitting each other [154].

3.3.1. Machine Learning for Data Security and Privacy

Machine learning (ML) indicates algorithms and statistical models for carrying out
specific tasks without explicit instructions. An ML algorithm puts up a mathematical
model of user data, also known as a “training set” capable of making predictions or
decisions. ML can be used to detect suspicious activity by analyzing user behavior to
detect patterns that may indicate malicious activity and ensure data security and privacy
requirements [159]. Machine learning (ML) techniques have the potential for enhanced
detection of data security and privacy threats while dealing with huge amounts of data
coming from IoT end devices. Rigaki et al. mention that the training dataset utilized in
the development of ML models is itself vulnerable to a possible data security threat [160].
Usually, the data owners and end users are against the sharing of their sensitive data, which
becomes a bottleneck in the development of trusted ML models. To circumvent such issues,
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classification protocols utilize ML classifiers over encrypted data to protect the privacy of
end users and service providers.

The training approach in centralized ML modeling involves the collection as well as
the storage of data in a central location or server. Additionally, in a centralized approach,
the intended model is trained using a complete dataset on a central server. This type
of approach is practical when the training entity owns the data or has authorization to
use it. As shown in Figure 11a, each participant computes their part of the ML model,
and subsequently a reduced function finalizes the desired model. However, this technique
has disadvantages, including privacy issues due to the distribution of sensitive data with
a central cluster of servers and the training process becoming a bottleneck as the dataset
grows. Various researchers have proposed an edge-based security system by combining
ML with cryptography techniques, which monitors and detects suspicious activities on
the network and takes appropriate countermeasures. The deployed ML models include
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Long Short-Term Memory
(LSTM) [161,162].

Figure 11. (a) Centralized and (b) distributed training approaches.

A huge amount of data is required for the training of AI models, and quite often, user-
sensitive data become exposed in the process. The integration of AI models with differential
privacy ensures the accuracy of models with or without the inclusion of user-sensitive data.
The traditional ML models might be robust against data attacks but lack feature extraction
from the data and fail to detect attacks that have undergone minor modifications [154].
The study in [163] reviews ML frameworks like TensorFlow Lite, Apache MXNet, and Core
ML, along with hardware platforms such as Nvidia Jetson and Google Edge TPU, focusing
on their efficiency and accuracy in data processing within edge environments.

3.3.2. Federated Learning

Google has proposed a distributed ML scheme called federated learning (FL) which
requires a local ML model at each data site. Later, it trained a complex ML model on an ag-
gregating centralized server [164,165]. FL allows the training of AI models without the need
to transmit sensitive data to third-party servers. However, FL networks need a large num-
ber of heterogeneous distributed devices, which reduces their communication efficiency.
To circumvent the problem of channel efficiency, Feng et al. have proposed a Hierarchical
Federated Learning (HFL) framework with an intermediate model aggregator [166]. In a
typical distributed learning environment shown in Figure 11b, each participant has access
to a local dataset, and the parameter server coordinates the participants. The parameter
server in the role of an aggregator has no control over or access to the data stored on
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participants. The aggregator server selects participants and aggregates the updated model
parameters from the intended participants. Secure model transmission to the server is
achieved using cryptographic techniques like Secure Multi-Party Computation (SMC),
Differential Privacy (DP), Homomorphic Encryption (HE), etc., among multiple clients
without revealing any classified data to each other. Hence, FL has reduced the communica-
tion overhead due to the processing of data locally and can offer data privacy and security.
Integration of blockchain technology with the FL takes data security to the next higher
levels [167]. Blockchain prevents security and privacy threats with its decentralization,
immutability, consensus, and transparency characteristics [168]. Among the challenges
that FL faces, resource constraints stand at the forefront due to limited power computing
nodes and slower communication links. Hence, the FL process at the edge node may take
a longer time than expected, as well as energy overheads. Each data source frequently
communicates with the central server as the FL model needs to be updated repeatedly and
continuously, and there is a higher probability that some nodes upload wrong or old model
parameters [169]. A lightweight protocol using secret sharing and a weight masks-based
framework is proposed in [170] which protects gradients during FL against attacks like
replay and gradient leakage attacks without compromising the model’s accuracy.

3.3.3. Multi-Access Edge Computing

Cloud computing capabilities are brought to the edge servers or nodes in a Multi-
access Edge Computing (MEC) network shown in Figure 12. MEC exists between the
central cloud servers and edge nodes primarily for managing and processing huge amounts
of raw data generated from IoT edge devices [171]. It comprises four functional layers,
i.e., end devices or hosts, access network, edge network, and core infrastructure. The hosts
are connected to the access network, serving as the connection between the functional
layers and the Internet. Radio access networks (RANs) establish a connection between the
hosts and the remainder of an operator’s network. MEC has the potential to improve the
quality of service by reducing the end-to-end latency between the edge nodes and data
processors, as well as improvement in data security and privacy. MEC also fosters data
encryption, authentication, and access control at the edge, thus ensuring authorized access
and processing of the data. MEC is deployed either by Mobile Network Operators (MNOs)
or by private cloud service providers closer to end customers and has less latency and
higher availability [172]. Previous research works focused on resource allocation algorithms
rather than ensuring the security of MEC servers and end devices. Of late, limitations of
mobile devices and support for resource-intensive applications were introduced by Mobile
Cloud Computing (MCC). MCC supports extended battery lifetime, unlimited storage on
demand, improved processing capability, and self-service provisioning.

Due to the distributed, small-scale MEC infrastructure, there is less concentration of
significant data, thus there is less chance of security and privacy-related attacks. Also,
there is a possibility that MEC servers are owned privately, which eases data privacy
concerns. For example, the enterprise deployment of MEC skips uploading of users’
classified data to remotely located datacentres, as the enterprise administrator manages
the authorization, access control, and classifies different levels of service requests at its
discretion without involving external parties [173]. MEC can introduce newer classes of
services, but its unique characteristics open new types of security and privacy challenges.
A huge amount of heterogeneous data generated at IoT edge nodes aggregated, stored,
transmitted, and utilized in MEC networks may suffer data leakage incidents [174].
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Figure 12. MEC architecture.

3.3.4. Data Anonymization Techniques

Data anonymization is a privacy-preserving technique that masks or removes person-
ally identifiable information (PII) from a dataset to protect the privacy of the users. The user
identifiers or PII fall under the direct and indirect identifier types. The attributes that can
directly identify a user, such as names, addresses, photos, etc., are direct identifiers, whereas
indirect identifiers relate to the attributes that identify users by establishing a relation with
other available datasets, like age, salary, occupation, etc. The anonymization techniques
have an edge over other privacy-enhancing techniques like encryption, as they do not
require key management and large computational resources. However, data anonymization
techniques are an irreversible process that provides privacy, but confidentiality or integrity
remains unanswered [175]. In recent times, numerous data anonymization techniques
have been proposed, including privacy-preserving mechanisms implemented through data
masking, pseudonymization, generalization, perturbation, synthetic, etc.

