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Abstract: In security games, the defender often has to predict the attacker’s behavior based on some
observed attack data. However, a clever attacker can intentionally change its behavior to mislead the
defender’s learning, leading to an ineffective defense strategy. This paper investigates the attacker’s
imitative behavior deception under uncertainty, in which the attacker mimics a (deceptive) Quantal
Response behavior model by consistently playing according to a certain parameter value of that
model, given that it is uncertain about the defender’s actual learning outcome. We have three main
contributions. First, we introduce a new maximin-based algorithm to compute a robust attacker
deception decision under uncertainty, given the defender is unaware of the attacker deception. Our
polynomial algorithm is built via characterizing the decomposability of the attacker deception space
as well optimal deception behavior of the attacker against the worst case of uncertainty. Second, we
propose a new counter-deception algorithm to tackle the attacker’s deception. We theoretically show
that there is a universal optimal defense solution, regardless of any private knowledge the defender
has about the relation between their learning outcome and the attacker deception choice. Third, we
conduct extensive experiments in various security game settings, demonstrating the effectiveness of
our proposed counter-deception algorithms to handle the attacker manipulation.

Keywords: security games; behavior models; deception; uncertainty

1. Introduction

In many real-world security domains, security agencies (defender) attempt to predict
the attacker’s future behavior based on some collected attack data, and use the prediction
result to determine effective defense strategies. A lot of existing work in security games
has thus focused on developing different behavior models of the attacker [1–3]. Recently,
the challenge of playing against a deceptive attacker has been studied, in which the attacker
can manipulate the attack data (by changing its behavior) to fool the defender, making the
defender learn a wrong behavior model of the attacker [4]. Such deceptive behavior by the
attacker can lead to an ineffective defender strategy.

A key limitation in existing work is the assumption that the defender has full access
to the attack data, which means the attacker knows exactly what the learning outcome
of the defender would be. However, in many real-world domains, the defender often
has limited access to the attack data, e.g., in wildlife protection, park rangers typically
cannot find all the snares laid out by poachers in entire conservation areas [5]. As a result,
the learning outcome the defender obtains (with limited attack data) may be different from
the deception behavior model that the attacker commits to. Furthermore, the attacker (and
the defender) may have imperfect knowledge about the relation between the deception
choice of the attacker and the actual learning outcome of the defender.

We address this limitation by studying the challenge of attacker deception given
such uncertainty. We consider a security game model in which the defender adopts
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Quantal Response (QR), a well-known behavior model in economics and game theory [2,6,7],
to predict the attacker’s behavior, where the model parameter λ ∈ R is trained based on
some attack data. On the other hand, the attacker plays deceptively by mimicking a QR

model with a different value of λ, denoted by λdec. In this work, we incorporate the
deception-learning uncertainty into this game model, where the learning outcome of the
defender (denoted by λlearnt) can be any value within a range centered at λdec.

We provide the following key contributions. First, we present a new maximin-based
algorithm to compute an optimal robust deception strategy for the attacker. At a high
level, our algorithm works by maximizing the attacker’s utility under the worst-case of
uncertainty. The problem comprises of three nested optimization levels, which is not
straightforward to solve. We thus propose an alternative single-level optimization problem
based on partial discretization. Despite this simplification, the resulting optimization is still
challenging to solve due to the non-convexity of the attacker’s utility and the dependence
of the uncertainty set on λdec. By exploiting the decomposibility of the deception space
and the monotonicity of the attacker’s utility, we show that the alternative relaxed problem
can be solved optimally in polynomial time. The idea is to decompose the problem into
a polynomial number of sub-problems (according to the decomposition of the deception
space)—each sub problem can be solved in a polynomial time given the attacker optimal
deception decision within each sub-space is shown to be one of the extreme points of that
sub-space, despite the non-convexity of the sub-problem.

Second, we propose a new counter-deception algorithm, which generates an optimal
defense function that outputs a defense strategy for each possible (deceptive) learning
outcome. Our key finding is that there is a universal optimal defense function for the
defender, regardless of any additional information he has about the relation between their
learning outcome and the deception choice of the attacker (besides the common knowledge
that the learning outcome is within a range around the deception choice). Importantly,
this optimal defense function, which can be determined by solving a single non-linear
program, only outputs two different strategies despite the infinite-sized learning outcome
space. Our counter-deception algorithm is built based on an extensive in-depth analysis
of intrinsic characteristics of the attacker’s adaptive deception response to any deception-
aware defense solution. That is, under our propose defense mechanism, the attacker’s
deception space remains decomposable (although the sub-spaces vary which depends on
the counter-deception mechanism) and the attacker’s optimal deception remains one of the
extreme points of the deception sub-spaces.

Third, we conduct extensive experiments to evaluate our proposed algorithms in
various security game settings with different number of targets, various ranges of the
defender capacity as well as different levels of the attacker uncertainty, and finally, different
correlations between players’ payoffs. Our results show that (i) despite the uncertainty,
the attacker still obtains a significantly higher utility by playing deceptively when the de-
fender is unaware of the attacker deception; and (ii) the defender can substantially diminish
the impact of the attacker’s deception when following our counter-deception algorithm.

Outline of the Article

We outline the rest of our article as follows. We discuss the Related Work and Back-
ground in Sections 2 and 3. In Section 4, we present our detailed theoretical analysis on
the attacker behavior deception under the uncertainty of the defender’s learning outcome,
given that the defender is unaware of the attacker’s deception. In Section 5, we describe our
new counter-deception algorithm for the defender to tackle the attacker’s manipulation.
In this section, we first extend theoretical results in Section 4 as to analyzing the attacker
manipulation adaptation to the defender’s counter-deception. Based on the result of the
attacker adaptation, we then provide theoretical results on computing the defender optimal
counter-deception. In Section 6, we show our experiment results, evaluating our proposed
algorithms. Finally, Section 7 concludes our article.
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2. Related Work

Parameterized models of attacker behavior such as Quantal Response, and other
machine learning models have been studied for Stackelberg security games (SSGs) [5,8,9].
These models provide general techniques for modeling the attacker decision making. Prior
work assumes that the attacker always plays truthfully. Thus, existing algorithms for
generating defense strategies would be vulnerable against deceptive attacks by an attacker
who is aware of the defender’s learning. Our work addresses such a strategic deceptive
attacker by planning counter-deception defense strategies.

Deception is widely studied in security research [10–15]. In SSG literature, a lot
of prior work has studied deception by the defender, i.e., the defender exploits their
knowledge regarding uncertainties to mislead the attacker’s decision making [16–19].
Recently, deception on the attacker’s side has been studied. Existing work focuses on
situations in which the defender is uncertain about the attacker type [20–22]. Some study
the attacker behavior deception problem [4,23]. They assume that the attacker knows
exactly the learning outcome while in our problem, the attacker is uncertain about that
learning outcome.

Our work is also related to poisoning attacks in adversarial machine learning in which
an adversary can contaminate the training data to mislead ML algorithms [24–27]. Existing
work in adversarial learning uses prediction accuracy as the measure to analyzing such
attacks, while in our game setting, the final goals of players are to optimize their utility,
given some learning outcome.

3. Background

Stackelberg Security Games (SSGs). There is a set of T = {1, 2, . . . , T} targets that a de-
fender has to protect using L < T security resources. A pure strategy of the defender
is an allocation of these L resources over the T targets. A mixed strategy of the de-
fender is a probability distribution over all pure strategies. In this work, we consider
the no-scheduling-constraint game setting, in which each defender mixed strategy can be
compactly represented as a coverage vector x = {x1, x2, . . . , xT}, where xt ∈ [0, 1] is the
probability that the defender protects target t and ∑t xt ≤ L [28]. We denote by X the set of
all defense strategies. In SSGs, the defender plays first by committing to a mixed strategy,
and the attacker responds against this strategy by choosing a single target to attack.

When the attacker attacks target t, it obtains a reward Ra
t while the defender receives

a penalty Pd
t if the defender is not protecting that target. Conversely, if the defender is

protecting t, the attacker gets a penalty Pa
t < Ra

t while the defender receives a reward
Rd

t > Pd
t . The expected utility of the defender, Ud

t (xt) (and attacker’s, Ua
t (xt)), if the

attacker attacks target t are computed as follows:

Ud
t (xt) = xtRd

t + (1− xt)Pd
t Ua

t (xt) = xtPa
t + (1− xt)Ra

t

Quantal Response Model (QR). QR is a well-known behavioral model used to predict
boundedly rational (attacker) decision making in security games [2,6,7]. Essentially, QR
predicts the probability that the attacker attacks each target t using the softmax function:

qt(x, λ) =
eλUa

t (xt)

∑t′ e
λUa

t′ (xt′ )
(1)

where λ is the parameter that governs the attacker’s rationality. When λ = 0, the attacker
attacks every target uniformly at random. When λ = +∞, the attacker is perfectly rational.
Given that the attacker follows QR, the defender and attacker’s expected utility is computed
as an expectation over all targets:

Ud(x, λ) = ∑t qt(x, λ)Ud
t (xt) (2)

Ua(x, λ) = ∑t qt(x, λ)Ua
t (xt) (3)
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The attacker’s utility Ua(x, λ) was proved to be increasing in λ [4]. We leverage this
monotonicity property to analyze the attacker’s deception. In SSGs, the defender can learn
λ based on some collected attack data, denoted by λlearnt, and find an optimal strategy
which maximizes their expected utility accordingly:

max
x∈X

Ud(x, λlearnt)

4. Attacker Behavior Deception under Unknown Learning Outcome

We first study the problem of imitative behavior deception in a security scenario in
which the attacker does not know exactly the defender’s learning outcome. Formally,
if the attacker plays according to a particular parameter value of QR, denoted by λdec,
the learning outcome of the defender can be any value within the interval [max{λdec −
δ, 0}, λdec + δ], where δ > 0 represents the extent to which the attacker is uncertain about
the learning outcome of the defender. We term this interval, [max{λdec − δ, 0}, λdec + δ],
as the uncertainty range of λdec. We are particularly interested in the research question:

Given uncertainty about learning outcomes of the defender, can the attacker still benefit
from playing deceptively?

