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Abstract: Background/Objectives: Microcolins A–M are cytotoxic marine lipopeptides
produced by the cyanobacterium Moorena producens, also known as Lyngbya majuscula.
Recent studies have shown that two compounds in the series, microcolins B and H, can
form covalent complexes with phosphatidylinositol transfer proteins α and β (PITPα/β)
upon the reaction of their α,β-unsaturated ketone group with the thiol group of a key
cysteine residue of PITP. These observations prompted us to compare the binding of all
microcolins and a few related derivatives (VT01454 and (deoxy)majusculamide D) to PITP
to delineate structure–binding relationships. Methods: A molecular docking analysis led to
the identification of microcolin E as the potentially best PITPα binder in the series, followed
by microcolins B and H and analog VT01454. The computational data agree well with
the published experimental results. Results: The binding of microcolin H into a large
cavity of PITPα positions its reactive electrophilic α,β-unsaturated ketone close to the thiol
of Cys95, enabling the facile formation of a covalent C-S linkage. A similar bonding can
occur with the Cys94 of PITPβ. Molecular models of microcolins bound to PITP were
compared to identify structural elements chiefly implicated in the recognition process.
Conclusions: This computational study provides guidance in the design of microcolin
derivatives targeting PITPα/β considered targets for cancer and inflammatory pathologies.

Keywords: marine natural products; microcolin; molecular modeling; phosphatidylinositol
transfer proteins; PITPα; PITPβ

1. Introduction
The tropical marine cyanobacterium Moorena producens JHB is a rich source of sec-

ondary metabolites with potential biomedical utility. This benthic filamentous cyanobac-
terium, previously known as Lyngbya majuscula (family Oscillatoriaceae), grows in marine
and estuarine environments across the world. It has been observed in the Pacific Sea,
the Caribbeans, the Gulf of Mexico, Singapore area, Venezuelan waters and many other
places [1]. It is an invasive and toxic organism which can cause can severe irritations,
papulovesicular eruptions and other dermatological affections [2]. Blooms of M. producens
and their invasiveness are threats to the marine environment, and they are of great concern
to the aquaculture and tourism industry [3,4].

Numerous bioactive metabolites have been isolated from this species, such as the prod-
ucts called hectochlorins, hectoramides, tiahuramides, lagunamides and jamaicamides [5–7].
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Diverse products of medicinal interest have been characterized from M. producens, such as
the antimalarial cyclic peptide kakeromamide B which can stimulate actin polymerization
in cells [8], the antitumor lipopeptide kalkitoxin [9], the cytotoxin neo-aplysiatoxin A [10] and
poisoning products lyngbyatoxins [11,12], to cite only a few examples. A recent chemical
survey led to the identification of >230 natural products from 66 groups from M. producens,
with 3 dominant groups: malyngamides, microcolins and dolastatins [4].

Microcolins represent one of the three main groups of cytotoxic lipopeptides isolated
from this species with a series of 13 products—microcolins A to M (Figure 1)—endowed
with cytotoxic properties [13]. The first two members in the series microcolins A and
B were discovered more than 30 years ago and found to exhibit immunosuppressant
and antiproliferative activities, acting as inhibitors of interleukin IL-2 production and
modulators of the lymphocyte response [14–16]. They paved the way in the design of
synthetic analogs with reinforced immunosuppressive properties [17] and in the design
of chemical probes for elucidating their mechanism of action [18]. Microcolin A has been
shown to target the early immature CD4+CD8+ T-cell subpopulation in thymocytes [16].
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The immune-suppressive action of microcolins was rarely investigated until the re-
cent finding that microcolin B targeted phosphatidylinositol transfer proteins α and β

(PITPα/β) [19]. PITPs are lipid-binding proteins which bind and transfer phosphatidyli-
nositol and phosphatidylcholine from one membrane compartment to another. PITPα/β
are ubiquitously expressed small (35 kDa) proteins with a single PITP domain [20–22]. It
has been demonstrated that microcolin B and a synthetic structural analog VT01454 can
bind directly to PITPβ via a covalent linkage to its Cys94 residue (Figure 1) [19].