• Data masking: Data masking is a technique of concealing data by creating faux versions
of sensitive user data by modifying private information. The process involves modifi-
cation techniques like shuffling, modest word or character substitution, encryption,
or masking data. Common types of data masking are static, dynamic, and on-the-fly
data masking.

• Pseudonymization: Pseudonymization removes user identifiers from the dataset and re-
places them with pseudonyms which hides the data source identity. Pseudonymization
is defined in the EU-General Data Protection Regulation (GDPR) as “the processing
of personal data in such a manner that the personal data can no longer be attributed
to a specific data subject without the use of additional information. Such additional
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information is kept separately and is subject to technical and organizational measures
to ensure that the personal data are not attributed to an identified or identifiable
natural person” [176].

• Generalization: It is a technique of eliminating identifiable aspects of data to fully
remove or reduce its identifiability. Generalization picks up a distinguishable identifier
and abstracts it into a more general, lesser distinguishable value. Multiple levels of
generalization do exist based on the type of data. An example of a generalization
technique is bucketing that groups records into smaller buckets and minimizes the
risk of data security challenges [177].

• Perturbation Methods: They involve mathematical techniques for the protection of user
data privacy. A controlled noise or randomness is added to the data while still being
able to perform data analysis. These data privacy techniques are used in various
application domains, including ML, statistics, and cryptography. Another method
called the differential privacy technique adds a random noise scaled by a privacy
parameter to the original data values.

Certain limitations and disadvantages of data anonymization techniques exist, as they
reduce the granularity and accuracy of the data. This may damage the relationships
between the data points, which is critical for artificial intelligence algorithms or any other
data science process. Also, data anonymization techniques can be reverse-engineered by
gaining access to external or pseudonym databases.

3.4. Intrusion Detection System

An intrusion detection system (IDS) is a software or hardware-based system, able to
detect malicious activity in an IoT network [178]. Also, IDS can track down any violations
in the established network protocols or anomalies. Upon threat detection, IDS has two
possible responses [179]:

• Issue alerts: This class of responses comes from passive IDS systems that issue security
alerts via email or text messages. Also, a notification is issued to the security informa-
tion and event management (SIEM) system, which helps security teams detect user
behavior anomalies and apply AI for threat detection and incident response.

• Countermeasure: In this class, Active IDS not only sends alerts but also takes counter-
measures like changes in access control lists on firewalls to block the suspicious traffic,
kill communication-related processes, and redirect traffic to a legitimate part of the
network while assessing the threat.

A typical IDS system has three significant units that monitor the network traffic, detect
any suspicious activity, and trigger an alert. An IDS can be active, also known as an
Intrusion Prevention System (IPS), or passive. An IPS monitors the activities at the system
or network level and issues real-time countermeasures in case of threat detection. On the
other hand, a passive IDS detects suspicious activity and just alerts the administrators
without taking any corrective actions [180]. Traditional IDSs were originally designed for
conventional networks but struggled to adapt to the diverse and complex IoT ecosystems.
These legacy IDSs proved insufficient in addressing security threats posed by advanced and
constantly evolving attacks, such as zero-day exploits. The vast amount of data generated
within IoT environments, coupled with highly variable traffic patterns, makes it challenging
for IDSs to accurately distinguish between legitimate and malicious activities, increasing
the likelihood of errors [181].

In contrast, machine learning (ML)-based IDSs provide more adaptable, scalable,
and intelligent solutions to tackle the dynamic nature of IoT security threats. Linear Support
Vector Machines (LSVMs), a type of ML algorithm, are commonly used for classification
tasks, including intrusion detection, due to their effectiveness in identifying patterns and
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anomalies [182]. A classification of IDS based on four main characteristics, i.e., detection
method, source of collected data, type of architecture, and response type, is shown in
Figure 13. Host-based IDS (HIDS) sits on the host computer and detects malicious behaviors
for a single host only. HIDS attempts to detect the presence of unwanted applications in a
computing system by analyzing the local data, application registers, log access, and system
calls. On the contrary, network-based IDS (NIDS) focuses on detecting malicious patterns in
network traffic [183,184]. IDSs normally use one or both of the two primary threat detection
methods: signature-based or anomaly-based detection [185].

Figure 13. IDS classification.

3.4.1. Signature-Based Intrusion Detection System (SIDS)

SIDS, also known as knowledge-based detection or misuse detection, works on a
pattern matching technique to find similar known attacks in the past. An intrusion signature
is matched with a database of previously known signatures, and an alarm is raised in the
event of a match. In SIDS, host’s logs are compared to identify sequences of commands
or actions which have previously been identified as malware [178]. Techniques used for
generating signatures for SIDS include state machines, formal language string patterns,
or semantic conditions. Traditional SIDSs match network packets against a database of
signatures and are unable to identify attacks that span over numerous packets. Also, “zero-
day” attacks have left SIDS techniques less effective, as there is no prior signature for such
attack types. Also, polymorphic malware frequently changes its identifiable characteristics
and undermines the adequacy of the SIDS traditional approach [186]. The authors of [187]
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reported the detection ability of SIDS against web-based Uniform Resource Identifier (URI)
attacks. Three open-source SIDS, i.e., Snort, ModSecurity, and Nemesida, were tested
against seven attack datasets using predefined rulesets. The results revealed that untuned
SIDSs with the least sensitive configurations were able to detect only 6–8% of attacks, while
the most sensitive ones achieved 73–83% with a much lower precision rate of 0.015, thus
generating impractical alert volumes.

The researchers have deployed classification models using supervised ML techniques
and used a Naive Bayes algorithm-based characterization approach in the probability
estimation using network data traffic characteristics. The Naive Bayes algorithm can detect
DDoS, DoS, and Code injection attacks on KDD CUP 1999+NSL, UNSW-NB15 datasets.
Decision trees are implemented on CICIDS 2017, BOT-IoT, KDDS99, NSL-KDD datasets in
identifying attacks such as Sybil, flooding, and spyware threats. SVM utilizes UNSWNB15,
KDDCUP99, NSL-KDD, and NOT-IoT datasets in the detection of man-in-the-middle
attacks, DoS, DDoS, and tampering. Also, DL techniques like Deep Neural Networks
(DNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs)
are preferred over ML-based approaches while dealing with larger datasets [188,189].