In this section, we consider the scenario when the attacker plays deceptively while the
defender does not take into account the prospect of the attacker’s deception. We aim at
analyzing the attacker deception decision in this no-counter-deception scenario. We assume
that the attacker plays deceptively by mimicking any λdec within the range [0, λmax]. We
consider λ ≥ 0 as this is the widely accepted range of the attacker’s bounded rationality in
the literature. The value λmax represents the limit to which the attacker plays deceptively.
When λmax → ∞, the deception range of the attacker covers the whole range of λ. We
aim at examining the impact of λmax on the deception outcome of the attacker later in our
experiments. Given uncertainty about the learning outcome of the defender, the attacker
attempts to find the optimal λdec ∈ [0, λmax] to imitate that maximizes its utility in the
worst case scenario of uncertainty, which can be formulated as follows:

(Pdec) : max
λdec

min
λlearnt

Ua(x(λlearnt), λdec)

s.t. λdec ∈ [0, λmax]

max{λdec − δ, 0} ≤ λlearnt ≤ λdec + δ

x(λlearnt) ∈ argmax
x′∈X

Ud(x′, λlearnt)

where x(λlearnt) is the defender’s optimal strategy w.r.t their learning outcome λlearnt.
The objective Ua(x(λlearnt), λdec) is the attacker’s utility when the defender plays x(λlearnt)
and the attacker mimics QR with λdec to play (see Equations (1)–(3) for the detailed compu-
tation). In addition, Ud(x′, λlearnt) is the defender’s expected utility that the defender aims
to maximize where x′ is the defender’s strategy and λlearnt is the learning outcome of the
defender regarding the attacker’s behavior. Essentially, the last constraint of (Pdec) ensures
that the defender will play an optimal defense strategy according to their learning outcome.
Finally, due to potential noises in learning, the defender’s learning outcome λlearnt may
fall outside of the deception range of the attacker, which is captured by our constraint that
λlearnt ≤ λdec + δ.

4.1. A Polynomial-Time Deception Algorithm

The optimization problem (Pdec) involves three-nested optimization levels which
is not straightforward to solve. We thus propose to limit the possible learning out-
comes of the defender by discretizing the domain of λlearnt into a finite set Λlearnt

discrete =

(λlearnt
1 , λlearnt

2 , . . . , λlearnt
K ) where λlearnt

1 = 0, λlearnt
K = λmax + δ, and λlearnt

k+1 − λlearnt
k =

η, ∀k < K where η > 0 is the discretization step size and K = λmax+δ
η + 1 is the number of
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discrete learning values1. For each deception choice λdec, the attacker’s uncertainty set of
defender’s possible learning outcomes λlearnt is now given by:

Λlearnt
discrete(λ

dec) = Λlearnt
discrete ∩ [λdec − δ, λdec + δ]

For each λlearnt
k , we can easily compute the corresponding optimal defense strategy

x(λlearnt
k ) in advance [2]. We thus obtain a simplified optimization problem:

(Pdec
discrete) : max

λdec∈[0,λmax ]
U

s.t. U≤Ua(x(λlearnt
k ), λdec), for all λlearnt

k ∈Λlearnt
discrete(λ

dec)

where U is the maximin utility for the attacker in the worst-case of learning outcome.
Remark on computational challenge. Although (Pdec

discrete) is a single-level optimization,
solving it is still challenging due to (i) (Pdec

discrete) is a non-convex optimization problem
since the attacker’s utility Ua(x(λlearnt

k ), λdec) is non-convex in λdec; and (ii) the number of
inequality constraints in (Pdec

discrete) vary with respect to λdec, which complicates the problem
further. By exploiting the decomposability property of the deception space [0, λmax] and the
monotonicity of the attacker’s utility function Ua(x(λlearnt

k ), λdec), we show that (Pdec
discrete)

can be solved optimally in a polynomial time.

Theorem 1 (Time complexity). (Pdec
discrete) can be solved optimally in a polynomial time.

Overall, the proof of Theorem 1 is derived based on (i) Lemma 1 — showing that the
deception space can be divided into an O(K) number of sub-intervals, and each sub-interval
leads to the same uncertainty set; and (ii) Lemma 4 — showing that (Pdec

discrete) can be divided
into a O(K) sub-problems which correspond to the decomposability of the deception space
(as shown in Lemma 1), and each sub-problem can be solved in polynomial time.

4.1.1. Decomposability of Deception Space

In the following, we first present our theoretical analysis on the decomposability of
the deception space. We then describe in detail our decomposition algorithm.

Lemma 1 (Decomposability of deception space). The attacker deception space [0, λmax] can be
decomposed into a finite number of disjointed sub-intervals, denoted by intdec

j where j = 1, 2, . . . ,

and intdec
j ∩ intdec

j′ = ∅ for all j 6= j′ and ∪jintdec
j = [0, λmax], such that each λdec ∈ intdec

j leads

to the same uncertainty set of learning outcomes, denoted by Λlearnt
j ⊆ Λlearnt

discrete. Furthermore, these

sub-intervals and uncertainty sets (intdec
j , Λlearnt

j ) can be found in a polynomial time.

The proof of Lemma 1 is derived based on Lemmas 2 and 3. An example of the
deception-space decomposition is illustrated in Figure 1. Intuitively, although the deception
space [0, λmax] is infinite, the total number of possible learning-outcome uncertainty sets is
at most 2K (i.e., the number of subsets of the discrete learning space Λlearnt

discrete). Therefore,
the deception space can be divided into a finite number of disjoint subsets such that any
deception value λdec within each subset will lead to the same uncertainty set. Moreover,
each of these deception subsets form a sub-interval of [0, λmax], which is derived from
Lemma 2:

Lemma 2. Given two deception values λdec
1 < λdec

2 ∈ [0, λmax], if the learning uncertainty sets
corresponding to these two values are the same, i.e., Λlearnt

discrete(λ
dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ), then for any

deception value λdec
1 < λdec < λdec

2 , its uncertainty set is also the same, that is:

Λlearnt
discrete(λ

dec) ≡ Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 )
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int/)#* = [1.8,2]
Λ/"#$%&' = {1.7,2.3}

Figure 1. An example of discretizing λlearnt, Λlearnt = {0, 0.9, 1.7, 2.3}, and the six resulting attacker
sub-intervals and corresponding uncertainty sets, with λmax = 2, δ = 0.5. In particular, the first
sub-interval of deceptive λdec is int1 = [0, 0.4) in which any λdec corresponds to the same uncertainty
set of possible learning outcomes Λlearnt

1 = {0}.

The remaining analysis for Lemma 1 is to show that these deception sub-intervals can
be found in polynomial time, which is obtained based on Lemma 3:

Lemma 3. For each learning outcome λlearnt
k , there are at most two deception sub-intervals such

that λlearnt
k is the smallest learning outcome in the corresponding learning uncertainty set. As a

result, the total number of deception sub-intervals is O(K), which is polynomial.

Since there is a O(K) number of deception sub-intervals, we now can develop a
polynomial-time algorithm (Algorithm 1) which iteratively divides the deceptive range
[0, λmax] into multiple intervals, denoted by {intdec

j }j. Each of these intervals, intdec
j , corre-

sponds to the same uncertainty set of possible learning outcomes for the defender, denoted
by Λlearnt

j .

In this algorithm, for each λlearnt
k , we denote by lbk = λlearnt

k − δ and ubk = λlearnt
k + δ

the smallest and largest possible values of λdec so that λlearnt
k belongs to the uncertainty set

of λdec. In Algorithm 1, start is the variable which represents the left bound of each interval
intdec

j . The variable open indicates if intdec
j is left-open (open = true) or not (open = f alse).