The formation of a drug–PITP complex is responsible for the regulation of the Hippo
pathway, a key signaling route playing a significant role in cell differentiation, proliferation
and survival. It is frequently dysregulated in human cancers [23]. Microcolin B functions
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as a Hippo regulator through the activation of LATS (large tumor suppressor) kinases
(drug-induced phosphorylation of LATS at T1079) and the downstream phosphorylation
of YAP/TAZ transcriptional coactivators to suppress gene expression and cell growth.
The initial Michael reaction of microcolin B with the thiol group of Cys94 in PITPβ is
essential. The dihydro analog of microcolin B is an inactive compound [19]. The activation
of the tumor-suppressive Hippo–YAP/TAZ signaling pathway to promote Yap degradation
is viewed as a promising approach to the inhibition of tumorigenesis [24]. There are
multiple strategies to target the Hippo pathway with small molecules [25,26], but the use of
microcolins and derivatives is a unique option for targeting PITPα/β. A recent study using
chemical proteomic methods revealed that the derivative microcolin H, also produced
by Moorea producens, directly binds the two isoforms PITPα and PITPβ similarly so as to
induce autophagic cell death and reduce tumor growth in mice [27].

These considerations prompted us to investigate the binding of microcolins to PITP
using molecular modeling to help identify the best binders in the series and facilitate the
design of analogs. We compared the PITP interaction of microcolins A-M and VT01454
using the high-resolution (2.2 Å) structure of a phosphatidylcholine-bound PITPα isoform
found via X-ray diffraction (Protein Data Bank (PDB) entry 1T27) [28]. This structure has
been used by others to investigate the PITPα phosphatidylinositol–phosphatidylcholine
lipid exchange cycle [29] and to study the binding of ursolic acid to PITPα [30]. It is a
representative PITP. A structure comparison of the α and β PITP isoforms revealed minimal
differences in protein conformation [31]. Here, we used the same structure to study the
binding of microcolins to the PITPα phosphatidylcholine binding site.

2. Materials and Methods
2.1. Protein Structures, Programs and Process

Different tridimensional structures of phosphatidylinositol transfer proteins (PITPs)
are available in the Protein Data Bank (PDB, www.rcsb.org accessed on 11 January 2025).
The structure of PITPα in complex with phosphatidylcholine (1T27) was selected for its
good resolution and because it has been used in previous binding studies [28]. A molecular
docking analysis was performed with Genetic Optimization for Ligand Docking (GOLD)
5.3 software (Cambridge Crystallographic Data Centre, Cambridge, UK). A Monte Carlo
conformational searching procedure was conducted using BOSS v4.9 software to optimize
the structure of each ligand prior to the docking analysis [32]. The 2D-3D structures
of the natural products were retrieved from the PubChem database or built from the
original publications describing the compounds (Figure 1). Molecular graphic analyses
were performed using Discovery Studio Visualizer, Biovia 2020 (Dassault Systèmes BIOVIA
Discovery Studio Visualizer 2020, San Diego, CA, USA, Dassault Systèmes, 2020).

2.2. Protein–Ligand Binding Site Prediction

Potential–ligand binding sites on the PITPα protein were identified using the web
server Computed Atlas of Surface Topography of proteins (CASTp) 3.0 [33]. This software
is used to predict the position of ligand binding sites with an estimated success rate of
74% [34]. This method analyzes the protein geometry to identify and measure pockets
and voids on 3D protein structures, with the support of the modeling software Chimera
1.15 for visualization [35]. It is an efficient method for modeling protein secondary struc-
tures and analyzing the distribution of essential amino acid residues involved in binding
interactions [36,37].

www.rcsb.org
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2.3. Molecular Docking Analysis

