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Abstract: Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used to treat malaria and
autoimmune diseases for more than 70 years; they also have immunomodulatory and anticancer
effects, which are linked to autophagy and autophagy-independent mechanisms. Herein, we review
the pharmacokinetics, preclinical studies and clinical trials investigating the use of CQ and HCQ as
adjuvant agents in cancer therapy. We also discuss their safety profile, drug–drug and drug–disease
interactions. Systematic studies are required to define the use of CQ/HCQ and/or their analogues in
cancer treatment and to identify predictive biomarkers of responder subpopulations.

Keywords: autophagy; chloroquine; hydroxychloroquine; cancer; pharmacokinetic;
toxicity; repositioning

1. Introduction

In 1930, quinacrine (an acridine derivative) was introduced for treating malaria [1].
Its toxicity and limited efficacy stimulated the synthesis of chloroquine (CQ) in which the
acridine ring of quinacrine was replaced with a quinoline ring [2]. Repurposing the use
of CQ for treating patients with autoimmune diseases stemmed—at least partially—from
observations during World War II that cutaneous rashes and arthritis improved in soldiers
who received CQ and quinacrine as prophylaxis against malaria [2]. Hydroxychloroquine
(HCQ) was synthesized later and, owing to its favorable safety profile compared to CQ [3],
HCQ has been used for decades in the treatment of autoimmune diseases as systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA) [2,4].

There is at least preclinical evidence that CQ and HCQ have anticancer activity. Below,
we discuss their pharmacokinetics and the preclinical studies and clinical trials investigating
the use of CQ or HCQ in cancer therapy.
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2. Pharmacokinetics

Chloroquine and HCQ are well-absorbed orally, reaching peak plasma levels within
2–4.5 h [5–7]. In plasma, 30–40% are bound to albumin and α1-acid glycoprotein [6].Their
stereoisomers exhibit differential binding, metabolism and activity [2,6].

Chloroquine and HCQ can bind to melanin in pigmented tissues, mononuclear cells
and muscles [2,6]. During prolonged treatment, they accumulate with higher concentration
in the heart, liver, brain, muscle and skin than in blood and their tissue concentration may
correlate better with their efficacy than their blood levels [2,7].

In the liver, CQ is de-alkylated via cytochrome P450 (mainly CYP3A, CYP2C8 and
CYP2D6) into the pharmacologically active desethyl CQ and bisdesethyl CQ metabolites [8,9].
HCQ is metabolized via CYP3A4 driven dealkylation into three active metabolites: desethyl
CQ, desethyl HCQ and bisdesethyl HCQ [10]. Almost 40–50% of CQ and HCQ are excreted
via the kidneys [6]. Being amphiphilic weak bases, CQ and HCQ are partially protonated
at physiological pH (7.4) and biprotonated at acidic pH (4–5). Alkalinisation increases and
acidification decreases the renal excretion of CQ [1]. CQ and HCQ have long terminal
elimination half-lives (~40–50 days) [6,7].

3. Preclinical Studies of Anticancer Activity of CQ and HCQ

Several studies have described the anticancer potential of CQ and HCQ when used
with standard cancer therapy [4,11–13]. CQ and HCQ elicit direct and indirect effects on
cancer cells [12–16]. One mechanism of action is the inhibition of autophagy [2,4,11,12].
Autophagy (or self-eating) is a double-edged process, which can promote either cancer cell
survival or death [17,18]. As an adaptive mechanism, some cancer cells exploit autophagy
to survive during stressful conditions, such as nutrient deprivation, hypoxia or cytotoxic
insults triggered by cancer therapy [11,12,19–21]. Mimicking tumor microenvironment
by co-culturing cancer cells with fibroblasts promotes autophagy [22]. Conversely, the
excessive induction of autophagy by diverse anticancer drugs has been reported to trigger
autophagic cell death (or programmed cell death type II) of cancer cells [23–25]. CQ and
HCQ act at the late stages of autophagy by raising lysosomal pH, which inhibits the fusion
between autophagosomes and lysosomes, and thereby impairs lysosomal protein degrada-
tion [4,12]. Palmitoyl-protein thioesterase 1 has been identified as the lysosomal target of
CQ/HCQ [26]. It is worth mentioning that the synergistic anticancer activity of CQ and
temozolomide combination was abrogated with the pharmacological or genetic inhibition
of early stages of autophagy [27]. Knocking down p53 or overexpressing mutant p53 also
compromised the anticancer potential of CQ-temozolomide combination [27]. Notably, su-
perior anticancer efficacy of CQ and erlotinib combination was maintained in the preclinical
“cancer cells/fibroblasts co-culturing” setting, mimicking the tumor microenvironment [22].
Given the regulatory crosstalk between autophagy and apoptosis, the augmentation of the
anticancer efficacy of chemotherapy by CQ or HCQ might be associated with increased
apoptosis [12,14]. Indeed, the anti-apoptotic Bcl-2 family members as Bcl-2 and Bcl-xl
inhibit autophagy [28]. CQ augmented the anticancer activity of Bcl-2 inhibitors [29,30].
The overexpression of Bcl-2 or Bcl-xL compromised apoptotic cancer cell death triggered in
ABT-737 (Bcl-2 inhibitor), CQ and their combination [30].

