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Abstract: In this paper, we explore the photon region and the shadow of the rotating counterpart
of a static charged Weyl black hole, which has been previously discussed according to null and
time-like geodesics. The rotating black hole shows strong sensitivity to the electric charge and the
spin parameter, and its shadow changes from being oblate to being sharp by increasing in the spin
parameter. Comparing the calculated vertical angular diameter of the shadow with that of M87%,
we found that the latter may possess about 103 protons as its source of electric charge, if it is a
rotating charged Weyl black hole. A complete derivation of the ergosphere and the static limit is
also presented.
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1. Introduction

The recent black hole imaging of the shadow of M87*, performed by the Event Horizon
Telescope (EHT) [1], was another significant affirmation of general relativity. Despite this,
the quest for finding reliable modified and alternative theories of gravity still remains in
force. This mostly stems from the modern galactic and extra-galactic evidence [2—6] that has
led to the consideration of dark matter and dark energy scenarios. On the other hand, since
these exotic cosmological constituents are extremely hard to detect, some scientists believe
that increasing our knowledge about the action of the gravitational field can exclude the
necessity of dark matter and dark energy scenarios in cosmological descriptions. This is
pursued through finding newer gravitational actions and studying the resultant theories [7].

The exploration of these theories, however, is not done only by means of cosmological
observations. In fact, as in the general relativistic cases, the possible black hole solutions
inferred from modified and alternative theories of gravity are constantly investigated
regarding the photon trajectories in their exterior geometry, as well as their natural optical
appearance to distant observers. This latter, because of the possible relevance between
the shadow of black holes and their physical characteristics, has been set to rigorous
numerical and analytical studies, in order to assess the black hole solutions regarding the
observations.

In addition to the efforts done for recovering the dark matter and dark energy cos-
mological predictions, the selection of alternative theories of gravity is also based on the
peculiarities of their gravitational action. Along the same efforts, the fourth order theory of
conformal gravity appeared as one of the alternatives to compare the theoretical results
with the cosmological and astrophysical observations, and some considerable constraints
have been driven. This theory was formulated by H. Weyl in 1918 [8], revived by Riegert
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in 1984 [9], and since then, has been applied widely to explain astrophysical phenomena
(see, for example [10-18]).

It has also been argued that, unlike other cosmological models, this theory can avoid
the age problem. The latter has been shown by testing the theory with the quasar APM
08279 + 5255 with the age of (2.1 £ 0.34) x 10° years at z = 3.91, indicating that the theory
could accommodate the quasar within a 3¢ confidence levels [19]. Furthermore, this theory
has been applied to the determination of the energy carried by gravitational waves [20-23].

Based on the above notes, in this paper, we consider a black hole solution that was
generated in the context of Weyl gravity. In fact, the black hole spacetimes inferred from
theories of gravity are essentially constructed on the static vacuum solutions to their
equations of motion. For the case of Weyl conformal gravity, such a solution was proposed
by Mannheim and Kazanas in [24], where the authors connected the presence of flat
galactic rotation curves to an additional effective potential available in their solution.

In this way, Weyl gravity was proposed as an alternative to dark matter. Ever since,
the theory has also been intended to recover the cosmological observations related to the
dark energy scenario [11,25]. Accordingly, and provided the Mannheim-Kazanas solution,
the theory has been put to numerous investigations [12,13,26-50]. The black hole spacetime
associated with this static solution, contains a cosmological term, and the rotating and
electrically charged solutions to Weyl gravity have been also proposed in [51], in the
context of Kerr and Kerr-Newman spacetimes.

In this work, we also consider a rotating charged black hole spacetime, inferred from
Weyl gravity. This solution is indeed the rotating counterpart of a particular static charged
black hole, introduced in [52]. This charged Weyl black hole (CWBH) has been recently
studied regarding the light propagation in vacuum and in plasmic medium [53,54] and
the motion of neutral and charged particles [55,56]. As it is a rather interesting subject to
understand how a black hole would appear in an observer’s sky, it is therefore completely
natural to discuss the optical properties of the rotating charged Weyl black hole (RCWBH)
and its shadow. For the case of the Mannheim—Kazanas solution, a rotating version of the
Weyl black hole was given in [50], and its shadow was discussed in [57].

In this paper, we follow these steps: In Section 2, we introduce the CWBH solution and
apply a modified Newman-Janis method to obtain its rotating counterpart (the RCWBH),
and we discuss the horizon structure. In Section 3, this solution is studied in more detail
regarding the stationary and static observers, and accordingly, the ergosphere of the black
hole is calculated and discussed. We use the first order light-like geodesic equations in
Section 4, to proceed with studying the optical appearance of the black hole to distant ob-
servers, by means of calculating the photon region and the black hole shadow. A particular
geometric method is then used to indicate the conformity between the deformation and
the angular size of the shadow. We conclude in Section 5. Through the paper, we employ
geometric units, in which G =c = 1.

2. The Black Hole Solution

The gravitational action corresponding to Weyl gravity is written in terms of the Weyl
conformal tensor, as

I = —K [ d*xy/=g Coppn O, 0

in which K is a coupling constant, ¢ = det(g,p), and

1 R
Cuprp = Ruprp — 2 (8aARpp — SapRpr — 8paRap + 8ppRan) + 3 (8ar&pp — Sap8pr)- ()



Galaxies 2021, 9, 43

30f26

The conformal symmetry of this theory is inferred from the fact that the action Iy is
invariant under the conformal transformation g,p(x) = e2e(x) Sap(x), in which, 2a(x) is
termed as the local spacetime stretching. Recasting Iy in the form

Iy = —IC/d4x\/—g (R"‘ﬁpARaﬁp/\ - 2R"‘5R“/5 + ;Rz) 3)

it is seen that the Gauss—Bonnet term /—g (R"‘ﬁp/\Raﬁp A= 4R"‘/5R,,4; + R?) is a total diver-
gence and can be disregarded. We can, therefore, simplify the action as [24,58]

Iy = —2/c/d4x, /=3 (R"‘ﬁRaﬁ - ;122). )