3.4.2. Anomaly-Based Intrusion Detection System (AIDS)

A statistical or knowledge-based ML model is developed in AIDS to detect any
significant deviation from the normal behavior, also known as an anomaly. AIDS can
be further classified under statistical-based, knowledge-based, and ML-based technique
groups based on specific training methods, as shown in Figure 14. A statistical model of
normal user behavior is developed from the datasets collected in a statistics-based approach.
A knowledge-based method detects desired actions using available system data, such as
protocol details and network traffic samples, while an ML approach develops advanced
pattern recognition abilities from its training data. There are numerous techniques proposed
in the past to model malicious behavior. One of the simplest approaches is based on
statistical methods like threshold crossings. However, currently used methods tend to
improve traditional detection rates by exploiting the AI capabilities, in particular ML
algorithms with an accuracy beyond 95% and much lower false-negative rates [190].

• Statistical AIDS: A distribution model of a normal behavior profile is created,
and events with lower probabilities are singled out as potential threats. Thus, in-
dividual packets are monitored to estimate their statistical metrics, such as the median,
mean, mode, and standard deviation, to detect deviations from established normal
behavior. A univariate class focuses on a single variable analysis, while multivariate
models establish the relationships between two or more variables. In a time series
model, the observations are made at set time intervals, and any new or different
observation is considered dubious if its probability of occurrence at that given time is
too low.

• Knowledge-based AIDS: A knowledge base of legitimate traffic profiles is created,
and any deviation from the profile is considered an intrusion. This technique is
also known as an expert system method that reduces false-positive alarms. However,
it needs to update its knowledge regularly due to dynamic computing environments.

• ML-based AIDS AIDS exploits ML techniques such as clustering, neural networks,
association rules, decision trees, genetic algorithms, and nearest neighbor methods to
discover the knowledge from intrusion datasets. The network or host data source and
corresponding intrusion or normal as a labelled output value are recorded. A super-
vised learning method trains a classifier to establish the inherent relationship between
the input data and the labelled output value. Fuzzy logic mitigates the high false
alarms in IDSs that have numerical data with hard thresholds. The requirement of
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labelled datasets does not exist in unsupervised learning environments. There are two
different classes of datasets: public and private.
A frequently used public dataset in the past for benchmarking purposes or network
security analysis was the DARPA 1998–1999 dataset. An updated version of DARPA
1998–1999 is the Knowledge Discovery and Data Mining (KDD) 1999 dataset, fol-
lowed by NSL-KDD, and the most recent public datasets are UNSW-NB15 and CI-
CIDS2017 [191]. Yaokumah et al. have conducted an evaluation of Naive Bayes,
k-nearest neighbors, decision tree, and random forest ML algorithms on the UNSW-
NB 15 dataset for intrusion detection. The experiment results reported an average
accuracy of 89.66%, 89.20%, 56.43% and mean absolute error of 0.0252, 0.0242, 0.0867
for random forest, decision tree, and Naive Bayes, respectively. Hence, random forest
and decision tree classifiers are a suitable choice for detecting intrusions [192].

Figure 14. Types of anomaly IDS.

Physical Unclonable Function (PUF) is an alternative authentication scheme without
any cryptographic assets burdening the resource-scarce IoT devices.

4. Hardware Security
Edge devices are highly distributed and exposed to numerous threats, including

physical tampering, data breaches, and remote cyberattacks. These devices lack standard
security practices, deploy heterogeneous communication technologies, and have scalability
issues [193]. Thus, strong security measures are required at the hardware level to secure
sensitive data and to restrict unauthorized access [194]. Hardware security threats can
infiltrate edge devices at any stage of the semiconductor lifecycle, from specification and
fabrication to recycling. These threats may arise from unintended design flaws, system
side effects, or deliberate malicious modifications during the design process [195]. Both
hardware- and software-based mitigation techniques are used to reduce or randomize the
vulnerable signal footprints [196]. A widely used authentication technique for edge devices
is challenge–response protocols, mostly based on cryptographic primitives and secret keys.
However, implementing these protocols on resource-constrained IoT devices remains a
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challenge, and the probability of physical threats like direct probing and side-channel
attacks is high. Subsequently, a new security primitive, known as PUFs, arrived that offers
secure key storage and lightweight authentication [197].

Hardware attacks can be placed into two distinct categories: non-invasive and invasive
attacks, based on the level of physical impact on the device [198]. Common hardware secu-
rity protocols utilize encryption techniques like the Advanced Encryption Standard (AES)
and Elliptic Curve Cryptography (ECC) that can be placed under private and public-key
encryption. A Hardware Trojan (HT) is a malicious alteration during the chip fabrication
stage that might compromise its functionality or spy on encryption keys and forward
sensitive chip data to unauthorized devices. HT detection techniques are placed under
destructive or non-destructive approaches. Destructive detection includes reverse engineer-
ing techniques, such as dismantling IC architecture with Chemical Mechanical Polishing
(CMP) and Scanning Electron Microscopy (SEM). However, non-destructive methods ana-
lyze IC during the pre-silicon or post-silicon stages. Pre-silicon analysis benchmarks the
IC against a fully defined model, while post-silicon analysis includes logic testing and
side-channel analysis [199]. The IC supply chain faces security challenges in addition to
HT at various stages, including IP piracy, IC cloning, hardware backdoors, and counterfeit
chips. On-chip aging sensors can pick counterfeit chips while split manufacturing mitigates
IC overproduction and IP piracy issues [200].