The physicochemical properties of CQ and HCQ present a critical limitation that
restrains their anticancer activity [31]. Solid tumours often develop an insufficient vas-
culature to supply their nutrient needs and contain regions of hypoxia. Hypoxic cancer
cells depend on glycolysis, and other cancer cells may use glycolysis electively for ATP
synthesis. This promotes an acidic extracellular microenvironments, which compromises
the cellular uptake of CQ/HCQ [31]. To overcome this shortcoming, a series of CQ/HCQ
derivatives has been synthesized to increase their anticancer potential [31–35]. For instance,
Lys05, a dimeric CQ, has been reported to be a more potent inhibitor of autophagy with
greater anticancer activity than HCQ [34,35]. However, chronic daily treatment of mice
with Lys05 was associated with Paneth cell dysfunction, although without obvious signs of
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gastrointestinal toxicity [35]. Since inhibitors of autophagy have been shown to improve
the effects of chemotherapy in preclinical models, they should undergo clinical evaluation.

CRISPR-Cas9 loss-of-function screening identified insulin-like growth factor 1 receptor
(IGF1R) as a sensitizer of pancreatic ductal adenocarcinoma cells to CQ/HCQ [36]. Co-
targeting IGF1R and ERK inhibited glycolysis and augmented the dependence of pancreatic
ductal adenocarcinoma cells on autophagy, and hence rendered them more vulnerable
to CQ/HCQ [36].

Chloroquine has also been reported to augment the vulnerability of cancer cells
to chemotherapy via autophagy-independent mechanisms, including the normalization
of tumour vasculature, which decreases intratumoral hypoxia, cancer cell invasion and
metastasis [37,38]. Notably, CQ-induced vessel normalization was linked to activated
endothelial Notch1 signaling [39,40]. CQ also sensitized triple negative breast cancer cells
to paclitaxel via reducing CD44+/CD24−/low cancer stem cells [41].

Chloroquine and HCQ have been reported to inhibit angiogenesis [12]; they also
induced the secretion of the tumour suppressor prostate apoptosis response-4 (Par-4) from
normal cells of treated mice and cancer patients, which triggered paracrine apoptosis of
cancer cells and inhibited tumour metastasis [16]. Furthermore, CQ promoted the anti-
tumour immune responses via resetting tumour-associated macrophages from the M2
to the tumour-killing M1 phenotype [15]. CQ increases macrophage lysosomal pH and
triggers Ca2+ release through the lysosomal Ca2+ channel mucolipin-1, which activates p38
and nuclear factor kappa B (NF-κB), thereby causing tumour-associated macrophages to
adopt an M1 phenotype [15]. The antitumor immune responses provoked by CQ were
observed preclinically when used at relatively high concentration (10 µM). However, the
safe plasma level/concentration of CQ is reported to be approximately 3 µM [42] so that the
antitumor immunogenic doses of CQ might not be tolerable clinically. The limited clinical
efficacy of immune checkpoint inhibitors as monotherapy has instigated the investigating
of its inclusion in diverse combinatorial regimens [43,44]. Of note, HCQ compromised
the anticancer T cell immune responses triggered by anti-PD1 in syngeneic tumor mouse
models [45]. Thus, caution is warranted, since prolonged exposure to clinically approved
doses of CQ and HCQ may suppress immune responses, as occurs during their use in
treating autoimmune diseases [2].