If start is known for intdec
j , the uncertainty set Λlearnt

j can be determined as follows:

Λlearnt
j ={λlearnt

k : λlearnt
k ∈ [start−δ, start+δ]} if intdec

j is left-closed

Λlearnt
j ={λlearnt

k : λlearnt
k ∈ (start−δ, start+δ]} if intdec

j is left-open

Initially, start is set to 0 which is the lowest possible value of λdec such that the
uncertainty range [λdec − δ, λdec + δ] contains λlearnt

1 and open = f alse. Given start and its
uncertainty range [start− δ, start + δ], the first interval intdec

1 of λdec corresponds to the
uncertainty set determined as follows:

Λlearnt
1 = {λlearnt

k ∈ Λlearnt : λlearnt
k ∈ [start− δ, start + δ]}

At each iteration j, given the left bound start and the uncertainty set Λlearnt
j of the

interval intdec
j , Algorithm 1 determines the right bound of intdec

j , the left bound of the next

interval intdec
j+1 (by updating start), and the uncertainty set Λlearnt

j+1 , (lines (6–15)). Finally, we
prove the correctness of Algorithm 1 by presenting Proposition 1, which shows that for any
λdec within each interval intdec

j , the corresponding uncertainty interval [λdec − δ, λdec + δ]

covers the same uncertainty set Λlearnt
j .
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Algorithm 1: Imitative behavior deception—Decomposition of QR parameter
domain into sub-intervals
1 Input: Λlearnt = {λlearnt

1 , λlearnt
2 , . . . , λlearnt

K };
2 Initialize interval index: j = 1; start = 0; open = f alse;

Λlearnt
j = {λlearnt

k ∈ Λlearnt : λlearnt
k ∈ [start− δ, start + δ]};

3 while Λlearnt
j 6= ∅ do

4 Set the max index: kmax
j = maxk{λlearnt

k ∈ Λlearnt
j };

5 Set the min index: kmin
j = mink{λlearnt

k ∈ Λlearnt
j };

6 if kmax
j < K Furthermore, lbkmax

j +1 ≤ ubkmin
j

then

7 if open then Set intdec
j = (start, lbkmax

j +1);

8 else Set intdec
j = [start, lbkmax

j +1);

9 Update start = lbkmax
j +1; open = f alse;

10 Λlearnt
j+1 ={λlearnt

k ∈Λlearnt : λlearnt
k ∈ [start−δ, start+δ]};

11 else
12 if open then Set intdec

j = (start, ubkmin
j

];

13 else Set intdec
j = [start, ubkmin

j
];

14 Update start = ubkmin
j

; open = true;

15 Λlearnt
j+1 ={λlearnt

k ∈Λlearnt : λlearnt
k ∈ (start−δ, start+δ];

16 Update j = j + 1;
17 return {(intdec

j , λlearnt
j )};

Proposition 1 (Correctness of Algorithm 1). Each iteration j of Algorithm 1 returns an interval
intdec

j such that each λdec ∈ intdec
j leads to the same uncertainty set:

Λlearnt
j = {λlearnt

kmin
j

, . . . , λlearnt
kmax

j
}

The rest of this section will provide details of missing proofs for the aforementioned
theoretical results.

Proof of Lemma 2. For any λlearnt ∈ Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ), we have:

λdec
1 − δ ≤ λlearnt ≤ λdec

1 + δ

λdec
2 − δ ≤ λlearnt ≤ λdec

2 + δ

Since λdec ∈ (λdec
1 , λdec

2 ), we obtain:

λdec − δ ≤ λlearnt ≤ λdec + δ

which implies λlearnt ∈ Λlearnt
discrete(λ

dec). As a result,

Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ) ⊆ Λlearnt

discrete(λ
dec) (∗)

On the other hand, let us consider a λlearnt ∈ Λlearnt
discrete(λ

dec), or equivalently, λdec− δ ≤
λlearnt ≤ λdec + δ. We are going to show that this λlearnt ∈ Λlearnt

discrete(λ
dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 )

as well. Indeed, let us assume λlearnt /∈ Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ). It means the

following inequalities must hold true:

λdec
1 + δ < λlearnt < λdec

2 − δ
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which means that the uncertainty ranges with respect to λdec
1 and λdec

2 are not over-
lapped, i.e., [λdec

1 − δ, λdec
1 + δ] ∩ [λdec

2 − δ, λdec
2 + δ] ≡ ∅, or equivalently, Λlearnt

discrete(λ
dec
1 )∩

Λlearnt
discrete(λ

dec
2 ) ≡ ∅, which is contradictory.

Therefore, λlearnt ∈ Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ), meaning that:

Λlearnt
discrete(λ

dec) ⊆ Λlearnt
discrete(λ

dec
1 ) ≡ Λlearnt

discrete(λ
dec
2 ) (∗∗)

The combination of (*) and (**) concludes our proof.

Proof of Lemma 3. First, although the deception space [0, λmax] is infinite, the total number
of possible learning-outcome uncertainty sets is at most 2K (i.e., the number of subsets of
the discrete learning space Λlearnt

discrete). Therefore, the deception space can be divided into
a finite number of disjoint subsets such that any deception value λdec within each subset
will lead to the same uncertainty set. Moreover, each of these deception subsets form a
sub-interval of [0, λmax], which is a result of Lemma 2.

Now, in order to prove that the number of disjoint sub-intervals is O(K), we will show
that for each learning outcome λlearnt

k , there are at most two deception sub-intervals such
that λlearnt

k is the smallest learning outcome in the corresponding learning uncertainty set.
Let us assume there is a deception sub-interval [λdec

1 , λdec
2 ] which leads to an uncertainty set

{λlearnt
k , λlearnt

k+1 , . . . , λlearnt
k′ } for some k′ ≥ k. We will prove that the following inequalities

must hold:

2δ

η
− 2 < k′ − k ≤ 2δ

η
(4)

where η is the discretization step size. Indeed, for any λdec ∈ [λdec
1 , λdec

2 ], we have:

λdec − δ ≤ λlearnt
k ≤ λdec + δ

λdec − δ ≤ λlearnt
k′ ≤ λdec + δ

λlearnt
k−1 < λdec − δ and λlearnt

k′+1 > λdec + δ

Therefore,

λlearnt
k′ − λlearnt

k ≤ 2δ =⇒ k′ − k ≤ 2σ

η

λlearnt
k′+1 − λlearnt

k−1 > 2δ =⇒ k′ − k >
2σ

η
− 2

which concludes (4). Now, according to (4), for every k, then k′ = k + d 2σ
η e − 2 or k′ =

k + b 2σ
η c, which means that there are at most two deception sub-intervals such that λlearnt

k
is the smallest learning outcome in their learning uncertainty sets.

Proof of Proposition 1. Note that, for each λlearnt
k , we denote by lbk = λlearnt

k − δ and
ubk = λlearnt

k + δ the smallest and largest possible values of λdec so that λlearnt
k belongs to

the uncertainty set of λdec. In addition, kmax
j and kmin

j are the indices of the smallest and

largest learning outcomes in the learnt uncertainty set for every deception value in the jth

deception interval.
At each iteration j, given the jth learnt uncertainty set, Algorithm 1 attempts to find

the corresponding jth deception interval as well as the next (j + 1)th learnt uncertainty set.
Essentially, Algorithm 1 considers two cases:
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Case 1: kmax
j < K and lbkmax

j +1 ≤ ubkmin
j

. This is when (i) the jth deception interval does not

cover the maximum possible learning outcome λlearnt
K ; and (ii) the smallest deception value

w.r.t the learning outcome λlearnt
kmax

j +1 is less than the largest deception value w.rt the learning

outcome λlearnt
kmin

j
. Intuitively, (ii) implies that the upper bound of the jth deception interval is

strictly less than lbkmax
j +1. Otherwise, this deception upper bound will correspond to an

uncertainty set which covers the learning outcome λlearnt
kmax

j +1, which is contradict to the fact

that λlearnt
kmax

j
(which is strictly less that λlearnt

kmax
j +1) is the maximum learning outcome for the jth

deception interval.

In this case, the interval intdec
j is determined as follows:

intdec
j = [start, lbkmax

j +1) if open = f alse

intdec
j = (start, lbkmax

j +1) if open = true

Note that, since Λlearnt
j is the uncertainty set of start with the smallest and largest

indices of (kmin
j , kmax

j ), we have: lbkmin
j
≤ lbkmax

j
≤ start and ubkmin

j −1 < start. Therefore,

for any λdec ∈ intdec
j , we obtain:

lbkmin
j
≤ start ≤ λdec and λdec < lbkmax

j +1 ≤ ubkmin
j

lbkmax
j
≤ start ≤ λdec and λ < ubi ≤ ubkmax

j

λdec < lbkmax
j +1 and λdec ≥ start > ubkmin

j −1

which means λlearnt
kmin

j
and λlearnt

kmax
j

belongs to the uncertainty set of λdec while λlearnt
kmin

j −1
and

λlearnt
kmax

j +1 do not. Thus, Λlearnt
j is the uncertainty set of λdec. Since intdec

j is open-right, the left

bound of intdec
j+1 is start = lbmj+1 and open = f alse, and Λlearnt

j+1 is determined accordingly.