Figure 15 lists a broad classification of hardware security threats and corresponding
countermeasures available. Reverse engineering (RE) analyzes and decomposes edge de-
vices’ design and behavior by extracting confidential data or intellectual property [201]. RE
is accomplished by examining various design formats, such as RTL, netlist, layout (GDS-II),
mask, or fabricated ICs [195]. It is viable to reverse-trace and refabricate the design, which
can be further reused or enhanced [202]. To restrict RE in IC design, hardware obfuscation
is the preferred technique that conceals its functionality by placing the logic elements in a
random fashion, irregular routing, varying doping concentrations, manipulating dielectric
properties, and more [203]. Camouflaging is another option that enables two functional
modules to appear identical at the layout level [204]. The adversaries do not physically
damage the IoT devices in Side-Channel Attacks (SCAs) nor intervene with or modify
the system’s operation. SCAs passively monitor specific parameters from sensors or net-
works, like power consumption, the timing of cryptographic operations, electromagnetic
emissions, or acoustic signals [205]. The mitigation techniques against passive SCAs are
classified into two groups: hiding and masking. Hiding methods are used for breaking the
relation between the processed data and the side-channel leakage, while masking methods
disconnect the actual data from the processed data [206]. Counterfeiting is the duplication
of hardware devices by cloning or altering the designs without the approval from its creator.
It may lead to functional failures in systems and processes but also negatively impact
the sales and profits of the businesses involved. The broader consequences of piracy acts
extend to public health, safety, and security [207]. The detection of counterfeit devices is dif-
ficult as their response against test inputs remain undisputed even in extensive functional
testing. However, these counterfeit devices might have hidden malicious characteristics
with intentional malfunctions like “back door” for accessing sensitive data [208]. Hard-
ware metering and auditing is a key defense mechanism against hardware counterfeiting,
involving tracking of devices. Certain properties of ICs, like negative temperature bias
instability (NBTI), hot carrier injection, and electromigration can be monitored by sen-
sors to identify counterfeit or previously used ICs [209]. PUFs are becoming an integral
part in security applications, including chip identification and authentication, secure key
generation for lightweight encryption, prevention of hardware piracy and counterfeiting,
hardware metering, and intellectual property protection [203].
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Figure 15. Hardware security threats and countermeasures [210,211].

4.1. Physical Unclonable Functions (PUFs)

Authentication, authorization, and privacy are three essential requirements in an IoT
network. Physical Unclonable Functions (PUFs) exploit the inherent randomness created
during manufacturing to offer a unique “digital fingerprint” for authentication and secret
key storage. Each chip has its fingerprint like those in humans, which is created during
the fabrication processes. PUF circuits are triggered by a sequence of input bits known
as challenges (Cx) and respond with a sequence of output bits called responses (Rx). No
two chips generate identical responses for a common challenge. The combination of an
input challenge and its corresponding response is known as a challenge–response pair
(CRP) [212]. The process variations during the manufacturing processes of the PUF circuit
have a unique silicon fingerprint. Thus, even common input challenges as shown in
Figure 16 result in unique challenge–response pairs (CRPs) for the edge devices [213].

PUF carries out an authentication process for an unknown device in two stages,
i.e., enrollment and verification. The PUF module receives the challenge bits from the
server and the corresponding response bits are stored back into the server by the PUF
circuit during the authentication phase. During the verification stage, the server sends
the previously stored challenge bits to the IoT device, and the PUF circuit embedded
into the device generates response bits. The generated response bits are compared and
matched with the CRP look-up table entries for the authentication of the IoT devices. Also,
the response bits are used to extract the secret key to ensure confidentiality during data
exchanges [214].

Figure 16. Uniqueness of challenge–response pair (CRP) [215].
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PUFs are classified based on their security capabilities, fabrication methodology,
physical characteristics, and delay characteristics. Many researchers have presented a
taxonomy of PUF under categories like fabrication process and security as illustrated in
Figure 17. PUFs are categorized into two types, strong PUFs (SPUFs) and weak PUFs
(WPUFs), depending on the number of CRPs. The number of CRPs in SPUFs scales
exponentially and linearly in WPUFs with increasing PUF cells. WPUFs are used in storing
secret keys or serve as a seed in a random sequence generator [216], while SPUFs can be
used for authentication, ID, or key generation [217]. Arbiter PUFs fall under SPUFs, whereas
SRAM PUF and butterfly PUF are WPUFs [218]. However, the responses of SPUFs are
inherently correlated and highly susceptible to ML attacks, including modeling techniques
like Logistic Regression (LR), support vector machines (SVMs), artificial neural networks
(ANNs), and ANN-based approximation attacks [219]. The variations in the manufacturing
process result in silicon and non-silicon PUF types. The fundamental physical properties
of silicon PUFs give rise to three types: analog electronic PUFs, memory-based PUFs,
and delay-based PUFs [220]. Non-silicon PUFs create unique characteristics by extracting
keys from light beams or lasers, as well as magnetic field strength and radio frequencies,
while avoiding the use of electronic signals [221,222].

Figure 17. Classification of PUFs.

An arbiter PUF is a delay-based strong PUF that belongs to silicon PUFs. Figure 18
illustrates an N-stage arbiter PUF made up of n pairs of 2-to-1 multiplexers, with each pair
in a stage controlled by identical challenge bits. The output, referred to as the “Response”,
is determined by the differences in path delays. In a standard N-stage arbiter PUF, a rising
edge signal travels through one of the 2N possible paths, guided by the N-bit “Challenge”
inputs. An arbiter generates the final response, typically implemented with a D-latch,
which decides the output based on the first signal to arrive [223,224]. Optical PUFs have an
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edge over other PUF types as they are less noise-sensitive and leverage light diffraction
complexity, making them stable and difficult to duplicate [225]. Light acts as the challenge
input and generates a unique random pattern as the response [226]. Normally optical
structures are not compatible with solid-state integration. However, a recently proposed
CMOS imager PUF uses photodiode responsivity under uniform ambient light and dark
current variations to generate unique identifiers for camera authentication [227].

Figure 18. Structure diagram of n-stage APUF.

4.1.1. Strong Versus Weak PUFs

The security and performance characteristics of edge devices in a distributed and
uncontrolled environment with limited resources vary significantly with the choice of PUF
types. Choosing between weak and strong PUFs in an EC ecosystem depends on numer-
ous factors such as resource requirements, security against threat types, authentication
capabilities, reliability, and robustness against physical attacks. Environmental factors like
temperature and voltage variations are detrimental to both types of PUFs. The simple
and efficient weak PUFs, e.g., SRAM PUFs, are suitable for key generation in secure boot
or communication. In contrast, strong PUFs like APUFS are used in devices that require
frequent authentication or cryptographic security. Table 6 compares various tradeoff factors
of weak and strong PUFs.

Table 6. PUFs trade-offs in the context of EC security.

PUF Types Merits Demerits

Low Resource Consumption: Weak PUFs are simple
in implementation, requiring limited hardware
resources. For example, SRAM and RO PUFs
exploit on-chip memory blocks, thus making them
a natural choice for resource-limited edge devices.

Environmental variations such as the ambient
temperature or the supply voltage can have a
detrimental effect on the performance of weak
PUFs [228].

Weak PUFs

Low Power Usage: SRAM’s minimal static power
requirements and quicker access times,
or energy-efficient comparison of oscillator
frequencies in RO PUFs, make them ideal for edge
devices [229].

Physical Attack Vulnerability: Weak PUFs are sus-
ceptible to probing or cloning attacks; however,
exposure of their CRPs is minimal due to their
internal operation. Thus, if an attacker gains
physical access to the device, they might probe
the PUF to recover its response or the keys [230].