4. Dose and Schedule

To optimize the dose and schedule of CQ/HCQ, their target therapeutic concentrations
must be identified. Three strategies might be used to achieve this objective: (i) Use of
in vitro models to evaluate the pharmacodynamics (PD) of CQ and HCQ against cancer
cells. In simple models, cancer cells are exposed to constant concentrations of the agent, but
to better understand the impact of the pharmacokinetic (PK) profile on anticancer activity,
dynamic in vitro models can be used to expose cancer cells to fluctuating concentrations of
CQ and HCQ. (ii) Use of animal models, which better mimic the PK profile and immune
system in people. Such models also allow dose fractionation studies to better understand
the interplay between PK and PD. (iii) Use of clinical data to determine the dose and
schedule that show the best correlation with the anticancer activity of these agents. This
would require the use of different dosage regimens for CQ and HCQ and assessment of
their plasma concentrations. In comparing CQ and HCQ, it is critical to account for the
protein binding of both agents, since only free drug is pharmacologically active.

Once the therapeutic target concentrations for CQ and HCQ have been estimated, a
population PK model can be used to estimate their concentrations for different doses and
schedules. These models already exist for CQ and HCQ, based on data from patients with
malaria, RA or SLE [46–48]. In Japanese subjects, weight was found to influence HCQ PK;
therefore, weight based dosage regimens of HCQ should be considered [46]. Assuming
cancer has no impact on the PK of CQ and HCQ, these models can be used to optimize
the dose and schedule of CQ and HCQ in cancer patients. Coupling PK/PD models with
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Monte Carlo simulation [49,50] could be utilized to compare the anticancer efficacies of
different doses of CQ and HCQ.

5. Safety Profile

Chloroquine and HCQ have some adverse effects, associated especially with their
long-term use [5,51]. Cardiac disorders have been reported in patients treated for a median
of 7 years [range:3 days–35 years] with a high cumulative dose (median 800 g CQ or
1235 g HCQ) [51]. Among the cardiotoxic effects associated with their use is bundle or
atrio-ventricular block, prolonged QT interval and Torsade de Pointes (TdP) [5,51]. The
risk factors for developing TdP include female gender, age (>65 years), history of drug-
induced TdP, chronic renal or hepatic insufficiency, electrolyte abnormalities, diuretics and
simultaneous use of QT-prolonging drugs [52]. Approximately half of the patients who
discontinued treatment recovered normal heart function, but the remaining patients either
suffered from irreversible cardiac damage or died (24 of 127) [51]. For cancer treatment,
the drugs would usually be administered for a shorter period, typically one year or less,
but patients should be checked for cardiac toxicity and treatment should be withdrawn if
cardiac manifestations are present.

Retinopathy is associated more frequently with CQ than HCQ [3,5,51]. CQ and HCQ
bind to melanin and inhibit the lysosomal activity in the retinal pigment epithelium (RPE),
and hence reduce the phagocytosis of shed photoreceptor outer segments (shed rod and
cone debris), resulting in their accumulation and damage of the macular cones outside of
the fovea. RPE cells, thus, migrate into the outer nuclear and plexiform layers of the retina,
resulting in irreversible photoreceptor loss and RPE atrophy [53]. A retrospective case
series of patients with NSCLC who received HCQ (1000 mg/day) together with erlotinib
reported that two of seven patients who had been treated for ≥6 months developed retinal
toxicity—without symptomatic visual acuity loss—at 11 and 17 months of exposure. Al-
though fundus autofluorescence imaging was normal, the retinal damage was identified
by optical coherence tomography and multifocal electroretinography testing [54]. Thus,
long-term use of HCQ (1000 mg/day) may incite retinal toxicity within 1–2 years and
sensitive retinal screening tests are needed [54].

Besides its role in cancer, autophagy plays a homeostatic role in normal cells, includ-
ing heart, kidney and liver [55]. Preclinical studies have demonstrated that autophagy
protects against cisplatin-induced acute nephrotoxicity and inhibiting autophagy using CQ
exacerbates cisplatin-induced acute kidney damage [55]. Thus, monitoring the function of
vital organs during therapy is essential.