Case 2: kmax
j = K or lbkmax

j +1 > ubkmin
j

. Note that when lbkmax
j +1 > ubkmin

j
, the upper bound

of the jth deception interval must be at most ubkmin
j

. This is to ensure that this upper bound

covers the learning outcome λlearnt
kmin

j
.

In this case, deception interval intdec
j is determined as follows:

intdec
j = [start, ubkmin

j
] if open = f alse

intdec
j = (start, ubkmin

j
] if open = true

The argument for this case is similar. For the sake of analysis, since kmax
j = K which is

the largest index of λlearnt in the entire set Λlearnt, we set lbkmax
j +1 = ∞. For any λdec ∈ intdec

j ,
we have:

lbkmin
j
≤ start ≤ λdec ≤ ubkmin

j

lbkmax
j
≤ start ≤ λdec ≤ ubkmin

j
≤ ubkmax

j

λdec ≤ ubkmin
j

< lbkmax
j +1 and λdec ≥ start > ubkmin−1
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which implies Λlearnt
j is the uncertainty set of λdec. Since intdec

j is closed-right, the left

bound of intdec
j+1 is start = ubkmin

j
and open = true, concluding our proof.

4.1.2. Divide and Conquer: (Divide Pdec
discrete) into a O(K) Polynomial Sub-Problems

Lemma 4 (Divide-and-conquer). The problem (Pdec
discrete) can be decomposed into O(K) sub-

problems {(Pdec
j )} according to the decomposibility of the deception space. Each of these sub-

problems can be solved in polynomial time.

Indeed, we can now divide the problem (Pdec
discrete) into multiple sub-problems which

correspond to the decomposition of the deception space (Lemma 1). Essentially, each
sub-problem optimizes λdec (and λlearnt) over the deception sub-interval intdec

j (and its

corresponding uncertainty set Λlearnt
j ), as shown in the following:

(Pdec
j ) : max

λdec∈intdec
j

Ua

s.t. Ua ≤ Ua(x(λlearnt
k ), λdec), ∀λlearnt

k ∈ Λlearnt
j

which maximizes the attacker’s worst-case utility w.r.t uncertainty set Λlearnt
j . Note that

the defender strategies x(λlearnt
k ) can be pre-computed for every outcome λlearnt

k . Each
sub-problem (Pdec

j ) has a constant number of constraints, but still remain non-convex. Our

Lemma 5 shows that despite of the non-convexity, the optimal solution for (Pdec
j ) is actually

straightforward to compute.

Lemma 5. The optimal solution of λdec for each sub-problem, Pdec
j , is the (right) upper limit of the

corresponding deception sub-interval intdec
j .

This observation is derived based on the fact that the attacker’s utility, Ua(x, λ), is an
increasing function of λ [4]. Therefore, in order to solve (Pdec

discrete), we only need to iterate
over right bounds of intdec

j and select the best j such that the attacker’s worst-case utility

(i.e., the objective of (Pdec
j )), is the highest among all sub-intervals. Since there are O(K)

sub-problems, (Pdec
discrete) can be solved optimally in a polynomial time, concluding our

proof for Theorem 1.

4.2. Solution Quality Analysis

We now focus on analyzing the solution quality of our method presented in Section 4.1
to approximately solve the deception problem (Pdec). Intuitively, let us denote by λdec

∗
the optimal solution of (Pdec) and Ua

worst-case(λ
dec
∗ ) is the corresponding worst-case utility

of the attacker under the uncertainty of learning outcomes in (Pdec). We also denote by
λdec

discrete the optimal solution of (Pdec
discrete). Then, Theorem 2 states that:

Ua
worst-case(λ

dec
∗ ) ≥ Ua

worst-case(λ
dec
discrete) ≥ Ua

worst-case(λ
dec
∗ )− ε

Theorem 2. For any arbitrary ε > 0, there always exists a discretization step size η > 0 such that
the optimal solution of the corresponding (Pdec

discrete) is ε-optimal for (Pdec).

Proof. Let us denote by λdec
∗ the optimal solution of (Pdec). Then the worst-case utility of

the attacker is determined as follows:

Uworst(λdec
∗ ) = min

λlearnt∈[λdec∗ −δ,λdec∗ +δ]
Ua(x(λlearnt), λdec

∗ )
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On the other hand, let us denote by λdec
discrete the optimal solution of (Pdec

discrete). Then
the discretized worst-case utility of the attacker is determined as follows:

Uworst
discrete(λ

dec
discrete) = min

λlearnt∈Λlearnt
discrete(λ

dec
discrete)

Ua(x(λlearnt), λdec
discrete)

Note that, Uworst
discrete(λ

dec
discrete) is not the actual worst-case utility of the attacker for

mimicking λdec
discrete since it is computed based on the discrete uncertainty set, rather than

the original continuous uncertainty set. In fact, the actual attacker worst-case utility is
Uworst(λdec

discrete). We will show that for any ε > 0, there exists a discretization step size η
such that:

Uworst(λdec
∗ ) ≥ Uworst(λdec

discrete) ≥ Uworst(λdec
∗ )− ε (5)

Observe that the first inequality is easily obtained since λdec
∗ the optimal solution of

(Pdec). Therefore, we will focus on the second inequality. First, we obtain the following
inequalities:

Uworst(λdec
∗ ) ≤ Uworst

discrete(λ
dec
∗ ) ≤ Uworst

discrete(λ
dec
discrete)

The first inequality is obtained based on the fact that the discretized uncertainty set
is a subset of the actual continuous uncertainty range Λlearnt

discrete(λ
dec
∗ ) ⊂ [λdec

∗ − δ, λdec
∗ + δ].

The second inequality is derived from the fact that λdec
discrete is the optimal solution of

(Pdec
discrete). Therefore, in order to obtain the second inequality of (5), we are going to prove

that for any ε > 0, there exists η > 0 such that:

Uworst(λdec
discrete) + ε ≥ Uworst

discrete(λ
dec
discrete) (6)

Let us denote by λlearnt
∗ the worst-case learning outcome with respect to λdec

discrete within
the uncertainty range [λdec

discrete − δ, λdec
discrete + δ]. That is,

Uworst(λdec
discrete) = Ua(x(λlearnt

∗ ), λdec
discrete)

Since Λlearnt
discrete(λ

dec
discrete) is a discretization of [λdec

discrete − δ, λdec
discrete + δ], there exist a

λlearnt
k ∈ Λlearnt

discrete(λ
dec
discrete) such that |λlearnt

k − λlearnt
∗ | ≤ η. Now, according to the definition

of the discretized worst-case utility of the attacker, we have:

Uworst
discrete(λ

dec
discrete) ≤ Ua(x(λlearnt

k ), λdec
discrete)

Therefore, proving (6) now induces to proving ∃η:

Ua(x(λlearnt
k ), λdec

discrete)−Ua(x(λlearnt
∗ ), λdec

discrete) ≤ ε

where |λlearnt
k − λlearnt

∗ | ≤ η. First, according to [23], for any λ, the defender’s correspond-
ing optimal strategy x(λ) is a differentiable function of λ. Second, the attacker’s utility
Ua(x, λdec

discrete) is a differentiable function of the defender’s strategy x for any λdec
discrete.

Therefore, Ua(x(λ), λdec
discrete) is differentiable (and thus continuous) at λ. According to the

continuity property, for any ε > 0, there always exists η > 0 such that:

Ua(x(λ), λdec
discrete)−Ua(x(λlearnt

∗ ), λdec
discrete) ≤ ε

for all λ such that |λ− λlearnt
∗ | ≤ η, concluding our proof.

4.3. Heuristic to Improve Discretization

According to Theorem 2, we can obtain a high-quality solution for (Pdec) by having
a fine discretization of the learning outcome space with a small step size η. In practice, it
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is not necessary to have a fine discretization over the entire learning space right from the
begining. Instead, we can start with a coarse discretization and solve the corresponding
(Pdec

discrete) to obtain a solution of λdec
discrete. We then refine the discretization only within

the uncertainty range of the current solution, [λdec
discrete − δ, λdec

discrete + δ]. We keep doing
that until the uncertainty range of the latest deception solution reaches the step-size limit
which guarantees the ε-optimality. Practically, by doing so, we will obtain a much smaller
discretized learning outcome set (aka. smaller K). As a result, the computational time for
solving (Pdec

discrete) is substantially faster while the solution quality remains the same.