The equations of motion are then obtained by applying the principle of least action,

Sw — providing the Bach equation

Wepg = F5Cop" +0O%Pap — VI VaBpy

1
= il ©)

in which W, is the trace-less Bach tensor, [ = V7V, and

1 1
‘33“/3 = 2 <Raﬁ - 4goc/8R)/ (6)

is the Schouten tensor, which is expressed in terms of the Ricci tensor and the scalar
curvature of the spacetime. For a vanishing energy-momentum tensor (T,s = 0), the
Mannheim-Kazanas static spherically symmetric solution is given by the metric

2

ds? = —B(r)dt* + ;{r) + r2(d6? + sin” 0 dg?) @)
in the usual Schwarzschild coordinates (—co < t < co,r > 0,0 <0 < mand 0 < ¢ < 2m),
with the lapse function [24]

B(r)y=1- £(2-3¢p) _73@) —3p + pr — o7, 8)

The three-dimensional integration constants 7, p, and ¢, help in recovering the general
relativistic black hole spacetimes, in the way that for p — 0, the Schwarzschild—de Sitter
solution is recovered. This corresponds to distances much smaller than 1/p.

In the case that the energy—-momentum tensor is associated with the electrostatic
vector potential

= (1

Aﬂt* (rrororo)/ (9)
for a spherically symmetric massive source of electric charge g, in [52], the vacuum Bach
equation (i.e., Wyg = 0 in Equation (5)) is solved for the reference lapse function

2C 1
B(r)=1-——3f("), (10)

which provides the simple solution

f(r) = (6rc+c1r2+c2r>, 11)
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for which, substitution in Equation (10), yields

B(r)=1+ %(czr + c1r2>. (12)

The determination of the coefficients ¢; and c; in the above lapse function is done
through the weak-field limit approach, by considering the last two terms of B(r) as per-
turbations on the Minkowski spacetime [35,52]. In this way, by taking into account a
spherically symmetric source of mass 1, charge § and radius 7, the Poisson equation
V2haﬁ = 8n1Typ, with hyg = gup — 74p, has the following 00 component in Minkowski
spacetime:

1/ 02 20 m 1
2 _ 2 q
\V4 hOO_ _3(81’:2+787’) (Cl?’ —|—C27’) —871100 = 87 (% ?3 +78 7"4>’ (13)

in which, Ty is the scalar part of the total energy—momentum tensor, which corresponds to
the mass and charge of the source. From Equation (13), we obtain the relation [52]

9ir  34°
C2——<73+273+3C17’>, (14:)
which provides
7’2 QZ
where
1 3m 2¢
PEA Y (16)
Q=24 (17)

The coefficient & = c; in Equation (16), is intended to recover the cosmological con-
stituents of the spacetime and, here, has the dimension of m~2. Accordingly, the lapse
function (15) provides the exterior geometry of the CWBH. In the adopted geometric sys-
tem of units, Q and A have the dimensions of m. For A > Q, this spacetime allows for
two horizons; an event horizon r., and a cosmological horizon r ; (instead of a Cauchy

horizon), given by [55]
. (1 .
ry = /\sm<2 arcsm(g)), (18)

iy = Acos(i arcsin(%)). (19)

The extremal CWBH is obtained for A = Q, whose causal structure is characterized by
the unique horizonrex =1y =144 = A/ V2. The case of A < Q, then, corresponds to a
naked singularity. To reduce the CWBH to the Reissner—-Nordstrom-(Anti-)de Sitter black
hole of mass M, charge Qo, and cosmological constant A, we need to let 7 be a free radial
distance, 311 — My, 28 — £ A, and Q — 2iQp (an imaginary transformation).

The Rotating Counterpart

To obtain the rotating counterpart of the CWBH, we tend to recast the CWBH solution
in a stationary non-static form in the Boyer-Lindquist coordinates. Such transformations
are commonly done through the Newman-Janis algorithm of complexification of the radial
coordinate [59]. This method has been widely used to generate stationary black hole
solutions from their static counterparts!. At first, this algorithm was intended to generate

1

A more general version of the Newman-Janis method was obtained by Shaikh in [60], which considers the seed static spacetimes of more generality.
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ds? = —

M| [

the Kerr solution from the Schwarzschild spacetime, and therefore was developed in the
context of general relativity. It however, has had recent applications to black hole solutions
in alternative theories of gravity [61-64].

On the other hand, it has been indicated that, when applied to alternative gravity,
this method leads to distortions in the resultant rotating spacetimes by introducing extra
unknown sources into the original source [65]. Hence, to obtain the rotating counterpart of
the CWBH spacetime, we applied the method proposed by Azreg-Ainou in [66,67], which
is the modified version of the Newman-Janis algorithm and has been applied successfully
in producing imperfect rotating solutions from their static counterparts. Employing this
method for the line element (7), we obtain the following rotating spacetime:

% dr? + £.d6% — 2asin® 6 (1 - ;) dtd¢ + sin? [2 1 a?sin? 6 (2 -~ ;ﬂ dg?, (20)
where
2 =A—a*sin?6, (21a)
A =a®+7B(r), (21b)
Y = 1% +a?cos? b, (21¢)

in which, a is the black hole’s spin parameter, defined as a = ]/, with | as the black hole’s
angular momentum. Therefore, a has the dimension of m in our geometric units. The black
hole’s angular velocity is w = —gtp/ gpp [68]. In fact, if the reference lapse function (10) is
applied to Equation (21b), the components of the Bach tensor W,, are vanished for the
same expression of f(r) as those in Equation (11).