Fast Response Time: The simple architecture and
limited set of CRPs of weak CRP suits applications
like secure boot due to their quick response,
supporting real-time experience in EC.

The responses of weak PUFs are processed inter-
nally as a secret key, thus requiring an error cor-
rection on-chip and storage of error-correcting
helper data. This adds some overhead [231].
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Table 6. Cont.

PUF Types Merits Demerits

Large CRP Space: A strong PUF generates a large
pool of CRPs, hence suitable for authentication
tasks, which might lead to frequent authentication
between edge devices and servers or peers without
repeating challenges [232], thus eliminating the
need to store a secret key, as the PUF itself serves
as the authentication mechanism.

Higher Resource Requirements: Strong PUFs often
utilize complex circuits, such as delay lines in
APUFs, that require additional area and power
needs further straining the limited resources of
edge devices.

Strong PUFs

Susceptibility to Modeling Attacks: The large num-
ber of CRPs from strong PUFs are normally
exposed during authentication stages, making
them vulnerable to adversaries gaining access
to CRPs and able to model the PUF’s behav-
ior using ML, compromising its security [233].
Susceptibility to CRP leakage via communica-
tion channels or direct interfacing requires ad-
ditional protection like tamper detection, which
may be costly.

Power and Complexity Trade-Off : A huge number
of CRPs consume more energy and require more
sophisticated hardware, which may not align
with the constraints of low-end edge devices.

4.1.2. Application of PUFs

Physical unclonable functions (PUFs) are used for authentication and secret key stor-
age without needing secure EEPROMs and other expensive hardware. Wang et al. have
proposed a Lattice PUF against ML attacks that leverages the Learning With Errors (LWE)
cryptographic problem. The designers proposed to build a pseudo-random number genera-
tor that integrates a Physically Obfuscated Key (POK) with a LWE decryption function and
a linear-feedback shift register (LFSR) [234]. ML capabilities are utilized in the screening
of stable challenges to strong PUFs. Initially, randomly generated challenges tested for
stability are chosen as the input and output of the ML model for extracting a stable chal-
lenge dataset [235]. Wu et al. have proposed a lightweight feedback-based anti-ML-attack
Physically Unclonable Function (FLAM-PUF) that integrates an arbiter PUF, a Galois LFSR,
and basic logic gates [236]. The design employs a 1-bit feedback mechanism to disrupt
the training data, increasing complexity and randomness in the CRP set. This obfuscation
reduces the CRP correlation and strengthens resistance to ML attacks by introducing non-
linear relationships. The researchers reported a 50% prediction accuracy against various
ML algorithms, including Support Vector Machines (SVMs), Logistic Regression, and Deep
Neural Networks (DNNs). A comparable design approach utilizing an LFSR and an Arbiter
PUF (APUF) is introduced in [237]. A delay difference quantization strategy for Arbiter
PUF (DDQ-APUF) is proposed in [238], which employs multiple configurable delay units
(∆) along two symmetrical signal transmission paths. The design measures and quan-
tifies the delay difference between these two paths. A configurable delay is introduced
along the signal path and gradually increases until the output response of the APUF flips.
This quantified delay difference is then used as the PUF response, providing robustness
against environmental variations. This design follows the Strict Avalanche Criterion (SAC),
ensuring that even a minor alteration in the challenge inputs results in significant and
random response changes. Wang et al. have proposed a dynamically configured hybrid
(DCH) PUF by combining the Self-XOR (SX) PUF with a Modified Feed-Forward (MFF)
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PUF. An LFSR is used as a configuration generator, independent of the input challenge.
DCH PUF has proven its resilience against diverse ML attacks, including Deep Neural
Networks (DNNs), Logistic Regression (LR), and covariance matrix adaptation evolution
strategy (CMA-ES) [239]. Zhou et al. have proposed to mitigate ML attacks by reducing
linear correlation between the CRPs through a matrix encryption technique called Bagua
matrices [240]. This technique is implemented on numerous PUF architectures, including
APUF, XOR-APUF, and Multiplexer PUF (MPUF). The prediction accuracy of ML attacks
almost reduces to 50% through matrix encryptions, like random guessing, and subsequently
improving data security and privacy [241]. The method proposed in [242] combines PUF
with Paillier homomorphic encryption or ElGamal encryption to secure data exchanges.
Encrypting CRPs during transmission ensures that adversaries cannot intercept or decode
sensitive information. Homomorphic encryption enables data verification without de-
cryption, further safeguarding against attacks [242]. A CMOS-based PUF is proposed for
device authentication integrated with Elliptic Curve Cryptography (ECC). Elliptic Curve
Digital Signature Algorithm (ECDSA) is used in message signing, which enables devices
to authenticate themselves without a need for error correction or storage of redundant
data [243]. Although APUFs are strong, lightweight, and capable of generating a large
number of challenge–response pairs (CRPs), they are susceptible to machine learning (ML)
attacks. To counter this vulnerability, researchers in [244] have developed a protocol that
authenticates both devices and servers by incorporating an APUF in the device and a PUF
model on the server. A zero-transistor interface between the device and server generates
“ghost bits” that obscure the challenge bits, making it more difficult for attackers to model
the PUF accurately. Another research on cryptography methods for improving strong PUF
security and functionality utilizes erasable PUFs, which delete specific challenge-response
pairs (CRPs) after their usage [245]. A Configurable Dual State (CDS) PUF, featuring a
Feedback Obfuscation Mechanism (FOM), is proposed to enhance hardware efficiency and
defend against machine learning-based modeling attacks. The CDS PUF is configured as
either a Ring Oscillator (RO) PUF or a Transient Effect Ring Oscillator (TERO) PUF based
on the parity of the Hamming weight of the challenge bits. The feedback obfuscation
mechanism leverages a stable count value from the RO as a dynamic mask to obscure
the input challenge, effectively concealing the relationship between CRPs [246]. A Cyclic
Redundancy Check (CRC) PUF alters the seed challenges and transforms the response
generation by changing the CRC generator polynomial to mitigate ML-based modeling
attacks [247].