5. Defender Counter-Deception

In order to counter the attacker’s imitative deception, we propose to find a counter-
deception defense functionH : [0, λmax + δ]→ X which maps a learnt parameter λlearnt to a
strategy x of the defender. In designing an effectiveH, we need to take into account that the
attacker will also adapt its deception choice accordingly, denoted by λdec(H). Essentially,
the problem of finding an optimal defense function which maximizes the defender’s utility
against the attacker’s deception can be abstractly represented as follows:

max
H

Ud(H, λdec(H))

where λdec(H) is the deception choice of the attacker with respect to the defense function
H and Ud is the defender’s utility corresponding to (H, λdec(H)). Finding an optimalH is
challenging since the domain [0, λmax + δ] of λlearnt is continuous and there is no explicit
closed-form expression ofH as a function of λlearnt. For the sake of our analysis, we divide
the entire domain [0, λmax + δ] into a number of sub-intervals I = {Id

1 , Id
2 , . . . , Id

N} where
Id
1 = [λdef

1 , λdef
2 ], Id

2 = (λdef
2 , λdef

3 ], . . . , Id
N = (λdef

N , λdef
N+1] with 0 = λdef

1 ≤ λdef
2 ≤ · · · ≤

λdef
N+1 = λmax + δ, and N is the number of sub-intervals. We define a defense function

with respect to the interval set: HI : I → X which maps each interval Id
n ∈ I to a single

defense strategy xn, i.e., HI(Id
n) = xn ∈ X, for all n ≤ N. We denote the set of these

strategies by Xdef = {x1, . . . , xN}. Intuitively, all λlearnt ∈ Id
n will lead to a single strategy

xn. Our counter-deception problem now becomes finding an optimal defense function
H∗ = (I∗,HI∗∗ ) that comprises of (i) an optimal interval set I∗; and (ii) corresponding
defense strategies determined by the defense functionHI∗∗ with respect to I∗, taking into
account the attacker’s deception adaptation. Essentially, (I∗,HI∗∗ ) is the optimal solution of
the following optimization problem:

max
I,HI

Ud(HI, λdec(HI)) (7)

s.t. λdec(HI) ∈ argmax
λdec∈[0,λmax ]

min
x∈X(λdec)

Ua(x, λdec) (8)

where λdec(HI) is the maximin deception choice of the attacker. Here, X(λdec) = {xn :
Id
n ∩ [λdec − δ, λdec + δ] 6= ∅} is the uncertainty set of the attacker when playing λdec. This

uncertainty set contains all possible defense strategy outcomes with respect to the deceptive
value λdec.
Main Result. To date, we have not explicitly defined the objective function, Ud(HI, λdec(HI)),
except that we know this utility depends on the defense function HI and the attacker’s
deception response λdec(HI). Now, sinceHI maps each possible learning outcome λlearnt to
a defense strategy, we know that if λlearnt ∈ Id

n , then Ud(HI, λdec(HI)) = Ud(xn, λdec(HI)),
which can be computed using Equation (3). However, due to the deviation of λlearnt

from the attacker’s deception choice, λdec(HI), different possible learning outcomes λlearnt

within [λdec(HI)− δ, λdec(HI) + δ] may belong to different intervals Id
n (which correspond

to different strategies xn), leading to different utility outcomes for the defender. One may
argue that to cope with this deception-learning uncertainty, we can apply the maximin ap-
proach to determine the defender’s worst-case utility if the defender only has the common
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knowledge that λlearnt ∈ [λdec(HI)− δ, λdec(HI) + δ]. Furthermore, perhaps, depending
on any additional (private) knowledge the defender has regarding the relation between the
attacker’s deception and the actual learning outcome of the defender, we can incorporate
such knowledge into our model and algorithm to obtain an even better utility outcome
for the defender. Interestingly, we show that there is, in fact, a universal optimal defense
function for the defender,H∗, regardless of any additional knowledge that he may have.
That is, the defender obtains the highest utility by following this defense function, and ad-
ditional knowledge besides the common knowledge cannot make the defender do better.
Our main result is formally stated in Theorem 3.

Theorem 3. There is a universal optimal defense function, regardless of any additional information
(besides the common knowledge) he has about the relation between their learning outcome and the
deception choice of the attacker. Formally, let us consider the following optimization problem:

(Pcounter) : max
x,λ

Ud(x, λ)

s.t. Ua(x, λ) ≥ min
x′∈X

Ua(x′, λmax)

0 ≤ λ ≤ λmax, x ∈ X

Denote by (x∗, λ∗) an optimal solution of (Pcounter), then an optimal solution of (7),H∗ can
be determined as follows:

• If λ∗ = λmax, choose the interval set I∗ = {Id
1} with Id

1 = [0, λmax+δ] covering the entire
learning space, and functionHI∗∗ (Id

1 ) = x1 where x1=x∗.
• If λ∗<λmax, choose the interval set I∗ = {Id

1 , Id
2} with Id

1 =[0, λ∗+δ], Id
2 =(λ∗+δ, λmax +

δ]. In addition, choose the defender strategies x1 = x∗ and x2 ∈ argminx∈X Ua(x, λmax)
correspondingly.

The attacker’s optimal deception against this defense function is to mimic λ∗. As a result,
the defender always obtains the highest utility, Ud(x∗, λ∗), while the attacker receives the maximin
utility of Ua(x∗, λ∗).

Example 1. Let us give a concrete example illustrating the result in Theorem 3. Considering a
3-target security game with the following payoff matrix shown in Table 1:

Table 1. The payoff matrix of a 3-target game.

Target 1 Target 2 Target 3

Def. Reward 2 3 1
Def. Penalty −1 −2 0
Att. Reward 2 1 3
Att. Penalty −3 −2 −3

In this game, the defender has 1 security resource. The maximum deception value of the attacker
is λmax = 3 and the uncertainty level δ = 0.25. By solving (Pcounter), we obtain a corresponding
defender strategy x∗ = [0, 1, 0] and the attacker behavior parameter λ∗ = 0. Since λ∗ < λmax,
the optimal counter-deception defense function is as follows:

• If the defender learns λlearnt ∈ [0, 0.25], the defender will play a strategy x1 = x∗ = [0, 1, 0].
• Otherwise, if the defender learns λlearnt ∈ (0.25, 3.25], the defender then plays x2 =

[0.34, 0.20, 0.46] ∈ argminx∈X Ua(x, λmax).

Given the defender follows this counter-deception function, the attacker’s optimal deception is
to mimic λ∗ = 0, meaning the attacker just simply attacks each target uniformly at random. Here is
the reason why this is the optimal choice for the attacker:

• If the attacker chooses λdec = λ∗ = 0, the corresponding learning outcome for the defender
can be any value within the range [0, 0, 25]. According to the defense function, the defender
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will always play the strategy x1 = [0, 1, 0]. As a result, the attacker’s expected utility is
1
3 × 2 + 1

3 × (−2) + 1
3 × 3 = 1.0.

• Now, if the attacker chooses λdec > λ∗ = 0, the corresponding learning outcome for
the defender may fall into either [0, 0.25] or (0.25, 3.25]. In particular, if the learning
outcome λlearnt ∈ (0.25, 3.25], it means the defender plays x2 = [0.34, 0.20, 0.46] ∈
argminx∈X Ua(x, λmax). In this case, the resulting attacker utility is Ua(x2, λdec) ≤ Ua(x2,
λmax) = 0.33 (this inequality is due to the fact that the attacker utility is an increasing
function of λdec). As a result, the worst-case utility of the attacker is no more than 0.33 which
is strictly lower than the utility of 1.0 when the attacker mimics λdec = λ∗ = 0.

Corollary 1. When λmax = +∞, the defense function H∗ (specified in Theorem 3) gives the
defender a utility which is no less than their Strong Stackelberg equilbrium (SSE) utility.

The proof of Corollary 1 is straightforward. Since (xsse, λmax = +∞) is a feasible
solution of (Pcounter), the optimal utility of the defender Ud(x∗, λ∗) is thus no less than
Ud(xsse, λmax) (xsse denotes the defender’s SSE strategy).

Now the rest of this section will be devoted to prove Theorem 3. The full proof of
Theorem 3 can be decomposed into three main parts: (i) We first analyze the attacker
deception adapted to the defender’s counter deception; (ii) Based on the result of the
attacker adaptation, we provide theoretical results on computing the defender optimal
defense function given a fixed set of sub-intervals I; and (iii) Finally, we complete the proof
of the theorem leveraging the result in (ii).

5.1. Analyzing Attacker Deception Adaptation

In this section, we aim at understanding the behavior of the attacker deception against
HI. Overall, as discussed in the previous section, since the attacker is uncertain about
the actual learning outcome of the defender, the attacker can attempt to find an optimal
deception choice λdec(HI) that maximizes its utility under the worst case of uncertainty.
Essentially, λdec(HI) is an optimal solution of the following maximin problem:

max
λdec∈[0,λmax ]

min
x∈X(λdec)

Ua(x, λdec)

where: X(λdec) = {xn : Id
n ∩ [λdec − δ, λdec + δ] 6= ∅} is the uncertainty set of the attacker

with respect to the defender’s sub-intervals I. In this problem, the uncertainty set X(λdec)
depends on λdec that we need to optimize, making this problem challenging to solve.