The phosphatidylcholine binding area within the PITPα protein structure was con-
sidered as the potential binding site for the studied products. To incorporate protein
flexibility into the docking process, the side chains of 10 key amino acids implicated in the
binding process were rendered fully flexible. For protein PITPα (1T27), these amino acids
were Tyr63, His64, Cys95, Phe108, Phe201, Trp203, Phe213, Phe222, Phe225 and His226.
For protein PITPβ (2A1L) [31], the flexible amino acids were Val26, Tyr62, Leu64, Phe83,
Phe107, Phe212, Ile220, Phe221, Leu224 and His225. With each protein, a central amino
acid was defined based on shape complementarity and geometry to delimit a docking grid.
With both proteins and each alkaloid, the binding mode was analyzed considering 100
energetically reasonable poses which were then selected and ranked. The fitness scoring
function was used to rank the 6 best binding poses, based on the Piecewise Linear Potential
(PLP) fitness value, a pairwise additive scoring function incorporated into GOLD [38].
Then, from the best PLP fitness scores, the binding energies were calculated. No rescoring
of binding affinities was performed.

For each ligand, the empirical potential energy of the interaction (∆E) was calcu-
lated using the SPASIBA spectroscopic force field, via the expression ∆E(interaction) =
E(complex) − [E(protein) + E(ligand)]. The Boss program and the Molecular Mechan-
ics/Generalized Born Surface Area (MM/GBSA) procedure were used to calculate the
free energies of hydration (∆G) in relation to aqueous solubility [39]. MM/GBSA does
not provide information about the number, position or free energy of water molecules,
but the contribution of water molecules in the binding site is estimated in the calculation
of Gibb’s free energy of binding (∆G) values [40]. The SPASIBA force field (integrated
into CHARMM v36) correctly reproduces crystal phase infrared data. It was developed to
provide refined empirical molecular mechanics force field parameters, as described in other
studies [41,42]. This specific force field for Monte Carlo (MC) simulations achieved the
same level of convergence as Molecular Dynamics (MD), with less computation time [43].

3. Results
3.1. PITPα Protein: Topographic Analysis of Drug Binding Site

The PITPα protein presents a large central cavity for drug binding. Its natural ligand
phosphatidylcholine binds well into this site, occupying the free space between the β-sheet
portion and the proximal α-helices (Figure 2a). The drug binding site is thus delimited.
Nevertheless, the surface topography of the protein was analyzed using the CASTp server,
which is a convenient online service for identifying, defining and quantifying the geometric
and topological features of protein structures, notably the surface pocket and the volume
of interior cavities [33,34]. The analysis with CASTp revealed a single suitable cavity
for drug binding. It corresponds to a large site with a volume and area of the pocket
of 621 Å3 and 923 Å2, respectively, suitable for comfortably accommodating extended
small molecules like microcolins. The other potential binding pockets were far too small
(Figure 2b). Therefore, the main zone (shown in red) generated by the CASTp server was
defined as the microcolin binding zone, delimited by the ten flexible amino acid residues
Tyr63, His64, Cys95, Phe108, Phe201, Trp203, Phe213, Phe222, Phe225 and His226.
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Figure 2. A binding site analysis of PITPα using the web server CASTp 3.0. (a) The analysis of
the full-length protein (1T27) shows the phosphatidylcholine binding site located over the β-sheet
portion of the protein (in blue). (b) A CAST analysis of PITPα, with the identification of the large
binding cavity (in red), with the indicated surface (S) and volume (V). Minor areas are identified
around the protein (small areas colored in blue, purple, orange and yellow).

3.2. Binding of Microcolins to PITPα: Docking Study

A molecular docking analysis was performed from structure 1T27 after the removal
of the phosphatidylcholine molecule to allow the test molecule to have free access to the
central cavity centered around position Phe108. The analysis was repeated with each
microcolin compound to calculate the empirical energy of interaction (∆E) and free energy
of hydration (∆G). Data obtained with VT01454 and microcolins are collated in Table 1. The
large cavity in the protein allowed for the facile binding of natural products. Out of the
13 microcolins, 5 compounds gave ∆E < −100 kcal/mol: microcolins A, B, E, G, H and L.
Overall, the two best compounds in the series were microcolin E and VT01454. ∆E values
provide an indication of the complex stability and ∆G values an estimate of the ligand
binding affinity. The MM/GBSA binding free energy score (solvation-dependent Gibb’s
free energy of binding, ∆G) was considered to select the best molecules.