We must, however, note that this process can only be done by substitution of this lapse
function in the components of the Bach tensor by applying computer software?. Hence,
the line element (20) is a vacuum rotating solution to Weyl gravity, if a lapse function of
the general form (12) is taken into account. Accordingly, for a massive charged spherical
source, like the one assumed for the CWBH, the same constants can be obtained if the same
method is pursued. The only difference is that, the associated vector potential generated
by the source, changes in its form from that in Equation (9), to [69]

o ﬂ 2
A =% (1,0,0, asin 9). 22)
The exterior geometry of the RCWBH is, therefore, specified by applying the lapse
function (15), which provides
4 2
_ 2,2 1 Q
As for the spherically symmetric stationary spacetimes, the RCWBH admits two
Killing vectors, §(;) and &), satisfying

o Ca(r) = 8tts (24)
gﬁp)éa(zp) = s (25)

2 The calculation of the components of the Bach tensor was performed by the software Maple™ 2018.
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which correspond to the translational and rotational symmetries and the relevant invariants
of motion. The black hole’s event and cosmological horizons are now obtained by solving
g"" = 0, which results in (see Appendix A)

1 2 2
ry = /\sin<2 arcsin(A\/ % - a2> ) , (26)
. 1 (2 jQ*
Tyy = /\COS(Z arcsm(/\ T a )), (27)

for which the extremal black hole horizon rex = A/ /2 is obtained for Qex = £v/4a% + A2,
and a naked singularity appears for Q > v/4a? + A% (for Q > 0). As shown in Figure 1, not
all values of Q, A and a are allowed to construct a black hole (censored region). As shown
in Figure 2, for fixed A and g, increases in Q increase the size of r and decrease that of v 4,
until they coincide on v = r4 1 = rex at Q = Qex. The same happens for a decrease in A
for fixed Q and a, which leads to A = A¢x, and a decrease in a for fixed A and Q, leading to
a = dex. It is also easy to show that the hypersurfaces corresponding to r and r 4, are
null. We continued analyzing the RCWBH in the next section, regarding the stationary and
static observers.

Naked Singularity

Black Hole

25 Naked Singularity

Black Hole

Black Hole

0.5 il
[ 0.5
r Naked Singularity 1
5

0.4 0.6 0.8 1.0 0.6 0.8 1.0

[(SES

(a) (b) « (c)

Figure 1. The mutual sensitivity of the possibility of horizon formation to the pairs (a) (Q, a), (b) (4,A), and (c) (Q,A). In
the diagrams, the border between the regions of black hole and naked singularity indicates the extremal black hole limit.

10

0 5 10
]

7

20 0 5 10 15 20 0 5 10 15 20

(@) : (0)

Figure 2. The behavior of the horizons of the RCWBH, plotted for (a) A = 10anda =5, (b) Q = 11 and a = 5, and (c)

A=10and Q = 11.

3. The Ergosphere

In addition to being encompassed by the event horizon, the rotating black holes are
also characterized by another hypersurface, which is formed as a result of the black hole’s
spin and limits the existence of static observers. This surface is, therefore, identified with
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the event horizon only in the limit of the vanishing spin parameter [70-72]. In this section,
we determine this surface and discuss it analytically as well as illustratively. However,
let us first consider an important feature of rotating spacetimes, by considering the zero
angular momentum observers (ZAMOs) with the vanishing angular momentum defined
as [68]

- dx*®
L = gWa
dt dp
8ot gy T80 gy =0 (28)

in which 7 is the proper time associated with the observers (or particles) and, throughout
this paper, we assign it to the trajectory parameter. Accordingly, the observer’s angular
velocity is obtained from Equations (20) and (21), reading as

d a(r?+a>—-A
-9 _ 8w al : ) (29)
dt S¢p  (r24a2)” — Aa2sin? 0
which is the same as the angular velocity of the rotating black hole and increases as r
decreases, until it reaches its maximum value

a

Omax = Qly=r, = O = 5——
Ir=rs 2 + a2

= W+, (30)

where w; = w(ry) is the black hole’s angular velocity at its event horizon. For a slowly
rotating black hole (small a), Qg reduces to
Qp ~ 2 (31)
H ~ .
A2 sin? (% arcsin (%) )

Therefore, on the event horizon, ZAMOs move in the same direction as the black
hole’s own rotation (also called corotation), as a result of dragging their inertial frames.
Aside from the ZAMOs, to deal with the static observers, let us consider their velocity
four-vector as

ut = nﬁ‘é‘t), (32)

with the normalization factor n = (— gaﬁ(f‘z‘t)fj/(gt))’l/ 2 = 1/,/=gn, according to Equa-
tion (24). Such observers cannot exist everywhere in the spacetime, and they are confined
to a limit defined in terms of the validity of Equation (32). In fact, for n?2=— g =0,
this equation breaks down, and ¢ (t) becomes null. In this way, a static limit3 is obtained,
whose radius, gy, is calculated by solving the equation g = 0. This equation yields the

two positive solutions
2
I = Asin(i arcsin(/z\\/ % — a2 cos? 9)), (33)
= L i 2\/Q2 a% cos? 6 (34)
stz = Acos| saresin| 4/~ cos ,

that satisfy the condition of causality 4 < rs;1 < rsrp < r+4. The domain r < rgpy
corresponds to a region in which the static observers can no longer remain static*, and the
so-called frame-dragging effect forces them to rotate with the black hole. In Figure 3, the
behavior of the above two solutions was plotted for a definite value of a.

3
4

The surface corresponding to the static limit is also called the surface of infinite redshift [73].
In other words, they will no longer exist.
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As the angular parameter increases, the static limit surface (corresponding to rgr1)
recedes from the event horizon, and hence the ergosphere expands. On the other hand,
rsro shrinks under the same conditions. Note that, in the case of an extremal black hole
(Q? = 4a? + A?), the above surfaces coincide at

o1 842 sin® 0 + A2
TSL(ex) = A COS <4 — 4 arccos ()\2 . (35)
G:E
6]
g%
5
o="1]
4
—=Z
3
" v
_g=5 ]
0 5 10 15 20

Figure 3. The behavior of rg;, with respect to changes in Q. The plots were made for A = 10 and
a = 5 and five different values of 0. The solid and dot-dashed curves correspond, respectively, to rsy 1
and rg1 5, and the black hole horizons are shown with dashed lines.