5.1.1. Decomposability of Attacker Deception Space

First, given HI, we show that we can divide the range of λdec into several intervals,
each interval corresponds to the same uncertainty set. This characteristic of the attacker
uncertainty set is, in fact, similar to the no-counter-deception scenario as described in
previous section. We propose Algorithm 2 to determine these intervals of λdec, which
works in a similar fashion as Algorithm 1. The main difference is that in the presence of
the defender’s defense function, the attacker’s uncertainty set X(λdec) is determined based
on whether the uncertainty range of the attacker [λdec − δ, λdec + δ] is overlapped with the
defender’s intervals I = {Id

n} or not.
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Algorithm 2: Counter-deception—Decomposition of QR parameter into sub-
intervals
1 Input: I = {Id

1 , Id
2 , . . . , Id

N} and Xde f = {x1, . . . , xN}
2 Initialize attacker interval index j = 1;
3 Initialize start = 0; uncertainty set Xdef

j = {xn : Id
n ∩ [start− δ, start + δ] 6= ∅};

4 while Xdef
j 6= ∅ do

5 Set the max index: nmax
j = maxn{xn ∈ Xdef

j };
6 Set the min index nmin

j = minn{xn ∈ Xdef
j };

7 if nmax
j < k Furthermore, lbnmax

j +1 ≤ ubnmin
j +1 then

8 Set end = lbnmax
j +1;

9 else Set end = ubnmin
j +1 ;

10 if j = 1 then Set intdec
j = [start, end];

11 else Set intdec
j = (start, end];

12 Update start = end; j = j + 1;
13 Set Xdef

j = {xn : Id
n ∩ (start− δ, start + δ] 6= ∅};

14 return {intdec
j , Xdef

j }

Essentially, similar to Algorithm 1, Algorithm 2 also iteratively divides the range
of λdec into multiple intervals, (with an abuse of notation) denoted by {intdec

j }. Each of

these intervals, intdec
j , corresponds to the same uncertainty set of xn, denoted by Xdef

j . In

this algorithm, for each interval of the defender Id
n , lbn = λdef

n − δ and ubn+1 = λdef
n+1 + δ

represent the smallest and largest possible deceptive values of λdec so that Id
n ∩ [λdec −

δ, λdec + δ] 6= ∅. In addition, nmin
j and nmax

j denote the smallest and largest indices of the

defender’s strategies in the set Xdef = {x1, x2, . . . , xN} that belongs to Xdef
j . Algorithm 2

relies on Lemma 6 and 7. Note that Algorithm 2 does not check if each interval intdec
j of

λdec is left-open or not since all intervals of the defender Id
n is left-open (except for n = 1),

making all intdec
j left-closed (except for j = 1).

Lemma 6. Given a deceptive λdec, for any n1 < n2 such that xn1 , xn2 ∈ X(λdec), then xn ∈
X(λdec) for any n1 < n < n2.

Lemma 7. For any λdec such that lbn < λdec ≤ ubn+1
2, the uncertainty range of λdec overlaps

with the defender’s interval Id
n , i.e., Id

n ∩ [λdec − δ, λdec + δ] 6= ∅, or equivalently, xn ∈ X(λ).
Otherwise, if λdec ≤ lbn or λdec > ubn+1, then xn /∈ X(λdec).

The proofs of these two lemmas are straightforward so we omit them for the sake of
presentation. Essentially, this algorithm divides the range of λdec into multiple intervals,
(with an abuse of notation) denoted by {intdec

j }. Each of these intervals, intdec
j , corresponds

to the same uncertainty set of xn, denoted by Xdef
j . An example of decomposing the

deceptive range of λdec is shown in Figure 2.
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Figure 2. An example of a defense function with corresponding sub-intervals and uncertainty sets
of the attacker, where λmax = 2.0 and δ = 0.4. The defense function is determined as: Id

1 = [0, 1.4],
Id
2 = (1.4, 2.4] with corresponding defense strategies {x1, x2}. Then the deception range of the

attacker can be divided into three sub-intervals: intdec
1 = [0, 1], intdec

2 = (1, 1.8], intdec
3 = (1.8, 2]

with corresponding uncertainty sets Xdef
1 = {x1}, Xdef

2 = {x1, x2}, Xdef
3 = {x2}. For example, if the

attacker plays any λdec ∈ intdec
2 , it will lead the defender to play either x1 or x2, depending on the

actual learning outcome of the defender.

5.1.2. Characteristics of Attacker Optimal Deception

We denote by M the number of attacker intervals. Given the division of the attacker’s
deception range {intdec

j }, we can divide the problem of attacker deception into M sub-

problems. Each corresponds to a particular intdec
j where j ∈ {1, . . . , M}, as follows:

(P̄dec
j ) : Ua,∗

j = max
λdec∈intdec

j

min
xn∈Xdef

j

Ua(xn, λdec)

Lemma 8. For each sub-problem (P̄dec
j ) with respect to the deception sub-interval intdec

j , the attacker

optimal deception is to imitate the right-bound of intdec
j , denoted by λ̄dec

j .

The proof of Lemma 8 is derived based on the fact that the attacker’s utility Ua(xn, λdec)
is increasing in λdec. As a result, the attacker only has to search over the right bounds,
{λ̄dec

j }, of all intervals {intdec
j } to find the best one among the sub-problems that maxi-

mizes the attacker’s worst-case utility. We consider these bounds λ̄dec
j to be the deception

candidates of the attacker. Let us assume jopt is the best deception choice for the attacker
among these candidates, that is, the attacker will mimic the λ̄dec

jopt . We obtain the following
observations about important properties of the attacker’s optimal deception, which we
leverage to determine an optimal defense function later.

Our following Lemma 9 says that any non-optimal deception candidate for the at-
tacker, λ̄dec

j 6= λ̄dec
jopt , such that the max index of the defender strategy in the corresponding

uncertainty set Xdef
j , denoted by nmax

j , satisfies nmax
j ≤ nmax

jopt , then the deception candidate

λ̄dec
j is strictly less than λ̄dec

jopt , or equivalently, j < jopt. Otherwise, jopt cannot be a best
deception response.

Lemma 9. For any j 6= jopt s.t. nmax
j ≤ nmax

jopt , then λ̄dec
j < λ̄dec

jopt , or equivalently, j < jopt.

Proof. Lemma 9 can be proved by contradiction as follows. Let us assume if there is j > jopt

such that nmax
j ≤ nmax

jopt . According to Algorithm 2, for any attacker interval indices j > j′,
we have the min and max indices of the defender’s strategies in corresponding uncertainty
sets must satisfy: nmin

j ≥ nmin
j′ and nmax

j ≥ nmax
j′ , and they can not be both equal. That is
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because the intervals {intdec
j } returned by Algorithm 2 are sorted in a strictly increasing

order. Therefore, if there is j > jopt such that nmax
j ≤ nmax

jopt , it means nmin
j > nmin

jopt and

nmax
j = nmax

jopt . In other words, the uncertainty set Xdef
j ⊂ Xde f

jopt . Thus, we have the attacker’s

optimal worst-case utility w.r.t deception intervals j and jopt must satisfy:

Ua,∗
jopt = min

x∈Xdef
jopt

Ua(x, λ̄dec
jopt )≤ min

x∈Xdef
j

Ua(x, λ̄dec
jopt )< min

x∈Xdef
j

Ua(x, λ̄dec
j )=Ua,∗

j

since Ua(x, λ) is a strictly increasing function of λ3. This strict inequality shows that jopt

cannot be an optimal deception for the attacker, concluding our proof for Observation 9.

Note that we denote right bounds of attacker intervals by {λ̄dec
1 , . . . , λ̄dec

M =λmax}. Our
Lemma 10 then says that if the max index of the defender strategy nmax

jopt in the set Xjopt is

equal to the max index of the whole defense set, N, then λ̄dec
jopt is equal to the highest value

of the entire deception range, i.e., λ̄dec
jopt = λ̄M =λmax, or equivalently, jopt =M.

Lemma 10. If nmax
jopt = N, then jopt = M.

Proof. We also prove this observation using contradiction. Let us assume that jopt < M.
Again, according to Algorithm 2, for any j > j′, we have nmin

j ≥ nmin
j′ and nmax

j ≥ nmax
j′ ,

and they can not be both equal. Therefore, if nmax
jopt = N, then for all j > jopt, we have:

nmax
j = N and nmin

j > nmin
jopt , which means Xdef

j ⊂ Xdef
jopt . Therefore, if jopt < M, then

we obtain:

Ua,∗
jopt = min

x∈Xdef
jopt

Ua(x, λ̄dec
jopt )≤ min

x∈Xdef
M

Ua(x, λ̄dec
jopt )< min

x∈Xdef
M

Ua(x, λ̄dec
M )=Ua,∗

M

which shows that jopt cannot be an optimal deception of the attacker, concluding the proof
of Lemma 10.

Remark 1. According to Lemmas 9 and 10, we can easily determine which deception choices among
the set {λ̄dec

1 , . . . , λ̄dec
M } cannot be an optimal attacker deception, regardless of defense strategies

{x1, . . . , xN}. These non-optimal choices are determined as follows: the deception choice λ̄j can not
be optimal for:

• Any j such that there is a j′ > j with nmax
j′ ≤ nmax

j

• Any j < M such that nmax
j = N

For any other choices λ̄dec
j , there always exists defense strategies {x1, . . . , xN} such that λ̄dec

j
is an optimal attacker deception.