A switched-capacitor PUF (SC-PUF) capable of generating stable cryptographic keys
leverages metal blocks and capacitive sensing mechanisms. The proposed mechanism
protects against invasive physical attacks like focused ion beam (FIB) and probing methods,
with a much lower bit error rate (BER) of 10−4 [248]. A low-cost resistor–capacitor (RC)
PUF is proposed to sense voltage differences caused by the charging and discharging of
RC circuits. The experimental results with RC-PUFs have shown 49% uniqueness while
achieving over 98% reliability [249]. Cross-PUF attacks exploit power intake measurements
from one PUF instance to compromise another, assuming both PUFs originate from the
same design file and manufacturing batch. To defend against these attacks, the DRILL
method, introduced in [233], integrates Dual-Rail Logic (DRL) with Random Initialization
Logic (RIL). This combination reduces the signal-to-noise ratio (SNR) in the power rails
and balances power consumption during the transmission of “0” and “1”, making it more
difficult for attackers to distinguish between the two states. A fuzzy extraction technique
is proposed to authenticate biometric data within a lightweight authentication protocol
that utilizes blockchains and PUFs [250]. This protocol addresses privacy and security
risks, offering protection against threats such as man-in-the-middle attacks, replay attacks,
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and impersonation attempts. Similarly, a hybrid approach that integrates blockchain and
PUFs is used for device authentication and data integrity that uses PUFs to generate unique
device fingerprints [251].

Applications of PUFs include [252,253]

• Identification is an act of claiming identity with a set of attributes, both physical and
perceptual, that uniquely define a specific entity. Similar to a biometric identification
scheme, PUF response identification can be used to identify the ICs uniquely. A large
range of CRPs is stored in the database along with the device ID implemented with
the PUF during enrollment. The verifier chooses a CRP from the CRP database.
The identification is considered successful if the obtained response and the CRP
database output for a specific input are identical.

• Authentication is an act of identity confirmation based on presented attributes. PUFs
generate a secure key from intrinsic and inherent entropies created due to variations
in the fabricating process. No standard non-volatile storage is needed as random-
ness is built inside a chip and assures extra protection against the side channel and
probing attacks.

• SRAM PUFs, RO PUFs, etc., can generate random numbers with slight modifications
in their architecture and find their application in real, or cryptographically secure,
random number generators.

• Potential vulnerabilities like copying or reverse engineering can destroy devices’
intrinsic and inherent characteristics and thus modify their output. PUFs are suitable
for the generation of secrets in cryptography as they are not kept on the hardware and
are generated dynamically at device reset.

4.1.3. PUF Performance Indicators

The quality of a PUF is evaluated by metrics like uniqueness, reliability, randomness,
correctness, strict avalanche condition (SAC), etc., that verify its applicability to a specific
application. PUF metrics are measured by collecting response bits against a set of challenges
to the PUF. A specific application has unique sets of requirements; hence, all metrics are
not equally important [254,255].

Uniqueness: It is a PUF characteristic representing its ability to generate a unique
response against a similar set of challenges subjected to each die in a lot [256]. Uniqueness
is the average inter-chip Hamming Distance (HD) of the responses collected from a group
of chips. The uniqueness value of an ideal PUF is about 50%, meaning half of the bits in the
responses of the PUFs should be different [254]. For example, in an FPGA-based k n-bit,
PUF responses are P1, P2, · · ·, Pk, then the average Hamming distance given by Equation (2),
is the measure of uniqueness [78],

u =
2

k(k − 1)

k−1

∑
i=1

k

∑
j=i+1

HD
(

Pi, Pj
)

n
×100% (2)

Reliability: The PUF and CRP under noisy and variable environmental conditions
are measured by their reliability, i.e., the PUF outputs the same response under variable
operating conditions. However, numerous environmental conditions like temperature,
voltage, and aging of the devices are responsible for variations in the PUF signatures.
The ideal value for reliability is 100% and it can be estimated using Equation (3).

u =
1
x

x

∑
y=1

HD(Ri, Ri, y)
n

×100% (3)
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where x represents the times of sampling; n is the number of bits of a signature generated
by a PUF; Ri,y is the yth sampling of Ri.

Randomness: It is a measure of the PUF’s ability to generate 0 or 1 in its response
bits with equal probabilities. The randomness of a PUF should be 100% in an ideal case.
PUF-based authentication protocols rely heavily on random physical imperfections that
occur during the semiconductor manufacturing process, thus creating static randomness.
However, the identification (ID) extraction from the PUF becomes corrupted due to dynamic
randomness sources like noise which reduces the PUF’s reliability [257].

Randomness = 1 − |Pr(ID = 0)− Pr(ID = 1)| (4)

For 2M challenges, the probabilities to obtain an ID at 0 and 1 can be given as

Randomness = 1 −
∣∣∣∣erf

(
E(DR)

σ
√

2 · M

)∣∣∣∣ (5)

where DR is the pdf of
M

∑
i=1

di
ci

(6)

For a variance of Mσ2, the randomness expression Equation (7) is given by [258]

PR(ID = 0) = 1 − PR(ID = 1)

= Pr

(
∑M

i=1 di
ci
< 0

) (7)

Correctness, Bit Aliasing, Uniformity, and Steadiness are additional PUF performance
metrics discussed in the literature [78,254,256].

Table 7 presents a comparison of PUF performance metrics mentioned in the pre-
vious section. It is inferred from the table that the Uniqueness and Uniformity perfor-
mance metrics of Lattice PUF remain closer to ideal values whereas RC-PUF is the lowest-
performing one.

Table 7. Comparing the performance of PUFs.

Article PUF Type Stages Uniqueness [mean (std)] Uniformity [mean (std)] Reliability [mean (std)]

[234] Lattice PUF 1000 50.00% (1.58%) 49.98% (1.58%) 1.26% (2.88%)

[236] FLAM-PUF 64/128 49.73%/49.99% 49.81%/49.85% 95.59%/96.58%

[237] Strong response–
feedback PUF 32/64/128 50.17 (1.41)/50.00 (0.31)/

49.99 (0.21)
49.54 (3.67)/50.05 (2.79)/

49.93 (1.78) -

[238] DDQ-APUF 64/128 47.28%/47.65% 50%/50% 99.95%/99.91%

[246] FOM-CDS PUF 17
47.38%(RO mode)/

53.79% (TERO mode)/
50.33% (Full mode)

47.71% (RO mode)/
56.23% (TERO mode)/

53.68% (Full mode)

3.1% CRO-PUF/
9.14% Dual mode/

7.91% FOM-CDS PUF

[247] CRC-PUF 128 49.9978% 50.0777% -

[249] RC-PUF 32 27.3% (bit delay = 2 µs)/
30.9% (bit delay = 32 µs)

50.3% (bit delay = 2 µs)/
50.3% (bit delay = 32 µs)

96.2% (bit delay = 2 µs)/
98.5% (bit delay = 32 µs)