Comparing Equations (26) and (33), we notice that, for 6 # nmt (n = 0,+1,+2,...),
the surface of static limits does not coincide with that of the event horizon, and these
surfaces, together, form an ergosphere (or ergoregion). To demonstrate the ergosphere of the
black hole, let us introduce the Cartesian coordinates [74]

x =12+ a%sinf cos¢, (36a)
y=Vr2+a%sinfsing, (36b)
z =rcosb, (360)

which are defined in terms of the Boyer-Lindquist coordinates of the line element (20).
Accordingly, the horizon hypersurfaces can be plotted, as being observed either from the
coordinate of axial symmetry (i.e., in the x-y plane), or from the y (or x) coordinate (i.e.,
in the z-x (or z-y) plane). In Figure 4, the horizons and the static limit surfaces are plotted
for several values of @ and Q within the allowed values of Figure 1, and therefore, the
ergosphere for each of these cases is demonstrated.



Galaxies 2021, 9, 43 9 of 26
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A N ) = )
~05f -05f 1 -05 1
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2 (a) A (b) A (0)
1.0} 1.0
0.5
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-0.51 -05
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Figure 4. The hypersurfaces corresponding to the horizons and the static limit, plotted for A = 10 and several fixed values

of Q and 4, as viewed from the y axis. The axes are given in terms of dimension-less values z/A and x/A. In the (a—f)

diagrams, the smaller and the larger solid contours correspond respectively, to r; and r 4, whereas the smaller and the

larger dashed ones relate to sy (the static limit) and rg;,. The region ry < r < rg1 indicates the ergosphere in each of

the cases. The figures were scaled so that the r | surface appears as a complete circle. The (g—i) diagrams demonstrate

the ergoregion in the case of the extremal black hole. The solid and the dashed contours correspond, respectively, to rex

and rSL(ex)'

As is seen in the figures, increases in a for each fixed value of Q stretch the event
horizon’s cross-section and act in favor of dividing the ergosphere into separate regions
at each side of the event horizon. In the special cases of Q > A, rsr1 and rgr» match in
certain regions outside the event horizon and form ergospheres of peculiar shapes. For the
extremal black hole, it is naturally Q > A, the spacetime encounters one horizon and one
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static limit, and its ergosphere increases in size as the distance between the values of Q and a
increases. Stationary observers of angular velocity ) and the four-velocity uf = ns¢%, with

& =&y + Q&) (37)

n? = —gupltel = —gpp (Qz — 2w + ;;;) (38)

can exist in the ergosphere, as long as the Killing vector ¢ remains time-like. This corre-
sponds to n;2 >0,orQ_ <O <Oy, with

VA sin6
8pp

QO =w=+ (39)

Accordingly, this vector becomes null on the event horizon®. Therefore, by approach-
ing the event horizon, O — QO = (4, and the particles will be in the state of corotation
with the black hole. Such particles encounter the surface gravity [68]

A'(r)
= 4
* 2(r2 +a?) ’ (40)

r=r4

at the vicinity of the event horizon. Applying Equations (21b) and (26), and after a little

algebra, this gives
K=t /A2 Q2+ 4a2. (41)

= 2 2
as+rq

For the extremal black hole (11 — rex), we have, from Equation (40), that xex = 0. For
asymptotically flat spacetimes, where the energy can be defined relative to an observer
located at infinity, the ergosphere is highlighted also by a theoretical scenario, termed as
the Penrose process, through which, particles of negative-energy created in the ergosphere
can extract positive rotational energy from a rotating black hole [75].

The optical appearance of a black hole to distant observers does not rely on the
positioning of its ergosphere, since this latter affects only the time-like particles. The
conceived image of a black hole is a shadow that is confined by particular photons on
unstable (critical) orbits. Such photons construct a photon surface around the black hole.
For the case of the RCWBH, this will be given a detailed discussion in the next section.

4. Shadow of the Black Hole

The light propagation around black holes is of remarkable importance in astrophysics,
particularly due to the evidence that can be achieved by advancements in the field of
observational astronomy. Photons that lie on unstable orbits in the gravitational field of the
black holes will either fall onto the event horizon or escape to infinity. To the observer, these
latter ones constitute a bright photon ring that confines the black hole shadow [71,76-78].

In particular, the Luminet’s optical simulation of a Schwarzschild black hole and its
accretion in 1979 [78] provided more insights about the photon rings resulting from the
extremely warped region around the black holes. The formulations obtained in this way
helped scientists to confine the shadow of rotating black holes inside their respected photon
rings. Accordingly, the mathematical methods to calculate the form and size of a Kerr
black hole shadow were then developed by Bardeen [70,71,79], and the same methods were
reused by Chandrasekhar [72].

These methods were later developed and generalized widely (see [80-85]). Having
these methods in hand, a large number of black hole spacetimes, including those with cos-
mological components, were given rigorous analytical calculations, simulations, numerical,
and observational studies [86-100]. The black hole shadow is of great importance as it

5 This also proves that the event horizon is a Killing horizon.
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provides information about the light propagation in near-horizon regions. Recently, several
investigations have been devoted to establish relations between the shadow and black hole
parameters (see for example [101,102] for thermodynamic, and [103-110] for dynamical
aspects of rotating black holes).

Here, we apply the method of separation of variables in the Hamilton—Jacobi equa-
tion [72,111]. Accordingly, we write the Hamilton—Jacobi equation as

95 _1.,59505 1,

H=—5r =38 "gmaef ~ 21

(42)
where H, S, and y, are, respectively, the canonical Hamiltonian, the Jacobi action, and the

remaining mass of particles. Defining the four-momentum p, = 9S/9x%* (pop® = p?), the
action can be separated using Carter’s method, as

§ = 31T~ Et 4 Lo+ 5,(r) + 54(6), (43)

in which S,(r) = p,, Sp(0) = py, and

- dt d

E=—pr=— (gtth +gt¢df>, (44)
- dt d

L=pp=38py; +g¢¢£/ (45)

are the constants of motion. Physically, £ is associated with the particles’ angular mo-
mentum around the axis of symmetry. On the other hand, £ cannot be regarded as the
energy of particles, because the spacetime under consideration is not asymptotically flat.
Using Equations (43)—(45) in the Hamilton-Jacobi equation (42), and applying the method
of the separation of variables for the case of mass-less particles (photons with y = 0), the
equations of motion are then given in terms of the four differential equations [72]