5.2. Finding Optimal Defense FunctionHI Given Fixed I: Divide-and-Conquer

Given a set of sub-intervals I, we aim at finding optimal defense functionHI or equiva-
lently, strategies Xdef = {x1, x2, . . . , xN} corresponding to these sub-intervals. According to
previous analysis on the attacker’s deception adaptation, since the attacker’s best deception
is one of the bounds {λ̄dec

1 , . . . , λ̄dec
M }, we propose to decompose the problem of finding an

optimal defense function HI into multiple sub-problems Pcounter
j , each corresponds to a

particular best deception choice for the attacker. In particular, for each sub-problem Pcounter
j ,

we attempt to find HI such that λ̄dec
j is the best response of the attacker. As discussed in

the remark of previous section, we can easily determine which sub-problem Pcounter
j is not
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feasible. For any feasible optimal deception candidate jfea, i.e., Pcounter
jfea is feasible, Pcounter

jfea

can be formulated as follows:

(Pcounter
jfea ) : max

HI
Ud(HI, λ̄dec

jfea )

s.t. min
x∈Xdef

jfea

Ua(x, λ̄dec
jfea ) ≥ min

x∈Xdef
j

Ua(x, λ̄dec
j ), ∀j

where Ud(HI, λ̄dec
jfea ) is the defender’s utility when the defender commits to HI and the

attacker plays λ̄dec
jfea . The constraints in (Pcounter

jfea ) guarantee that the attacker’s worst-case

utility for playing λ̄dec
jfea is better than playing other λ̄dec

j . Finally, our Propositions 2 and 3

determine an optimal solution for (Pcounter
jfea ).

Proposition 2 (Sub-problem Pcounter
jfea ). If nmax

jfea < N, the best defense function for the defender is
determined as follows:

• For all n > nmax
jfea , choose xn = x∗> where x∗> is an optimal solution of the following optimiza-

tion problem:

minx∈X Ua(x, λmax)

• For all n ≤ nmax
jfea , choose xn = x∗< where x∗< is the optimal solution of the following optimiza-

tion problem:

Ud
∗ = maxx∈X Ud(x, λ̄dec

jfea )

s.t. Ua(x, λ̄dec
jfea ) ≥ Ua(x∗>, λmax)

By following the above defense function, an optimal deception of the attacker is to mimic λ̄dec
jfea ,

and the defender obtains an utility of Ud
∗ .

Proof. First, we show that the attacker optimal deception response is to λ̄dec
jfea . Indeed, we

have the uncertainty set Xdef
jfea ≡ {x∗<} because the defender plays xn = x∗< for all n ≤ nmax

jfea .

In addition, for all j such that nmax
j > nmax

jfea , the uncertainty set Xdef
j contains x∗>. Therefore,

we have the attacker worst-case utility satisfying:

Ua,∗
j ≤ Ua(x∗>, λ̄dec

j ) ≤ Ua(x∗>, λmax) ≤ Ua(x∗<, λ̄dec
jfea ) = Ua,∗

jfea

Furthermore, for all j such that nmax
j ≤ nmax

jfea , we have j ≤ jfea according to Observation 9.
Thus, we obtain:

Ua,∗
j = Ua(x∗<, λ̄dec

j ) ≤ Ua(x∗<, λ̄jfea) = Ua,∗
jfea

Based on the above defense function and the fact that the attacker will choose λ̄dec
jfea ,

the defender receives an utility of Ud
∗ . Next, we prove that this is the best the defender can

obtain by showing that any defense function {x′1, . . . , x′N} such that jfea is the attacker’s
best response will lead to a defender utility less than Ud

∗ . Indeed, since nmax
jfea < N, it means

jfea < M or in other words, λ̄dec
jfea < λ̄M = λmax. On the other hand, since λ̄dec

jfea is the best
choice of the attacker, the following inequality must hold:

Ua,∗
jfea ≥ Ua,∗

M = min
x∈Xdef

M

Ua(x, λmax) ≥ min
x∈X

Ua(x, λmax)
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This means that any defense function {x′1, . . . , x′k} such that jfea is the attacker’s best
response has to satisfy the above inequality. As defined, Ud

∗ is the highest utility for the
defender among these defense functions that satisfy the above inequality.

Proposition 3 (Sub-problem Pcounter
jfea ). If nmax

jfea = N, the best counter-deception of the defender
can be determined as follows: for all n, we set: xn = x̂ where x̂ is an optimal solution of

maxx∈X Ud(x, λmax)

By following this defense function, the attacker’s best deception is to mimic λmax and the
defender obtains an utility of Ud(x̂, λmax).

Proof. First, we observe that given x̂, λ̄jfea is the best response of the attacker. Indeed, since

jfea = M or equivalently λ̄jfea = λmax according to Observation 10, we have:

Ua,∗
jfea = Ua(x̂, λmax) ≥ Ua(x̂, λ̄dec

j ) = Ua,∗
j , ∀j

Second, since λ̄jfea = λmax, then for any defense function such that λ̄jfea is the best
deception choice of the attacker, the resulting utility for the defender must be no more than:

maxx∈Xdef
jfea

Ud(x, λmax) ≤ maxx∈X Ud(x, λmax)

regardless of the learning outcome λlearnt ∈ [λmax − δ, λmax + δ]. This is because the
defender eventually plays one of the defense strategies in the set Xdef

jfea . The RHS is the de-
fender’s utility obtained by playing the counter-deception specified by the proposition.

Based on Propositions 2 and 3, we can easily find the optimal counter-deception by
choosing the solution of the sub-problem that provides the highest defender utility.

5.3. Completing the Proof of Theorem 3

According to Propositions 2 and 3, given an interval set I, the resulting defense
function will only lead the defender to play either {x∗>, x∗<} or {x̂}, whichever provides
a higher utility for the defender. Based on this result, our Theorem 3 then identifies an
optimal interval set, and corresponding optimal defense strategies, as we prove below.

First, we will show that if the defender follows the defense function specified in
Theorem 3, then the attacker’s optimal deception is to mimic λ∗. Indeed, if λ∗ = λmax, then
since the defender always plays x∗, the attacker’s optimal deception is to play λ∗ = λmax

to obtain a highest utility Ua(x∗, λmax).
On the other hand, if λ∗ < λmax, we consider two cases:
Case 1, if λmax − 2δ ≤ λ∗ < λmax, then the intervals of the attackers are intdec

1 = [0, λ∗]

and intdec
2 = (λ∗, λmax]. The corresponding uncertainty sets are Xdef

1 = {x1} and Xdef
2 =

{x1, x2}. In this case, the attacker’s optimal deception is to mimic λ∗, since:

min
x∈Xdef

1

Ua(x, λ∗) = Ua(x∗, λ∗) ≥ Ua(x2, λmax) ≥ min
x∈Xdef

2

Ua(x, λmax)

Case 2, if λ∗ < λmax − 2δ, then the corresponding intervals for the attacker are
intdec

1 = [0, λ∗], intdec
2 = (λ∗, λ∗ + 2δ], and intdec

3 = (λ∗ + 2δ, λmax]. These intervals of the
attacker have uncertainty sets Xdef

1 = {x1}, Xdef
2 = {x1, x2}, and Xdef

3 = {x2}, respectively.
The attacker’s best deception is thus to mimic λ∗, since the attacker’s worst-case utility is
minx∈Xdef

1
Ua(x, λ∗) = Ua(x∗, λ∗), and

Ua(x∗, λ∗) ≥ Ua(x2, λmax) ≥ minx∈X2 Ua(x, λ∗ + 2δ)

Ua(x∗, λ∗) ≥ Ua(x2, λmax) = minx∈X3 Ua(x, λmax)
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Now, since the attacker’s best deception is to mimic λ∗, according to the above analysis,
the uncertainty set is Xdef

1 = {x1 = x∗}, thus the defender will play x∗ in the end, leading to
an utility of Ud(x∗, λ∗). This is the highest possible utility that the defender can obtain since
both optimization problems presented in Propositions 2 and 3 are special cases of (Pcounter)
when we fix the variable λ = λmax (for Proposition 3) or λ = λ̄jfea (for Proposition 2).

6. Experimental Evaluation

Our experiments are run on a 2.8 GHz Intel Xeon processor with 256 GB RAM. We
use Matlab (https://www.mathworks.com, accessed on 1 October 2022) to solve non-
linear programs and Cplex (https://www.ibm.com/analytics/cplex-optimizer, accessed
on 1 October 2022) to solve MILPs involved in the evaluated algorithms. We use a value of
λmax = 5 in all our experiments (except in Figure 3g,h), and discretize the range [0, λmax]
using a step size of 0.2: λ ∈ {0, 0.2, . . . , λmax}. We use the covariance game generator,
GAMUT (http://gamut.stanford/edu, accessed on 1 October 2022) to generate rewards and
penalties of players within the range of [1, 10] (for attacker) and [−10,−1] (for defender).
GAMUT takes as input a covariance value r ∈ [−1, 0] which controls the correlations
between the defender and the attacker’s payoff. Our results are averaged over 50 runs. All
our results are statistically significant under bootstrap-t (p = 0.05).

