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Abstract: In this paper, we describe the Factored Value MCTS Hybrid Cost-Max-Plus algorithm, a
collection of decision-making algorithms (centralized, decentralized, and hybrid) for a multi-agent
system in a collaborative setting that considers action costs. Our proposed algorithm is made
up of two steps. In the first step, each agent searches for the best individual actions with the
lowest cost using the Monte Carlo Tree Search (MCTS) algorithm. Each agent’s most promising
activities are chosen and presented to the team. The Hybrid Cost Max-Plus method is utilized
for joint action selection in the second step. The Hybrid Cost Max-Plus algorithm improves the
well-known centralized and distributed Max-Plus algorithm by incorporating the cost of actions in
agent interactions. The Max-Plus algorithm employed the Coordination Graph framework, which
exploits agent dependencies to decompose the global payoff function as the sum of local terms. In
terms of the number of agents and their interactions, the suggested Factored Value MCTS-Hybrid
Cost-Max-Plus method is online, anytime, distributed, and scalable. Our contribution competes with
state-of-the-art methodologies and algorithms by leveraging the locality of agent interactions for
planning and acting utilizing MCTS and Max-Plus algorithms.

Keywords: Monte Carlo Tree Search; MCTS; Multi-Agent System; real-time decision making;
distributed coordination; planning algorithm

1. Introduction

The relationship between decision-making algorithms and game theory is character-
ized by their shared focus on the process of selecting optimal decisions within contextual
parameters. Decision-making algorithms, which are frequently employed in the fields of
computer science and artificial intelligence, frequently incorporate principles derived from
game theory. The proposed algorithms in this paper have been specifically developed to
facilitate decision-making processes or problem-solving tasks, considering many elements
and potential outcomes, akin to the principles observed in game theory. Individuals engage
in the process of evaluating various scenarios by making predictions regarding the conduct
of others and ultimately selecting the optimal course of action.

Here, we consider a group of cooperating agents who are trying to reach the same
decision point [1–8]. In Multi-Agent Systems (MAS), deciding between several potential
courses of action can be computationally expensive and difficult. Fortunately, in many
contexts, an agent must coordinate its actions with a small number of agents, and the
other agents can behave autonomously with respect to one another. The problem can be
made more manageable by factorizing the action space into that of a team of agents who
coordinate their judgments. In Cooperative Multi-Agent Systems (CMAS) with a common
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goal, coordination is essential for making good decisions. Each agent acts independently to
achieve a locally optimal goal while also helping the team achieve a global one.

Coordinating the independent decision-making processes of each agent is an essential
component of putting a policy for CMAS into action. This challenge of coordination might
be handled by establishing a centralized coordinator for the entire system. This coordinator
could decide what action each agent should perform and then convey this decision to
the agents. This technique is not reliable since there is a possibility that the centralized
coordinator may fail to work properly or that agents would struggle to communicate with
one another. As a result, we will investigate the possibility of employing a hybrid approach
that integrates both centralized and decentralized (or distributed) coordination. In the
absence of a central unit (also known as a coordinator), the agents need to find a way to
coordinate their actions toward the achievement of the common objective by employing a
distributed algorithm that considers the costs of those actions. This type of algorithm is
being proposed for the first time in this work.

Here, we would like to provide an anytime algorithm that can return a result at any
time, improving with time until the best result is obtained. The joint action with the highest
payout should be reported if the algorithm ends due to budgetary restrictions (time, cost of
activities, etc.).

The single Markov Decision Process (MDP) modeling that is the foundation of MAS is
generalized into a Multi-agent Markov Decision Process (MMDP), which adds the concept
of numerous cooperating agents who have their own action sets each (as specified in
Definition 1, page 962 [9]). It is possible for an MMDP to either centralize or decentralize
the decision-making process. In algorithms with centralized decision makers, a single
decision maker decides what actions should be taken by all the agents, but in algorithms
with decentralized decision makers, each agent acts as its own decision maker. Our
contribution is part of the Constraint Multi-agent Markov Decision Process (CMMDP)
field and focuses on online planning [9]. The CMMDP presents a greater challenge in
terms of obtaining a solution compared to the MMDP due to the limitations placed on the
available resources. These limitations on resources influence the decisions that are made by
the CMAS.