S YZX”Z (8(P+) —a2) —a(agsin?o - £), (46)

2% — 4R, 47)

z% = +,/0(0), (48)

=G 560 00) - (- ) “
defining

R(r) = ((P+a)E —aL) ~A(D+ (€ ~ £)?), (502)

@(9):@( "32

— a252> cos? 0, (50b)
sin“ 0

in which D is the Carter separation constant. The photon trajectories are, therefore, charac-
terized by two dimension-less impact parameters

b= g (51)
B D

It is also common to use the generalized Carter’s constant of motion K = D + (a€ —
L£)? [72]. As stated before, photon surfaces are those regions around the black hole in
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which the photons travel on unstable (critical) orbits. In this situation, the radial effective
potential associated with the photon trajectories reaches its extremum at the corresponding
critical distance r,. Accordingly, Equation (47) provides the conditions

R(rp) =0, (53a)

R _
i 0, (53b)
2

O"R(r) > 0. (53¢)
or2 r=rp

The importance of the impact parameters b and 7 is their relevance to the fate of
approaching photons to the black hole. In this regard, photons can either fall on unstable
orbits, escape from, or be captured by the black hole, respectively, if their associated impact
parameters are equal, smaller, or larger than a critical value®. Equations (53a) and (53b)
result in the two equations

- \2 ~ .
<a2 + rf, —a bc) - (’7c + (a—b) )A(rp) =0, (54a)
4+ 1p (40> = 4abe) — (e + (a— b)) (1) = 0, (54b)
in which, b, and 7, are the critical values of these impact parameters, corresponding to the
photons on unstable orbits at r,. The above equations provide two pairs of (b, 7jc), where

only the pair

~ (az + r%) A(ry) —4rpA(rp)

bc(rp) - ﬂA/(T’p) 7 (55)
12 [8A(ry) (202 — 2A(rp) + 1y (rp)) — 20 (rp)?
Telry) = P[ p)( ZP/ Pz p)) =13 (rp ] 56)
a?AN (rp)

satisfies the condition (53c). Accordingly, the photons on unstable orbits are identified by
fic = 0, resulting in the two real positive values

B Q (1 i 4q2 4q2

Tp— = \/Ti%z sm(2 arcsm<\/(1 — Qz) <1 + /\2)>>, (57)
__9Q Lo _w da?

Tpy = \/@COS’(Z arcsm(\/(l Q2) (1 + 2 ))), (58)

which imply Q > 2a for r) to exist. In general, these solutions satisfy r <71, <7rpy <
r++. However, to ensure the important condition 7, > 7, the cosmological component of
the spacetime metric should satisfy & < &j, where

3(4a® + 47 (7 — 311) — Q?)
874 ’

& = (59)
to obtain which, we used Equation (57) and the expression in Equation (16). Equations (26)
and (57) imply that the inner photon ring is identified with the event horizon under the
critical condition Q = Qex, which corresponds to the extremal black hole, for which
rp— = I+ = rex. Furthermore, the photon ring radii should also respect the condition

6 See the discussion in [53] on the photon trajectories around the static CWBH.
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©(0) > 0 [72], for which, Equation (50b) yields 7, > E? cot? 9 — 4% cos? 0 on the photon
surface or by using Equations (55) and (56),
A (rp)

A(ryp) A(rp)
4r,%A(r,,)<sm2”9—9> < (9+2r§+9cos(29))sm29(rpA(rp) - 16P ) (60)

Applying the Cartesian coordinates in Equation (36), ,— and 7, and the correspond-
ing photon regions (r,— < r < rp) are plotted in Figure 5, together with the event horizon
for some definite values of the black hole parameters. As observed from the figures, faster
spinning RCWBH can produce larger photon regions.

The shape of the photon regions informs about the shape of the black hole shadow,
since the shadow is confined to the photon surfaces. Those photons on unstable orbits
that can reach the distant observers, can create an image of the outer regions of the event
horizon. Such photons are, therefore, responsible, for example, for the image obtained from
M87* [1].

0=081a=02A 0=0691a=0252 0=0911a=042

051 051

5 00 5 00

-0.5¢ -0.5¢

-1.0 - - E - -
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

(a) ! (b) ! (0)
Figure 5. The shape of the photon regions (r,— < r < r,4), as viewed from the y axis, plotted for A = 10, and different

values of Q and a. The event horizon r occupies the central shaded region and is encompassed by the rings r,— and 7.
The blue contour corresponds to the boundary of the inner ring r,—, which coincides with the event horizon, only for the

extremal black hole with Q = Qex and 7p— = 74 = rex.

To proceed with the determination of the shadow of the RCWBH, we should bear
in mind that this spacetime is not asymptotically flat. We, therefore, cannot consider an
observer at infinity, as is traditionally done in [71,79] and in [81]. Therefore, instead of
using the celestial coordinates in the sky of an observer at infinity, we locate an observer
at the coordinate position (7,,6,), which is characterized by the orthonormal tetrad e (A}
selected as

e — (Z+asin?0)d; +a 9 , (61)
VXA (rosfo)
1
e = \@ ol 62)
(70,80)
(0p +a sin 6 o)
ey = — R 7 (63)
VX sin6 (o)
- (64)
(r0.80)

which satisfy e 4%eB, = 51%. This method, introduced in [82], makes it possible to calculate
the celestial coordinates in general spacetimes with cosmological constituents (also see [83]
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for a review). In the above set of tetrads, the time-like vector e( is supposed to be the
velocity four-vector of the selected observer. e3 is set to point toward the black hole, and
ey £ e3 is the generator of the principal null congruence. In this way, a linear combination
of e;,y is tangent to the light ray £(7) = (#(7),7(7),0(7), $(7)), which is sent from the
black hole to the past. The tangent to this light ray can be parameterized in two ways:

de dt_ dr.  do_  d¢

% = ¢(—eg +sindcospe; +sindsinye, +cosdes), (66)

in which, ¢ and ¢ are newly defined celestial coordinates in the observer’s sky and

al — (2 +a? sin? 0)E
VZA '