Although the anti-malarial doses of CQ and HCQ are generally considered safe during
pregnancy and breastfeeding, the safety of long-term use of higher doses for treating SLE
and RA in pregnant or breastfeeding women is controversial [5,56,57].

Acute CQ poisoning (oral doses ≥ 50 mg/kg) can be lethal [5]. Intoxicated patients
present with nausea and vomiting followed by slurred speech, agitation, breathlessness owing
to pulmonary oedema, convulsions, arrhythmia and coma [5]. Quinidine-like cardiotoxicity
has been reported following acute CQ poisoning. CQ blocks the rapid component of the
delayed rectifying outward potassium current I, sodium and calcium channels, which leads to
membrane-stabilization effects (resulting in AV block, QRS interval widening and QT pro-
longation), negative inotropic effects and peripheral vasodilatation [51,58]. The management
of intoxicated cases within the first hours of CQ ingestion comprises prevention of further
absorption. Otherwise, symptomatic treatment is required to maintain cardiac and respiratory
functions. Diazepam can be used to control convulsions [5].

6. Clinical Trials

Several Phase I/II trials have evaluated the safety and efficacy of CQ and HCQ as
monotherapy or in combination with surgery, radiotherapy or chemotherapy in treating
patients with solid and hematological tumours (Table 1) [2,59–67]. Long-term treatment
with HCQ (600 mg BID: the highest FDA-recommended dose) appears to be well-tolerated



Future Pharmacol. 2022, 2 435

when given with anticancer therapy [61,66–69]. CQ and HCQ have negligible anticancer
efficacy when used alone [60,70], but their long-term use in pre- and post-operative cancer
patients has been associated with favorable clinical outcomes [61,64,65].

A meta-analysis of seven trials evaluating the addition of CQ or HCQ to standard
cancer therapy (chemotherapy or radiation) in different types of cancer (glioblastoma,
brain metastases from non-small cell lung cancer (NSCLC) and breast cancer, non-Hodgkin
lymphoma and pancreatic adenocarcinoma) concluded that their use was associated with
improvements in overall response rate (ORR), progression-free survival (PFS) and overall
survival (OS) [71]. Subgroup analysis revealed that CQ/HCQ-based therapy led to an
improved 6-month PFS and 1-year OS in patients with glioblastoma, and to a higher ORR
in patients with non-Hodgkin lymphoma. However, no significant improvement of ORR
and 6-month PFS was found in patients with NSCLC or breast cancer. This meta-analysis
has several limitations, since it included clinical studies that reported the effects of different
treatment schedules of HCQ or CQ in different types of cancer, and did not provide
information about long-term outcomes or the safety of the combination regimens [71].

A phase II randomized clinical trial (NCT01506973) has reported that adding HCQ
to standard chemotherapy (gemcitabine and nab-paclitaxel) did not improve OS in pa-
tients with metastatic pancreatic adenocarcinoma [72]. Nonetheless, the ORR was signif-
icantly higher in the HCQ group, with a trend toward improved PFS, suggesting that a
subpopulation of patients may benefit from the addition of HCQ. Another randomized
clinical trial (NCT01978184) has revealed that preoperative addition of HCQ to gemc-
itabine and nab-paclitaxel resulted in better pathologic responses in patients with resectable
pancreatic adenocarcinoma [61].

There are currently no sensitive and reliable predictive biomarkers that could guide
clinicians towards the rational selection of cancer patients who could most likely benefit
from CQ/HCQ. However, some studies suggested a handful of biomarkers in a limited
number of patients, which warrant their further validation in clinical trials with larger co-
horts [69,73,74]. Indeed, Fei and colleagues have retrospectively analyzed SMAD4 expression
in pancreatic adenocarcinoma specimens of patients who were enrolled in two clinical trials
(NCT01128296 and NCT01978184) evaluating the addition of pre-operative HCQ to neoadju-
vant chemotherapy. The addition of HCQ was associated with better histopathologic response
in pancreatic adenocarcinoma patients with SMAD4 loss [73]. There was a trend toward
improved median OS—despite being statistically insignificant—in HCQ-treated patients with
SMAD4 loss [73]. However, the results of this study should be interpreted with caution given
its retrospective nature with data gathered from two clinical trials investigating different
chemotherapy regimens. Prolonged disease-free survival and OS have been observed in
pancreatic adenocarcinoma patients with > 51% increment in the peripheral blood levels of
LC3-II—microtubule-associated proteins 1A/1B light chain 3B, which is used as an autophagic
marker [69]. Conversely, p53 status did not correlate with the clinical outcome [69]. Elevated
plasma levels of Par-4—but not tumor levels of sequestosome-1/p62 (which is used as a
marker of inhibition of autophagic flux)—correlated with induced apoptosis in the tumor
specimens of HCQ-treated patients [75].
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Table 1. Clinical trials of chloroquine (CQ) and hydroxychloroquine (HCQ) in cancer therapy.