Table 1. Calculated potential energy of interaction (∆E) and free energy of hydration (∆G) for
interaction of microcolins with PITPα.

Compounds ∆E (kcal/mol) ∆G (kcal/mol)

Phosphatidylcholine −163.80 −44.95
Microcolin A −103.10 −40.35
Microcolin B −107.35 −34.55
Microcolin C −96.40 −43.20
Microcolin D −98.50 −40.00
Microcolin E −116.60 −39.70
Microcolin F −98.20 −37.70
Microcolin G −100.60 −36.85
Microcolin H −107.20 −32.80
Microcolin I −98.15 −35.20
Microcolin J −97.60 −39.75
Microcolin K −94.60 −36.80
Microcolin L −100.70 −32.30
Microcolin M −99.40 −33.80

Majusculamide D −109.65 −39.30
Deoxy-majuscul. D −107.70 −41.20

VT01454 −111.70 −43.50
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Figure 3 shows the binding of microcolins B and H to PITPα. They display a comparable
protein binding mode with the lactam extremity deeply inserted into the protein cavity and
the dimethyloctanoyl moiety lying on the β-sheets on the other side of the binding site. In both
cases, the drug molecule is well protected in the protein cavity, but its central part remains
fairly accessible to the solvent (Figure 3b,d). The tripeptide portion of the molecule sits on the
β-sheet bed and positions the pyrrolidine unit near the reactive site. Both microcolins B and
H establish numerous contacts with the protein, as illustrated in Figure 4.
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There are over 35 contacts between microcolin B and PITPα, including two key H-
bonds with residues Tyr63 and Lys195. These are the two most important contacts, observed
with almost all microcolin derivatives. The binding situation is a little similar to that for
microcolin H, which exploits residues Glu218 and Lys195 for binding, in a manner close to
that observed with compound VT01454 (Figure 5). The mode of binding of microcolins B
and E to PITPα is relatively similar, with about 38 protein contacts in both cases (Figure 6).
The two products make use of the large protein bed to occupy all of the groove and robustly
anchor their tripeptide portion into the cavity. In each case, multiple van der Waals contacts
stabilize the protein–drug complex.
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A comparison of the binding energies calculated with the different microcolins permits
us to deduce at least four pieces of structural information. First, the acetyl group at position
R2 on microcolins A and B positively contributes to the protein interaction. The deacetylated
derivatives microcolin C (desacetyl-microcolin B) and microcolin D (desacetyl-microcolin
A) are weaker binders than the acetylated analogs. Second, the hydroxyl group on the
pyrrolidine unit is not an essential element for protein binding. Microcolin B (R1 = H) is
a better binder than microcolin A (R1 = OH), and the same observation is made when
comparing microcolin E (R1 = H) and microcolin F (R1 = OH). The calculated binding
energy is largely in favor of microcolin E versus microcolin F. However, the opposite
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was observed when comparing microcolin I (R1 = H) and microcolin H (R1 = OH). Third,
the truncated derivative, microcolin M, which lacks the terminal lactam unit, binds less
efficiently to the protein. This suggests that the lactam unit is important for binding or for
bonding, as discussed below. The pentanoyl side chain common to microcolins A-B can
be replaced with a pentenoyl chain as in microcolins E–F or with a hexanoyl chain as in
microcolin L. Apparently, the change at this position has little impact on PITPα binding.
Fourth, the comparison of microcolins B and J suggests that the N-methyl substituent
contributes favorably to the protein interaction. A surprising observation derives from the
comparison of the two compound isomers microcolin D and VT01454, which only differ by
the orientation of their 2,4-dimethyloctanamide side chain, as shown in Figure 7. VT01454
appears to be a much better PITPα binder than microcolin D (Table 1). This structure–
binding information is important for searching for additional compounds susceptible to
binding to PITP and for drug design.
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3.3. Covalent Binding of Microcolin H to PITP