¢ = 0 points, directly, to the black hole. Since the boundary curve of the shadow is
generated by those light rays that come onto the critical (unstable) null geodesics at the
radial distance ), this region, therefore, corresponds to the critical impact parameters b,
and 7, given in Equations (55) and (56). The corresponding celestial coordinates (¢, &)
at this distance, for the observer located at (r,,0,), were derived as [82]

¢ = g(f, eO) = (67)

b 20, —
P(rp,0,) :=sinp, = clrp) + acos”6o 11, (68)

fic(rp) sin B,

A(T’o) ﬁf(r )
Trpr) = sindy = G, -

Accordingly, the ¢ coordinate has its maximum and minimum values, respectively,
for ¢, = —m/2 and ¢, = 71/2. This helps us in obtaining the corresponding values of r
for each of the cases. Applying Equation (68), these conditions result in the equation

% (rp, 00)A (rp) — 4rpA(ry) = Frpsinb, \/16 A(rp))A(rp) + 8rpA(rp) A (rp) — 20 (rp)?, (70)
where X(rp, 0,) = rp + a* cos? §,. This equation is of fourth order in r, and has the positive
solutions

c 24/¢3/¢1
"pmin = C? sm(2 arcsm( A /3C1 )), (71)

Cr 2:/¢3/¢1
max — - 72
7pma Z Cos<2arcsm( &/ >> (72)

in which

ci1=4 (4112 cot? 6, (uz cos® 6, + )\2) —A? (4112 + )\2) + At esc? 90> , (73a)
Gy = 2% csc? 6, (—8a2 + Q% cos(26,) + QZ) + 84222 cot? b, (a2 c08(20,) — 3a% + A2 + QZ), (73b)
03 = %)\4 csc? 6, (114 cos(46,) + (Q4 — 12a4) cos(26,) 4+ 19a* — 8a2Q% + Q4). (73¢)

The above values are those radii where the boundary of the photon region intersects
with the cone 6 = 6,. When a = 0, we have 7pmax = 7pmin = Q/ /2, which is the radius of
the unstable photon orbits around a static CWBH, and it does not depend on A [53]. This
unique value corresponds to the constant value of ¢, = 71/2 for a = 0. The shadow of the
static black hole is, therefore, circular.
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Ay — a%Agsin® 0

Returning to the case of a # 0, the two-dimensional Cartesian coordinates for the cho-
sen observer of the velocity four-vector ey are now obtained by applying the stereographic
projection of the celestial sphere (¢, ;) onto a plane. This provides the coordinates [82]

ﬁp .
Xy = —2tan > sinyy, (74)

9
Y, = —2tan<2p> cos Pp. (75)

The case of 6, = 7t/2 corresponds to the equatorial plane of view for the observer.
Taking this into account, in Figure 6, we used the above coordinates to obtain the shadow
of the RCWBH for different values of electric charge and spin parameters. The curves use
rp as their parameter.

In general, and for a given spin parameter, the size of the shadow increases by
increasing the electric charge, and, as is inferred from the figures, by raising the black
hole’s spin, the shadow shrinks and tends to the positive part of the coordinate plane. The
shadow becomes oblate toward the X}, = 0 axis from the negative sector of the coordinate
plane, whereas it is sharp toward that from the positive sector. However, the amount of
such deformations cannot be inferred directly from the Q/a fraction and is a consequence
of the spacetime’s response to the changes in the electric charge.

The size and the deformation of the shadow casts of black holes have been used to esti-
mate their dynamical properties. In the forthcoming subsection, using a specific geometric
method, we relate the angular size of a deformed shadow to the physical characteristics
of the black hole. However, before proceeding with that, we make a comparison between
the formation and the evolution of the shadows of the Kerr-Newman-de Sitter black hole
(KNdSBH) and the RCWBH. In this way, we will be able to gain some visualizations for
the differences between the general relativistic spacetimes and that of the RCWBH. The
line element associated with the KNdSBH is given by [112]

z z 2
de* + X dr? 4 ™ de? + T [Ara sin? @ — aAgsin® 6 (Z + a%sin? 9)} dtd¢
r 0

2
+ % {(Z + % sin’ f)) Agsin® @ — Aya® sin 9] d¢*, (76)

in which, the new functions

2 2o, 2 RoP o o
By =1 = 2Mor +a® + Qf + = (a* +77), (772)
2 2
Ag =14 Roacos0 1‘:205 o (77b)

with Ry = 4A, associate with a massive object of mass My and charge Q. In [82], the
shadow of the KNdSBH was calculated, using the celestial coordinates

1

. kn .

siny," = ———=siny, (78)
P V/B(60)

sin 191];n =sind), (79)

which are given here in terms of those in Equations (68) and (69) and the same impact

parameters in Equations (55) and (56). Defining c.| as the dimension-less version of a black
hole quantity q, re-scaled by the corresponding black hole mass parameters’, in Figure 7,

7 For example, 4 means a /11 for the RCWBH and a/ M for the KNdSBH, etc. In particular, ;f =¢/m?and Ry = Ry/ M%.
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we applied the Cartesian coordinates (74) and (75), to compare the shadows of the KNdSBH
and the RCWBH for definite values of the black hole parameters, and for several values of
the spin parameter. Having in mind the re-scaling of the coordinates, it is seen from the
diagrams that the RCWBH has larger shadows than the KNdSBH, respecting their black
hole masses. Additionally, the increase in the spin parameter, makes the shadow of the
KNdJdSBH shrink outside the larger ones, whereas for the RCWBH, this happens inside

of those.
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Figure 6. The shadow of the RCWBH for a # 0, plotted for A = 10 and r, = 5A. Each diagram corresponds to a fixed value
of Q and five values of 4, which are sorted from the largest to the smallest parametric curve. The figures are scaled in order
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Figure 7. Shadows of (a) the KNdSBH and (b) the RCWBH plotted for Q = 6, 1.'0 = 5and 6, = 71/2, for both of the black
holes. The cosmological terms are considered as Ry = % = 1073. For the case of RCWBH, this value corresponds to A = 10,

if 7 ~ 6.93. The values of the re-scaled spin parameter @ are sorted from the less oblate to the most oblate parametric curves.
Respecting the corresponding black hole masses, the shadow of the RCWBH is greater in size.