Drug Cancer Type Treatment Schedule of CQ or HCQ
(n = Sample Size) Clinical Outcome Ref

CQ

Glioblastoma multiforme

CQ (150 mg dose/day) was administered 24 h
post-surgery and continued with radiotherapy
and chemotherapy throughout the observation
period
(24–50 months) (n = 9/control cohort and n =
9/CQ cohort).

CQ prolonged the survival compared to the
controls. [64]

Glioblastoma multiforme

CQ (n = 6: 200 mg, n = 3: 300 mg and
n = 4: 400 mg) was started 1 week before
chemoradiation
(temozolomide + radiotherapy).

- MTD of CQ = 200 mg.
- Median survival was 11.5 and 20 months

for EGFRvIII- and EGFRvIII+ patients,
respectively.

- Tolerability and OS supported further
clinical studies.

[76]

Brain metastases from
solid tumours

Whole brain irradiation (30 Gy in 10 fractions
over two weeks) together with CQ (150
mg/day were administered 1 h before whole
brain irradiation and continued for 4 weeks) (n
= 34/placebo cohort and n = 39/CQ cohort).

- CQ improved the control of brain
metastasis, compared to control arm.

- No differences in OS, response rate, QoL
or toxicity in either arm.

[65]

Breast cancer
500 mg/day as monotherapy for 2–6 weeks
before surgery (n = 24/placebo cohort and n =
46/CQ cohort).

- No significant effect on breast cancer
proliferation (Ki67).

- All AEs were grade 1, but caused ~15%
to discontinue therapy.

[60]

Metastatic or unresectable
pancreatic cancer

3+3 dose escalation study in which patients
received single weekly dose of gemcitabine
followed by single weekly doses of CQ (100,
200 or 300 mg) (n = 9).

- CQ addition to gemicitabine was well
tolerated. [74]

Pancreatic
adenocarcinoma

Pre-operative gemcitabine + HCQ
(1200 mg/kg/day) for 31 days until surgery (n
= 35).

- No dose-limiting toxicities and grade 4/5
treatment-related AEs.

- Gemcitabine and HCQ improved the OS,
compared with a previous institutional
cohort.

[69]

Metastatic pancreatic
cancer

Patients received (n = 10: 400 mg or
n = 10: 600 mg) HCQ BID.

- At 2 months, 2 (10%) without PD.
- Median PFS and OS were 46.5 and 69.0

days, respectively.
- Tolerability and efficacy were similar in

both dosing.

[70]

Resectable pancreatic
adenocarcinoma

Preoperative HCQ (600 mg BID)
(n = 30/nab-paclitaxel and gemcitabine (PG)
cohort and n = 34/HCQ + PG cohort).

- Preoperative HCQ (600 mg BID),
gemcitabine and nab-paclitaxel conferred
better pathological and serum biomarker
responses and was associated with
autophagy inhibition and increased
immune cell tumour infiltration,
compared to preoperative PG.

- No difference in serious AEs, OS and
recurrence-free survival.

[61]

Advanced or metastatic
pancreatic

adenocarcinoma

HCQ (600 mg BID) (n = 57/PG cohort and n =
55/PG + HCQ cohort).

- Addition of HCQ (600 mg BID) to
gemcitabine and nab-paclitaxel did not
improve OS at 12 months.

- HCQ significantly increased the overall
response rate from 21% to 38%.

[72]

Non-small cell lung cancer

- Patients were randomly assigned into
either HCQ (n = 8) or HCQ + erlotinib (n
= 19) cohorts.

- 3+3 Dose escalation study in which
patients initially received 400 mg/day
HCQ with 200 mg increment to reach a
maximum dose of 1000 mg HCQ.