4.1.4. PUFs as a Root of Trust

A layered defense model, as shown in Figure 19, is preferred for a secure system with
outermost layers managing the regular operations of the device and acting as protection
barriers for inner layers. RoTs act as a fundamental source for various secure schemes en-
forcing access to cryptographic modules as well as security resources at the hardware level.
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The software security built on top of hardware-based RoT provides extra layers of flexibility
and protection. These hardware-based RoTs build a trusted execution environment (TEE)
for running privileged software, perform cryptographic operations, and offering constant
tamper protection. This design approach minimizes the attack surface area and makes
inner layers easier to secure because they have fewer, highly controlled tasks. The trust–
validation sequence continues moving towards inner layers up to the system core, known
as the Root of Trust (RoT) [259]. Edge devices leverage RoTs in establishing a protected
environment for cryptographic processes needed for data encryption and authenticating
devices connected to backend systems [260]. RoT applies various code validation mecha-
nisms before executing the code on secured CPUs and shields against physical attacks to a
certain extent. Thus, a Chain of Trust is established when each component in this chain
trusts the codes it runs as they are validated by the previous link, creating an unbroken line
of trust back to the Root of Trust [261,262]. The hardware RoT secures EC operations by
providing the cryptographic keys in the booting process. Hardware-based RoT is typically
a small, dedicated chip embedded within an IoT device leveraging upon intrinsic hardware
characteristics [263]. PUFs are ideal for hardware-based RoT that hosts cryptographic
functions, such as private and public key encryption [264]. The unique keys generated from
the edge device’s PUF and the secure boot process ensure that only authorized firmware or
updates are loaded, preventing trojan or malware attacks.

Figure 19. Layered defense model.

Rojas et al. proposed a hardware Root of Trust (RoT) architecture utilizing a Zynq-
7000 SoC FPGA (Xilinx Inc., San Jose, CA, USA) and integrating various cryptographic
components. These components include PUFs for device authentication, the Advanced
Encryption Standard (AES) for data encryption, Secure Hash Algorithms (SHA-2 and SHA-
3) for ensuring data integrity, and the Edwards-curve Digital Signature Algorithm (EdDSA)
for digital signature verification [265]. A hardware RoT is proposed in [266], leveraging
Quantum Tunneling PUFs to identify ICs digitally. In contrast to SRAM PUFs, Quantum
Tunneling PUFs operate without the need for error correction. The software-based PUF (SW-
PUF) combines physical chip variations with delays in software instructions to generate
unique IDs within a secure Root of Trust (RoT). This approach supports secure boot and
remote attestation, ensuring that only authenticated, tamper-free software is executed [267].
A secured IoT architecture proposed in [268] combines PUF with Trusted Platform Module
(TPM), and Tangle Distributed Ledger Technology (DLT acts as a RoT, establishing a unique
digital identity for each device. The proposed architecture implements a Security-by-Design
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(SbD) approach at the hardware level, strengthens attack resistance, and defends device and
data integrity. Quantum channels are vulnerable to diverse noise sources, which include
environmental interactions and eavesdropping attempts. A key reconciliation protocol
is proposed in [269], allowing transmission of a bit stream through insecure and noisy
quantum channels. Also, the researchers claim that the proposed protocol can reconcile
two PUF responses obtained from the same challenge but at a different time. Also, minor
noise levels in the PUF responses are mitigated through the application of a fuzzy extractor,
designed to produce stable cryptographic keys from marginally erratic PUF responses [270].

4.1.5. Integration of FPGAs-Based PUFs with Edge AI

Artificial Intelligence (AI) assisted data analytics at the edge, allowing for improved
interpretation of raw and unstructured data from the physical world. AI at the edge has
the potential to automate complex and advanced tasks while preventing user-sensitive
data from being transmitted over the network and into data centers at the same time.
Edge AI models human reasoning, thus enabling machines to sense, comprehend, perform
intelligent detection, and transmit results to the cloud for long-term storage or big data
processing. It is capable of recognizing and fighting back against cyberattacks as well as
other cyber threats based on the continuous input of data, identifying patterns, and back-
tracking the attacks. Data privacy and security breaches need to be taken seriously as
they may cause business interruptions, revenue losses, and panic among the public [271].
The human brain comprises nearly 100 billion neurons, and over 100 trillion connections
are established to form a network of neurons which in turn significantly influences the
brain’s capabilities. The interconnectivity within an FPGA resembles the neural wiring of
the human brain, and its programmable logic fabric offers the flexibility of the brain [272].

The dynamically reconfigurable as well as customizable hardware architecture of
Field Programmable Gate Arrays (FPGAs) has offered a promising solution in accelerat-
ing compute-intensive workloads [37]. FPGA-based edge network accelerators offload
intelligence, data processing, analytics, and communication capabilities from the cloud to
where the data originates [273]. Cloud computing provides the infrastructure needed for
securing users’ data as well as maintaining their integrity and privacy. However, there is no
foolproof technique yet that guarantees data protection nor a processor that can isolate the
execution of users’ applications from data theft. FPGAs are capable of providing stronger
security guarantees as there is no need to involve vulnerable operating systems, drivers,
or compilers, nor any other system software [274].

The possibility of incorporating general-purpose processors such as soft cores on
FPGAs makes these reconfigurable devices suitable for IoT applications as they can provide
solutions with enhanced security, reduced size, energy consumption, and cost [275]. Silicon
chip fabricators and designers have integrated FPGA and ARM processor cores for efficient
edge AI processing. Also, the benefits of shorter development time make an FPGA-based
solution the ideal choice for an intelligent edge device [276]. Integrated chip manufacturers
mostly outsource their operations, where intellectual property (IP) theft poses serious
concerns. In contrast, FPGA designers do not configure them with sensitive IPs unless the
delivery of the product is completed [277]. Cybercriminals can replicate FPGA applications
by intercepting their programming bitstream or reading the internal memory. Modern
FPGAs have started using advanced encryption key standard (AES) with the battery-
backed SRAM 256-bit or 384-bit security key, AES with the eFUSE key, on-chip bitstream
keyed-Hash Message Authentication Code (HMAC) algorithm, bitstream authentication,
etc., can mitigate the risks, protect intellectual property, and improve the overall safety of
FPGA devices.
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FPGA-based edge devices exploit AI and ML capabilities for the processing of sensed
data and subsequently reduce network bandwidth requirements and dependence on
cloud processing. Also, vendors are providing IP cores like OpenVINO, Vitis-AI, etc.,
to leverage FPGA interfaces for the optimization and deployment of deep learning (DL)
models [278]. Open Visual Inference and Neural Network Optimization (OpenVINO)
is an open-source toolkit from Intel that facilitates quicker inference of deep learning
models on hardware accelerators and easy heterogeneous execution across numerous
hardware platforms. Deployment of the OpenVINO toolkit and the Intel FPGA AI Suite
in the development of DL-enhanced embedded systems on multiple FPGA-accelerated
servers is shown in Figure 20. The OpenVINO toolkit comprises tools and libraries that
utilize techniques like pruning, quantization, etc., for the optimization of neural networks.
The basic workflow of Intel Distribution of the OpenVINO toolkit is as follows:

• Model Optimizer converts models from various frameworks like Caffe, TensorFlow,
Open Neural Network Exchange (ONNX), and Kaldi to an intermediate representation
format for faster inference.