A comparison of the binding configuration observed with the different microcolins
revealed the proximity of the reactive electrophilic α,β-unsaturated ketone to the thiol
nucleophilic group of the amino acid Cys95 of PITPα. This is best illustrated in the case of
microcolin H, with a distance of 3.2 Å between the nucleophilic free thiol Cys95-SH and the
β-carbon of the α,β-unsaturated ketone. The reactive group is ideally located for covalent
binding to the cysteine residue. The nucleophilic addition reaction of sulfhydryl toward the
α,β-unsaturated ketone was simulated to obtain the covalent adduct, as shown in Figure 8.
After reaction, the measured C-S distance was reduced to 1.8 Å, with a slight movement
of the reactive unit. The rest of the molecule remained stabilized in the protein cavity. A
similar sulfhydryl adduction of Cys95 can occur with the other derivatives, notably with
microcolin B for which the methyl-dihydropyrrolone unit is engaged in a van der Waals
contact with Cys95 (Figure 4).

The facile covalent binding of microcolin H to Cys95 of PITPα is entirely consistent
with the experimental data reported by Yang and coworkers using a chemical proteomic
approach [27]. Rat PITPβ models (pdb: 2A1L) showed a covalent attachment of microcolin
H to Cys94, equivalent to Cys95 in the structure of rat PITPα (pdb: 1T27) used here. Our
own study of the binding of microcolin H to PITPβ showed no major difference with
PITPα. The modeling analysis showed the good stability of microcolin H-PITPβ complexes
(Figure S1). The energy parameters were even more favorable with PITPβ compared to
PITPα (1T27) (∆E = −119.95 kcal/mol and ∆G = −41.60 kcal/mol for PITPβ (2A1L) vs.
∆E = −107.20 kcal/mol and ∆G = −32.80 kcal/mol PITPα (1T27). The structures of the two
isoforms are superimposable [31]. Microcolin H can easily form covalent complexes with
PITPβ through binding to the thiol group of Cys94 (Figure S2). It is also interesting to note
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that our model is fully consistent with a crystallographic structure of inhibitor VT01454
covalently attached to the Cys95 of PITPα (pdb: 8PQO) [44] (Figure S3).
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3.4. Binding of Related Natural Products to PITPβ

Based on the above structural information, we searched for related natural products
which could also interact with the protein. We identified two compounds: majusculamide
D and its deoxy analog (Figure 9). Majusculamide D and deoxy-majusculamide D are two
lipopentapeptides originally isolated from Lyngbya majuscula and later found in Moorea
species [45]. They are structurally close to microcolins, with a N,O-dimethyltyrosine in
place of a N-methylleucine residue in the central tripeptide motif.
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The total synthesis of majusculamide D was accomplished, and the product revealed
prominent cytotoxic activity against PANC1 pancreatic cancer cells in vitro (IC50 = 0.32 nM) [46].
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A recent study using synthetic majusculamide D derivatives demonstrated that both the hy-
droxyl group at C10 and C2–C3 unsaturated double bond were essential in maintaining high
activity levels against PANC1 cells [47,48]. Here, we observed that both majusculamide D
and deoxy-majusculamide D can form stable complexes with PITPα, with little difference
between the two compounds. Majusculamide D formed the most stable protein complexes,
largely engaging its tyrosine residue in the interaction. A H-bond between Lys195 and the
methoxyphenyl group of the drug contributes to the stability of the protein–drug complex.