- Recommended Phase II dose: HCQ (1000
mg/day) + erlotinib.

- 28-day cycles continued until PD or
unacceptable toxicity.

- No dose-limiting toxicities.

[77]
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Table 1. Cont.

Drug Cancer Type Treatment Schedule of CQ or HCQ
(n = Sample Size) Clinical Outcome Ref

Advanced solid tumours
and melanoma

HCQ (200–1200 mg/day) + temozolomide for
7/14 days (n = 37).

- Well tolerated without recurrent
dose-limiting toxicity.

- MTD was not reached for HCQ.
- Recommended Phase II dose: HCQ (600

mg BID)+ temozolomide.
- PR [3/22 (14%)] in metastatic melanoma

patients.

[67]

Glioblastoma multiforme

Phase I: HCQ (200 to 800 mg/day) with
radiotherapy and temozolomide (n = 16).
Phase II: HCQ (200 to 800 mg/day) with
radiotherapy and temozolomide (n = 76).

- HCQ (MTD = 600 mg/day) with
radiotherapy + temozolomide was
associated with inconsistent autophagy
inhibition and no improvement in OS.

[78]

Advanced metastatic
colorectal cancer

HCQ (600 mg/day) + vorinostat in a 3-week
cycle (n = 20).

- 40% had Grade 3/4 treatment-related
AEs: fatigue, nausea, vomiting, and
anaemia.

- The combination was associated with
boosted anti-tumour immunity and
autophagy inhibition.

[63]

Refractory/ relapsed
myeloma

Two week run-in of HCQ as a monotherapy
(100, 200, 400, 800 or
1200 mg/day) followed by combination
therapy with bortezomib (n = 25).

- Recommended Phase 2 dose: HCQ (600
mg BID) for 56 days + bortezomib.

- Dose-related GIT toxicity and cytopenias
were noticed.

- Of 22 patients, 3 (14%) had very good PR.

[66]

Renal cell carcinoma

Everolimus + HCQ (400 or 600 mg BID)
(n = 38).
First Cycle (35 days): 1-week
everolimus alone.
Subsequent cycles (28 days/cycle): everolimus
+HCQ.

- No dose-limiting toxicity in Phase I.
- Recommended Phase II dose: HCQ (600

mg BID) + everolimus.
[68]

Early-stage solid tumors 200 or 400 mg BID for 14 days before surgery (n
= 9).

- Well-tolerated with no dose limiting
toxicities or serious AEs.

- Tumors from the eight HCQ-treated
patients with high plasma Par-4 levels
underwent apoptosis.

- P62/sequestsome-1 was induced in
tumors of all nine HCQ-treated patients.

[75]

Chronic phase chronic
myeloid leukemia

Imatinib (n = 30) or imatinib + HCQ (400 mg
BID) (n = 32) for 12 months.

Imatinib + HCQ was tolerated with modest
improvement in BCR-ABL1 qPCR levels at 12
and 24 months.

[59]

HCQ

Advanced
BRAFV600-mutant

melanoma

Patients (n = 38) were treated with dabrafenib
and trametinib for one week and then HCQ
(starting Phase I dose = 400 mg BID) was
co-administered. Treatment continued until PD,
and after PD in the case of isolated progression,
which could be locally treated.

- The combination regimen was tolerable.
- PFS did not meet the prespecified

threshold, but tended to be promising in
patients with elevated LDH and prior
treatment.

- Randomized study has been launched.

[79]

AEs: adverse events, CQ: chloroquine, HCQ: hydroxychloroquine, MTD: maximum tolerated dose, OS: overall
survival, PD; progressive disease, PG: nab-paclitaxel and gemcitabine, PR: partial response, SD: stable disease,
QoL: quality of life.

7. Drug-Drug and Drug-Disease Interactions

Chloroquine and HCQ interact with several drugs, yet the molecular basis and mag-
nitude/incidence for many remain unknown (Table 2). Some of these PK drug–drug
interactions might be attributed to the modulatory effects of CQ/HCQ on the activity of
some cytochrome P450 (CYP) metabolizing enzymes and/or p-glycoprotein [9,80–82].
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Table 2. Known and potential drug–drug interactions of chloroquine (CQ) and hydroxychloroquine
(HCQ).