• Inference Engine reads the IR format and supports heterogeneous execution across
different hardware architectures such as CPU, GPU, Integrated GPU, etc.

• Model Zoo is a common interface for heterogeneous hardware that contains examples
to get started with OpenVINO quickly.

Figure 20. Edge-ready AI toolkits for Intel FPGAs [272].

Vitis AI 3.0 (Xilinx Inc., San Jose, CA, USA), is a unified software platform that includes
optimized IP, tooling, and libraries to grant users access to AI inference acceleration through
adaptable hardware. It consists of a rich set of AI models, optimized deep learning processor
unit (DPU) cores, tools, libraries, and example designs for AI at the edge and in the data
center. It provides a unified programming model for accelerating Edge, Cloud, and Hybrid
computing applications. Vitis AI integrated development environment is presented in
Figure 21, with the target platform, i.e., FPGAs, as the base layer. The Xilinx runtime
library in the second layer controls the data movement across domains. Also, compilers
are used in the layer for mapping the AI model’s optimal instruction set and dataflow
model as well as carrying out optimization tasks. There are more than 400 optimized
and open-source applications across eight Vitis libraries that are defined in the third layer
and offer out-of-the-box acceleration with minimal to zero code changes to your existing
applications [279].
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Figure 21. Xilinx VitisTM AI integrated development environment.

5. Open Research Issues
The motivation of this section is to introduce research open challenges and oppor-

tunities in the security and privacy issues related to the EC paradigm. The centralized
computational approach in data centers and hyperscale clouds is robust against security
threats as it “hides” the user’s data behind layers of security defenses, both virtually and
physically. However, EC faces many security challenges, and here we present some of the
open research challenges as well as the scope for further work [96].

• Heterogeneous EC architecture: The users in a traditional cloud computing approach
are masked from the hardware in place and how software/application performance
depends on hardware resources. EC introduces complexity and a need for multi-
layered security schemes because of an assortment of standards and protocols [280]. It
introduces the need for unique data propagation management schemes among the
heterogeneous edge devices [121]. Data privacy is achievable through encryption tech-
niques, but EC architecture makes the existing encryption schemes too cumbersome
for the limited processing resources [281]. Furthermore, research needs to focus on
ML algorithms explicitly for IoT forensics, matching the distinct features of diverse
IoT devices. The potential of emerging technologies such as blockchain needs to be
explored in securing digital networks [282,283].

• Dynamic resources allocation: Contrarily to cloud computing, the resources in the EC
network are rather limited; thus, static allocation techniques cannot achieve optimal
resource utilization. The dynamic allocation of computing and storage resources in a
distributed EC network remains a bigger challenge. The resource allocation strategy in
EC is important for ensuring efficient and effective use of resources and maintaining
the quality of service (QoS) for applications that demand real-time data processing
and low-latency response. The task of partitioning in EC poses the challenge of
optimal partitioning and faces challenges in dynamic resource allocation without the
computational or storage capacity or location of edge nodes. Several obstacles exist in
the deployment and optimization of resource scheduling in EC and cloud collaboration
using deep reinforcement learning (DRL). A significant challenge remains in terms of
higher computational cost and extended convergence times of DRL algorithms [284].

• Data abstraction: The edge node needs a certain amount of training data to carry out
analysis tasks. Data abstraction carries out data preprocessing techniques like noise
cancellation, data classification, and data computation. Heterogeneous devices use
different data formats, and data security algorithms cannot be fed with a complete
set of raw data, but it should only abstract the relevant part. Storage is a limiting
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factor while selecting the size of raw data and prediction accuracy. The selection
of an optimal data abstraction technique is not easy because of the heterogeneity
of devices, different data formats, and different corresponding operations. Thus,
a unified architecture or interface standard for the EC-based IoT applications that
supports migration between diverse embedded operating systems is needed for the
abstraction of IoT and edge devices [96].

• Secured EC nodes: Devices in an EC network need a foolproof access control and
an end-to-end threat protection mechanism. Edge security refers to device security,
network security, data security, and application-level security, focused mainly on the
protection and privacy of user data. Mitigation strategies include first the risk defini-
tion, uncompromised device functionality, multiuser edge node security, and minimal
service levels at user nodes. The development of authentication mechanisms for
specific edge nodes and the privacy module is needed to maintain the trustworthiness
of edge data centers [285].

• Federated learning (FL): FL refers to a secured ML technique in a distributed envi-
ronment comprising scattered edge devices or servers while ensuring the user data
do not leave the source premises [286]. The research for fullproof privacy and attack
mitigation techniques remains a focus of FL. In addition to data security challenges,
the communication overhead of FL is comparable to the computational overhead.
The two significant attacks against FL are poisoning attacks and byzantine attacks.
The poisoning attack includes the act of tampering, destroying, or corrupting the edge
data used in local training or model generation [287]. Poisoning attacks are relevant to
a single edge node or a server, while byzantine attacks are prevalent in the collusion
of multi-users distributed learning environment [288].

6. Conclusions
Our current research thoroughly examined and summarized the challenges related to

data security and privacy preservation in EC, along with corresponding countermeasures.
We also discussed the advantages and limitations of integrated EC and IoT paradigms.
Furthermore, we performed an in-depth analysis of security and privacy issues within EC-
assisted IoT networks, including a comprehensive survey of potential security attacks and
their countermeasures. We researched how state-of-the-art technologies, including PUFs,
AI, IoT, and ML, can mitigate security-related challenges in an EC paradigm. Given that
resource-limited edge devices may not support traditional cryptographic security solutions,
lightweight security primitives like PUFs are an alternative solution for low-cost key
generation. Additionally, we conducted a detailed examination of AI/ ML-based security
mechanisms, categorizing them extensively. We also provided insights into commercially
available toolkits from leading manufacturers and developers utilized in deploying EC
services. Finally, we identified open research directions and gaps in data security and
privacy issues within EC, outlining areas for future investigation and development.
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