The Angular Size of the Shadow

The celestial coordinates defined in Equations (68) and (69) can be used to calculate
the angular diameters of the shadow. As shown in the left panel of Figure 8, these angular
diameters are expressed in terms of the celestial coordinates (i, 9;).

)
—r, tan (71”) cos ¥y

Figure 8. Characterization of an oblate shadow in terms of the angular diameters. The celestial coordinates (¢, #)) are
transformed into the Cartesian coordinates (X, Y), as indicated in the left panel. The black hole at point B is located at
the center of the Cartesian coordinates. The observer at point O and at the distance 7, from the black hole, observes the
event ¢ on the shadow. In the right panel, and following the method given in [113], the angular diameters corresponding to
the mentioned celestial coordinates, are now expressed in terms of three angular radii @y, , @y,, and @y, according to the
symmetry with respect to the X coordinate.
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Following the methods introduced in [113], we replace these angular diameters by

oy = @p, + @p,, (80)
5y = 200y, (81)

which are defined in terms of the three angular radii @y, @j,, and @, that obey the
properties (see the right panel of Figure 8)

sin@y,, = sindy, siny,, (i=1,2), (82)
sin @, = sin®, cos ¥y, (83)

or from Equations (68) and (69),
sin whl = T(rhi,ro)P(rhi, 90)/ (84)

sin@y, = T (ry,70)1/ 1 — P2%(ry,60,). (85)

Once again, we restrict ourselves to the equatorial plane by letting 6, = 71/2, so
that the horizontal angular diameter corresponds to ¢, = £71/2, and we need to solve
P2(rh, 7t/2) = 1 for this case. Using Equation (68) together with Equations (55) and (56),
this condition provides an equation of fourth order in r;, which has the positive solutions

- 1 24/C

rp, =4/ Cisin (2 arcsin ( C_lcz > ) , (86)
- 1 24/C

rp, = 4/ Cq cos <2 arcsin ( C’lcz ) ) , (87)

where
B 2 2 2
G = in” (88a)
2(%) +1
22t - 342 <a2 + %)
G = (88b)

(4)+1

The horizontal angular radii are then calculated by evaluating the product 7 (ry, ,, 7o)
P(”hu/ 71/2), and, from there, §;, can be evaluated using Equation (80). To calculate the
vertical angular radius, we take into account the fact that this radius corresponds to those
points on the shadow’s boundary, where the tangent to the curve C(ry,t,,6,) = sin? @,
vanishes. Accordingly, we encounter the equation 9,,C(ry, 1o, 71/2) = 0. Considering this
condition and applying Equation (85) together with Equations (68) and (69), we obtain the

unique positive value
QZ — 242
— , 89
o= To \/ 2(a® +713) (89)

which evaluates the vertical angular radii as

(Q% —24%) (A2 (4a® — Q% + 4r2) — 4r})

. 9
8a%A? + a%(8r3 (A% +13) —2A2Q?) + 4r¥(A2 — Q?) ®0)

sin? Wy =

The vertical angular diameter J, can be, thus, calculated using Equation (81). In
Figure 9, the behaviors of §;, and ¢, are plotted in terms of changes in Q and a.
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Figure 9. The variations of the horizontal (diagrams (a,b)) and the vertical (diagrams (c,d)) angular diameters of the RCWBH

as functions of Q and g, plotted for A = 10 and r, = 5A. In the left panels, the changes of angular diameters in terms of Q
are plotted distinctly for five values of a. In the right panels, Q and a can change freely. The bottom panel diagrams ((e,f)),

correspond to the dependence of the angular diameters on the variations of the observer’s location r,, which are plotted for

Q=03A.
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As observed from the diagrams, each of the horizontal diameter curves has a maxi-
mum, which is more significant for smaller a. Furthermore, the horizontal size is larger
for smaller a, and all the curves tend to a same value as Q increases. On the other hand,
the curves corresponding to the vertical diameter expose a smooth decrease in value with
respect to increase in Q for each of the cases. An increase in the spin parameter only
increases the vertical size of the shadow, and, in contrast with the previous case, the vertical
size is smaller for smaller a. These can be inferred, as well, from the density plots in the
right panel diagrams.

As seen in Equations (84) and (85), the other effective factor in the angular sizes of the
shadow, is the observer’s distance ,. As shown in the bottom panels of Figure 9, with an
increase in r, outside 7,1, the shadow increases in size until its angular diameters reach a
constant maximum value, within a finite distance inside the causal region. In fact, for the
vertical diameter, the radial distance r, can encounter a minimum and a maximum, which
can be obtained from Equation (90) as

rgﬁ% = % (/\2 + \/A2(4a2 - Q2+ /\2)), (91)
where, 7, min €xists only for Q > 2a, for which, 7, also exists. The increase in the size of
the shadow by distance, is a consequence of the peculiar contribution of the cosmological
term A for the RCWBH. This term becomes more dominant as r, increases.

It is worth comparing the above vertical diameter, with the angular diameter assigned
to the shadow of M87*. In this way, we obtain an estimation for the charge component
of the RCWBH if it has the same angular diameter. For M87%, located at the distance
rox ~ 5.18 x 10?2 m from earth, the values associated with the lapse function components
in Equation (16) are i1, ~ 6.4 x 10°M, and 7. ~ 1.82 x 10! m [114]. The angular diameter
of the shadow was observed as d, = (42 £ 3) "as® [1].