4. Discussion
The marine filamentous cyanobacterium Moorena producens, also named Lyngbya majus-

cula, produces numerous secondary metabolites utilized for its own metabolism and/or for
its defense against predators. It produces poisoning metabolites to many marine organisms,
notably shrimps and turtles [4]. This cyanobacterium is known to cause skin irritation, pos-
sibly leading to seaweed dermatitis [2]. But some of these secondary metabolites present a
pharmacological interest in terms of the treatment of cancers and other severe diseases. For
example, a recent study explored the antiparasitic activity of metabolites from M. producens
and identified different peptides (almiramides, dragonamides) active against Leishmania
donovani, Trypanosoma cruzi and T. brucei parasites [49,50]. The products isolated are not nec-
essarily toxic. For example, a recent work identified the lipopeptide kalkitoxin and showed
its capacity to decrease vascular calcification, making it of potential interest for treating
arteriosclerosis [51,52]. The same product may be useful in treating cancer and metastasis
based on its capacity to protect from osteolysis [9]. Therefore, it is essential to characterize
the mechanism of action of such lipopeptides well to make use of their pharmacological
properties. Once the mechanism of action is explored or defined, the compounds in the
series can be exploited to design drug candidates. For example, the discovery of cytotoxic
lagunamides from M. producens [53] was followed by the characterization of their anticancer
mechanism of action and the synthesis of analogs [54–56]. Numerous lipopeptides isolated
from M. producens have been characterized, but for many of them, their mechanism of
action remains little known at present.

The microcolin series of products isolated from M. producens is interesting, structurally
and functionally, notably because their anticancer effects have been investigated well. The
molecular targets of the lead products in the series, microcolins B and H, have been clearly
identified as being the phosphatidylinositol transfer proteins PITPα/β. Microcolin B and
its analog VT01454 were shown to target PITPα/β, thereby inducing the phosphorylation
of the YAP protein and inactivation through the Hippo pathway [19]. Similarly, microcolin
H was shown to bind directly to PITPα/β [27]. These proteins involved in the regulation
of phosphoinositide synthesis play a role in cancer cell survival and proliferation. They are
also implicated in diverse PITP-driven pathologies such as neurodegeneration, immunity
and metabolic diseases [19,57]. For these reasons, small-molecule PITP inhibitors are being
actively investigated [58]. A better understanding of the structure–binding relationships in
the microcolin series can help in the design of novel inhibitors. Diverse approaches have
been described to synthesize these lipopeptides, notably for microcolins A and B [59–63].
Molecular modeling can help to guide the design of analogs and prioritize the compounds.
The docking analysis reported here confirms the interest in microcolins B and H as robust
ligands of PITPα/β and reveals the potential of microcolin E as being the best ligand of
PITPα in the series. It also underlines the possibility of using VT01454 and majusculamide
D as templates to design PITP inhibitors. The structure–binding relationships reported
here shall be an aid to the discovery of novel PITP binders.

PITPα/β are perhaps not the unique targets of microcolins, but these two proteins
represent the primary components of their mechanism of action. Thus far, there is little
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evidence that microcolins can affect PITP-independent pathways. An in silico study raised
the idea that cytotoxic products from Lyngbya majuscula, including majusculamide D (but
not microcolins), could interfere with cancer cell growth through binding to heat-shock
protein 90 (Hsp90 chaperone) [64]. But at present, PITPα/β remain the only validated
targets for microcolins.

5. Conclusions
This molecular docking study identified PITPα/β as protein targets for the marine

lipopeptides microcolins. Structure–binding relationships were identified. The best ligands
in the series are microcolins E, B and H, susceptible to forming covalent complexes with
a cysteine residue via their common electrophilic α,β-unsaturated ketone group. Among
the many natural products of pharmacological interest produced by marine cyanobacteria,
microcolins represent good lead compounds for the design of anticancer agents [65]. Hope-
fully, the computational study reported here will encourage pharmacologists to further
investigate the binding of microcolins to PITB and the biological consequences of this
interaction for the treatment of cancers and other pathologies for which PITPα/β play a
significant role.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/futurepharmacol5010013/s1, Figure S1: Binding of microcolin
H to PITPβ; Figure S2: Superimposed models of microcolin H bound to PITPβ in non-covalent and
covalent forms; Figure S3: Crystallographic structure of inhibitor VT01454 covalently linked to Cys95
of PITPα.
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