Algorithms. We compare three cases: (i) Non-Dec: the attacker is non deceptive and the
defender also assumes so. As a result, both play Strong Stackelberg equilibrium strategies;
(ii) Dec-δ: the attacker is deceptive, while the defender does not handle the attacker’s
deception (Section 4). We examine different uncertainty ranges by varying values of δ;
and (iii) Dec-Counter: the attacker is deceptive while the defender tackle the attacker’s
deception (Section 5).

Figure 3a,b compare the performance of our algorithms with increasing number of
targets. These figures show that (i) the attacker benefits by playing deceptively (Dec-0
achieves 61% higher attacker utility than Non-Dec); (ii) the benefit of deception to the
attacker is reduced when the attacker is uncertain about the defender’s learning outcome.
In particular, Dec-0.25 achieves 4% lesser attacker utility than Dec-0; (iii) the defender
suffers a substantial utility loss due to the attacker’s deception and this utility loss is
reduced in the presence of the attacker’s uncertainty; and finally, (iv) the defender benefits
significantly (in their utility) by employing counter-deception against a deceptive attacker.

In Figure 3c,d, we show the performance of our algorithms with varying r (i.e., co-
variance) values. In zero-sum games (i.e., r = −1), the attacker has no incentive to be
deceptive [4]. Therefore, we only plot the results of r ∈ [−0.2,−0.8] with a step size of
0.2. This figure shows that when r gets closer to −1.0 (which implies zero-sum behavior),
the attacker’s utility with deception (i.e., Dec-0 and Dec-0.25) gradually moves closer to
its utility with Non-Dec, reflecting that the attacker has less incentive to play deceptively.
Furthermore, the defender’s average utility in all cases gradually decreases when the
covariance value gets closer to −1.0. This results show that in SSGs, the defender’s utility is
always governed by the adversarial level (i.e., the payoff correlations) between the players,
regardless of whether the attacker is deceptive or not.

Figure 3e,f compare the attacker and defender utilities with varying uncertainty range,
i.e., δ values, on 60-target games. These figures show that attacker utilities decrease linearly
with increasing values of δ. On the other hand, defender utilities increase linearly with
increasing values of δ. This is reasonable as increasing δ corresponds to a greater width of
the uncertainty interval that the attacker has to contend with. This increased uncertainty
forces the attacker to play more conservatively, thereby leading to decreased utilities for
the attacker and increased utilities for the defender.

https://www.mathworks.com
https://www.ibm.com/analytics/cplex-optimizer
http://gamut.stanford/edu
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(a) Attacker utility, vary #target (b) Defender utility, vary #target

(c) Att. utility, vary covariance (d) Def. utility, vary covariance

(e) Att. utility, vary interval (f) Def. utility, vary interval

(g) Att. utility, vary λmax (h) Def. utility, vary λmax

Figure 3. Evaluations on player utilities.

In Figure 3g,h, we analyze the impact of varying λmax on the players’ utilities in
60-target games. These figures show that (i) with increasing values of λmax, the action space
of a deceptive attacker increases, hence, the attacker utility increases as a result (Dec-0,
Dec-0.25 in both sub-figures); (ii) When this λmax is close to zero, the attacker is limited to a
less-strategic-attack zone and thus the defender’s strategies have less influence on how the
attacker would response. The defender thus receives a lower utility when λmax gets close
to zero; and (iii) most importantly, the attacker utility against a counter-deceptive defender
decreases with increasing values of λmax. This result shows that when the defender plays
counter-deception, the attacker can actually gain more benefit by committing to a more
limited deception range.

Finally, we evaluate the runtime performance of our algorithms in Figure 4. We
provide results for resource-to-target ratio L

T = 0.3 and 0.5. This figure shows that (i) even
on 100 target games, Dec-0 finishes in ∼5 min. (ii) Due to the simplicity of the proposed
counter-deception algorithm, Counter-Dec finishes in 13 s on 100 target games.
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(a) Ratio = 0.3 (b) Ratio = 0.5

Figure 4. Runtime performance.

Additional Experiment Results

Figure 5 shows the performance of our algorithms as we vary the number of resources
L on 80-target games and 20-target games. This figure shows that the benefits of deception
and counter-deception to the players are observed consistently when varying L. It shows
that (i) the defender (attacker) utilities steadily increase (decrease) with increasing L; and
(ii) the trends observed between the different algorithms in Figure 5 are observed consis-
tently at different values of L. In Figure 6, we compare different algorithms with increasing
number of targets when L

T = 0.5. We observe similar trends in these additional results.

(a) Attacker utility, 80 targets (b) Defender utility, 80 targets

(c) Attacker utility, 20 targets (d) Defender utility, 20 targets
Figure 5. Player Utilities with Varying Number of Resources.

(a) Attacker utility, ratio = 0.5 (b) Defender utility, ratio = 0.5

Figure 6. Player Utilities with Varying Number of Targets.



Games 2022, 13, 81 23 of 24

7. Conclusions

This paper provides a comprehensive analysis of the attacker deception and defender
counter-deception under uncertainty. Our algorithms are developed based on the de-
composibility of the attacker’s deception space and the discretization of the defender’s
learning outcome. Our key finding is that the optimal counter-deception defense solution
only depends on the common knowledge of players about the uncertainty range of the
defender’s learning outcome. Finally, our extensive experiments show the effectiveness of
our counter-deception solutions in handling the attacker’s deception.

As for future work, this article focus on the attacker deception and defender counter-
deception in the context of the Quantal Response model, which only has a single model
parameter. Given promising results of this article, investigating the attacker deception in
more complex model settings such as neural nets would be interesting future direction.
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Notes
1 We use a uniform discretization for the sake of solution quality analysis (as we will describe later). Our approach can be

generalized to any non-uniform discretization.
2 Lemma 7 is stated for the general case n > 1 when the defender’s interval Id

n is left-open. When n = 1 with the left bound is
included, we have lbn ≤ λdec ≤ ubn+1.

3 There is a degenerate case in which Ua(x, λ) is constant for all λ, when the defense strategy x leads to an identical expected utility
for the attacker across all targets. To avoid this case, we can add a small noise to such defense strategy x so that these attacker
expected utilities vary across the targets, while ensuring that this noise only leads to a small change in the defender’s utility.

References
1. Tambe, M. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned; Cambridge University Press: Cambridge,

UK, 2011.
2. Yang, R.; Kiekintveld, C.; Ordonez, F.; Tambe, M.; John, R. Improving resource allocation strategy against human adversaries in

security games. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain,
16–22 July 2011.

3. Nguyen, T.H.; Yang, R.; Azaria, A.; Kraus, S.; Tambe, M. Analyzing the effectiveness of adversary modeling in security games.
In Proceedings of the AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 41–18 October 2013.

4. Nguyen, T.H.; Vu, N.; Yadav, A.; Nguyen, U. Decoding the Imitation Security Game: Handling Attacker Imitative Behav-
ior Deception. In Proceedings of the 24th European Conference on Artificial Intelligence, Compostela, Spain, 29 August–8
September 2020.

5. Gholami, S.; Yadav, A.; Tran-Thanh, L.; Dilkina, B.; Tambe, M. Do not Put All Your Strategies in One Basket: Playing Green
Security Games with Imperfect Prior Knowledge. In Proceedings of the 18th International Conference on Autonomous Agents
and Multiagent Systems, Montreal, QC, Canada, 13–17 May 2019; pp. 395–403.

6. McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in Econometrics New York; Zarembka, P., Ed.;
Academic Press: Cambridge, MA, USA, 1973.

7. McKelvey, R.D.; Palfrey, T.R. Quantal response equilibria for normal form games. Games Econ. Behav. 1995, 10, 6–38. [CrossRef]
8. Kar, D.; Nguyen, T.H.; Fang, F.; Brown, M.; Sinha, A.; Tambe, M.; Jiang, A.X. Trends and applications in Stackelberg security

games. Handb. Dyn. Game Theory 2017. [CrossRef]
9. An, B.; Shieh, E.; Yang, R.; Tambe, M.; Baldwin, C.; DiRenzo, J.; Maule, B.; Meyer, G. A Deployed Quantal Response Based Patrol

Planning System for the US Coast Guard. Interfaces 2013, 43, 400–420. [CrossRef]
10. Carroll, T.E.; Grosu, D. A game theoretic investigation of deception in network security. Secur. Commun. Netw. 2011, 4, 1162–1172.

[CrossRef]
11. Fraunholz, D.; Anton, S.D.; Lipps, C.; Reti, D.; Krohmer, D.; Pohl, F.; Tammen, M.; Schotten, H.D. Demystifying Deception

Technology: A Survey. arXiv 2018, arXiv:1804.06196.

http://doi.org/10.1006/game.1995.1023
http://doi.org/10.1007/978-3-319-44374-4_27
http://dx.doi.org/10.1287/inte.2013.0700
http://dx.doi.org/10.1002/sec.242


Games 2022, 13, 81 24 of 24
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