To perform the comparison, we fix the cosmological component of the spacetime to the
current value of the cosmological constant, by letting &, = Ap ~ 1.11 x 1072 m~2[115].
Furthermore, the recent evaluation of the spin parameter of M87* is a, = 0.9 £ 0.05 [116].
Assuming these values together with the equivalence d, = J,, and by taking into account
the expression in Equation (90), we obtain Q. ~ 1.8 X 10% m. This value is approxi-
mately equivalent to 2.1 x 107 C, which is nearly the charge of 10%® protons’. This value
corresponds to a charge density of jo, &~ 8.32 x 10724 % for the black hole.

In this section, we simulated the shadow of the RCWBH and calculated its angular
size, by applying the geometric method given in [113]. Furthermore, we used the shadow’s
vertical angular diameter to estimate the electric charge of the RCWBH, if it is supposed to
have the same characteristics of M87*. We leave the discussion at this point and summarize
the results in the next section.

5. Summary and Conclusions

The application of conformal invariance in alternative theories of gravitation has
had a long history among relativists and has even been considered as a tool to solve the
singularity issue in general relativity [118]. In this regard, joining conformal symmetry with
general relativistic black hole spacetimes, research has shown that it is possible to obtain
singularity-free black holes in conformal gravity that can be confined successfully within
the mass and the radiation spectrum of the Schwarzschild and Kerr black holes [119-121].

Static and rotating black hole spacetimes inferred from the Weyl conformal theory of
gravity, on the other hand, are mostly given in terms of the Mannheim—-Kazanas axially
symmetric solutions to the Bach equations [24,51] and are intended to replace the astrophys-
ical explanations, which are based on dark energy and dark matter scenarios. In this paper,

8 1 pas ~4.85x 10712 rad.

9

4regct

The change from SI to geometric units for the electric charge is Qcoulomb) = & Qmeters) = 1.15964 x 1017Q(meters), and the proton’s electric

charge is g, = 1.602 x 10~ C. For the mass, 7 (meters) = i (kg) X 3, and we have considered M, = 1.989 x 10% kg [117].
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however, we considered a particular solution to the Bach equations, which was specified
to a spherically symmetric massive source. The rotating counterpart of this solution was
obtained from the Azreg-Ainou method. We then assessed the resultant stationary axially
symmetric spacetime by calculating the variations of its horizons in terms of changes in the
black hole parameters.

In fact, similar to the Plebaniski-Demiarnski class of solutions to the Einstein-Maxwell
equations that are associated with a cosmological constant, the spacetime corresponding to
the RCWBH contains two null hypersurfaces as the event and the cosmological horizons.
This latter is the surface of infinite blue-shift, and the former coincides with the surface of
infinite red-shift for the static case of a CWBH. For rotating black holes, however, the event
horizon and the surface of infinite red-shift are separated. Regarding this, we calculated
the position of this surface for the RCWBH and determined the static limit of the black
hole’s exterior geometry on which the stationary and the static observers change their
nature and commence corotation with the black hole. Accordingly, we demonstrated the
variations of black hole’s ergosphere with respect to changes in the electric charge and the
spin parameter.

Turning to the optical properties of the black hole, we used the first order light-like
geodesic equations to calculate the light rays” impact parameters, which enabled us to
determine the unstable photon orbits and the related photon regions around the black hole.
The photon region corresponds to what the distant observers would observer from the
black hole. This region is therefore, the ultimate limit of black hole’s optical visibility and,
in fact, confines the black hole’s shadow. To demonstrate the shadows of the RCWBH, we
calculated the Cartesian celestial coordinates based on the method provided in [82].

The boundary of the shadow was shown to be both oblate and sharp toward the
origin of the celestial coordinates, and, for a given charge parameter, an increase in the spin
parameter shrinks the shadow, horizontally and vertically. This procedure is the reason for
the shadow’s deformation. We also demonstrated this by calculating the angular sizes of
an oblate shadow and applying three angular radii as proposed in [113]. For the particular
case of oblate shadows, we also compared the RCWBH and the KNdSBH, which indicated
the larger size of the shadow of the RCWBH, respecting the black hole masses.

The evolution of the photon region and the shadow of the RCWBH depends rigorously
on the presence of an electric charge. Based on this fact, we applied the calculations
corresponding to the vertical angular diameter of the shadow, to obtain an estimation for
the electric charge of M87%, if it was supposed to be a RCWBH. The results indicated that
this black hole will have about 10% free protons to fulfill its electric charge deposit, which
is about 10~2!-times the total protons of the Sun [117]. This, in the realm of charged black
holes, makes sense, because a black hole is not supposed to have active nuclear fusion.
Therefore, the investigation presented here may help to understand the optical evolution
of charged black hole spacetimes, which are inferred from alternative theories of gravity,
as well as providing information about the impacts of the electromagnetic constituents of
such spacetimes.

For future investigations, we can consider the motion of mass-less and massive test
particles around the RCWBH and can investigate the relevant gravito-electromagnetic
effects. These tasks are left for future studies.
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Appendix A. The Method of Solving Biquadratic Equations

To solve the biquadratic equations of the form
=g x®+a =0, (A1)

with (a1,a) > 0and 2,/a; < a1, we apply the change of variable x = Z sin ¢, and multiply
both sides of the equation by a scalar . This provides

ozZ4sin4<p—aca1 Zzsin2g0+1xa2 =0. (A2)
The comparison with the trigonometric identity
4sin* ¢ — 4sin® ¢ +sin®(2¢) = 0, (A3)

yields
wZ*=4, wa;Z*=4, aay=sin’(29). (A4)

We, therefore, obtain Z and ¢ as

2\/ay nrm
p )-i— > (A5)

1
Z=,/a;, and ¢, = 5 arcsin<

where the period of the trigonometric function is n7r. In this way, the roots of Equation (A1)
are obtained by letting n = 0,1, which yields

1 2
Xo = +/apsin (2 arcsin( :Z/E) ) , (A6)
1
B (1 . (2y/az T
X = \/Esm<2arcsm< " ) —|—2>
1 2
= /ajcos <2 arcsin( ﬁ) ) , (A7)
1
Xo = —Xp, (A8)
X3 = —X1. (A9)
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