Drug Interacting Drug Type of Interaction/Recommendations Ref

CQ Some antacids Some antacids decreases CQ bioavailability and time spacing
>4 h is recommended. [83]

CQ Ampicillin CQ decreases the bioavailability of ampicillin [84]

CQ/HCQ QT Prolongation
inducing drugs

Co-administration of >1 QT prolonging drugs can increase the risk of
developing prolonged QT associated-arrthymia. [51,52,58]

CQ/HCQ Tamoxifen Increased risk for retinopathy. [56,85]

CQ Ciclosporin
(cyclosporin)

Three-day CQ administration was associated with elevated serum
ciclosporin and creatinine levels which was reversed one week after CQ

discontinuation.
[86]

CQ Methotrexate CQ decreases the area plasma under the curve of methotrexate. [87]

CQ Cimetidine Cimetidine impairs CQ elimination. [88]

CQ Acetaminophen (Paracetamol) CQ increases the peak plasma levels and AUC of paracetamol. [89]

CQ Primaquine
CQ increases the plasma levels of primaquine and carboxyprimaquine

and its use is associated with slight corrected QT (QTc) interval
prolongation.

[90]

CQ Digoxin CQ increases the serum levels of digoxin which warrants
careful monitoring. [91]

CQ Cisplatin CQ exacerbates acute cisplatin-induced nephrotoxicity. [55]

HCQ Insulin and hypoglycaemic drugs HCQ induces hypoglycaemia and dose re-adjustment of insulin or
hypoglycaemic drugs is necessary. [92]

HCQ Metoprolol HCQ increases the bioavailability of metoprolol. [80]

Pharmacodynamic drug–drug interactions of CQ/HCQ with other QT prolonging
drugs could increase the risk for developing TdP. Some anticancer drugs (such as sunitinib,
cabozantinib and lapatinib) are associated with QT prolongation [52] and should not be
used in combination with CQ or HCQ. Nausea and vomiting, which are frequently associ-
ated with anticancer therapy, may lead to dehydration followed by electrolyte imbalance,
and thus provoke QT prolongation [52]. QT prolongation by some drugs is associated
with increased incidence of arrhythmic death [52]. Using CQ or HCQ alone or with QT-
prolonging anticancer drugs mandates careful cardiac monitoring and correction of any
electrolyte abnormalities. The management of potentially fatal arrhythmias associated with
prolonged QT syndrome involves the intravenous administration of magnesium sulphate
and electrical cardioversion [52].

Tamoxifen decreases the activity of cathepsin D, a lysosomal acid protease, in the
lysosomes of RPE, which is essential for the phagocytosis of the ingested rod outer segments
shed from photoreceptor cells [85]. Increased risk factors for retinopathy include co-
treatment with tamoxifen and HCQ, >5 mg/kg/day HCQ, pre-existing maculopathy and
renal insufficiency [56].

Glucose 6-phosphate dehydrogenase (G6PD) protects RBCs against oxidative stress,
which is triggered by CQ [93].Thus, CQ may cause hemolysis in patients with G6PD
deficiency [93]. CQ/HCQ may also increase the risk of convulsions in patients with
epilepsy [94,95]. Their epileptogenic potential is linked to inhibition of GABA and the
enhancement of dopaminergic neurotransmissions [94,95].

8. Conclusions and Future Perspectives

Critical appraisal of the challenges of using CQ and HCQ as adjuvant agents in cancer
patients can be summarized as follows:

i. Despite their preclinical anticancer and safety profile, there are currently no sensitive
and reliable predictive biomarkers for the rational selection of cancer patients who



Future Pharmacol. 2022, 2 439

could benefit from the use of CQ/HCQ and avoid the exposure of non-responders
to their adverse effects.

ii. Consideration of the risk and benefit for CQ/HCQ in cancer patients must
be individualized.

iii. Some anticancer drugs and HCQ/CQ are associated with a prolonged QT interval.
Given the multifactorial developmental nature of TdP, careful cardiac monitoring
and correction of electrolyte imbalance are critical and treatment withdrawal is
needed if cardiac manifestations arise.

iv. Given the homeostatic role of autophagy, which is inhibited by HCQ/CQ, monitor-
ing of vital organs is essential.

v. Long-term follow-up of treated patients for potential cardiovascular, renal and
retinal toxicities is warranted.
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