In general, the framework of the Coordination Graphs (CG) and the Variable Elimi-
nation (VE) algorithms that can be employed in this respect are what are used to solve an
MMDP [1–7,9,10]. These methods can be used to solve MMDPs. This VE technique works
by removing agents one at a time using a local maximization step. Its complexity increases
exponentially with the size of the induced tree width, which is determined by the size of
the largest clique that is produced during the process of eliminating nodes. Unfortunately,
the VE method is not an anytime algorithm, and the Max-Plus algorithm, which is offered
in both a centralized and a decentralized version in [3–5], is a solution for the anytime
MMDP. The Max-Plus algorithm is a payout propagation algorithm. Using this algorithm,
agents will exchange suitable payoff messages over the CG. Then, the agents will be able to
compute their individual actions based on the convergence of this approach. There is only
a limited amount of information available regarding the hybrid version of the Max-Plus
method with constraints, which is the primary topic of this work.

The goal of our work is to come up with a hybrid solution for a constrained scalable
decision-making method (centralized and distributed coordination) in MAS. The online
methods for making decisions offer an alternative approach in which the agents must plan
and carry out their actions at different times.

Online planning frequently uses the anytime method known as Monte Carlo Tree
Search (MCTS). In the context of MCTS, dealing with a sizable decision space is an open
problem that is constantly attracting attention. The scalability and huge branching factor
of the MCTS method are its drawbacks, which prevent it from scaling well beyond a
certain point. For the scaled coordinated coordination of agents, there are currently two
prominent methods, [1,2], which include three components: (a) online planning using
MCTS, (b) factored representation with CG, and (c) centralized Max-Plus method for joint
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action selection. Ref. [1] does not present the distributed Max-Plus method and ignores the
cost of action. Ref. [2] lacks the cost of actions and anytime aspects. To solve the centralized
multi-agent POMDP model, the authors use MCTS. A cutting-edge algorithm is used as
the answer to the multi-agent POMDP problem. But as the agent’s degree of connection
rises, it becomes unsolvable. Factored Value MCTS with Max Plus (FV-MCTS-Max-Plus)
and FV-POMDP, respectively, are the names of the suggested methods in [1,2].

This is, as far as we are aware, the first paper to deal with hybrid value factored
representation using MCTS for planning. This is a novel approach, and the justifications
for this two-step decision-making procedure are as follows:

(1) Contingent upon the circumstance (state), different actions have different levels of
relevance. Based on the current scenario, local-level decision-making determines the
order of activities, from high likelihood to low probability in terms of effectiveness.
Thus, increasing the likelihood that the best solution would be discovered early is a
highly helpful step for the anytime method.

(2) In a dynamic context, network segmentation is unavoidable since network connectiv-
ity is necessary for global-level optimization in multi-agent environments. In some
circumstances (such as those involving cyberattacks or network problems), this com-
munication may not always be assured. The local optimal solution in the first step
may be the best option in such scenarios because the algorithm may not be able to
reach the global optimal solution in such hostile situations.

We favor fully hybrid coordinating for multi-agent decision making for the follow-
ing reasons:

(a) In centralized arrangements, the central controller observes all agents jointly and
makes joint choices for all agents. Each agent acts in response to the central con-
troller’s decision. Failure or malfunction of the central controller is equal to the entire
MAS failing.

(b) To exchange information, the central controller must communicate with each agent,
increasing the communication overhead at the single controller. This may reduce the
scalability and robustness of MAS.

(c) In a centralized setup (centralized controller), agents are not permitted to exchange
information about state transitions or rewards with one another. A hybrid MAS
coordination strategy could allow each agent to interact to make local and corre-
lated decisions.

Our contribution has three components:

a. We consider a budget constraint approach in which each action is assigned a cost.
Different actions consume varying quantities of resources, which may be correlated
to the team’s global payoff [11]. In such a scenario, the goal of the local decision
maker is to optimize his decision under cost and budget constraints at any given time.
Consequently, the global team reward at each time step is calculated by subtracting
the total cost incurred in analyzing the cost of the local actions. In this manner, we
extend previous works [1–3] on centralized coordination where the only budgetary
constraint was time.

b. We devise the Hybrid (i.e., centralized and distributed) coordination of the Max-
Plus algorithm [3,4] where each agent computes and sends updated messages after
receiving new and distinct messages from a neighbor. Messages are sent in parallel,
which provides some computational advantages over the sequential execution of
previous centralized coordination algorithms [1,2].

c. We developed a new FV-MCTS-Hybrid Cost-Max-Plus decision-making method
with two stages. Our contribution is the development of a theoretical framework
for integrating Monte Carlo Tree Search (MCTS) with the Cost Hybrid Max-Plus
algorithm for decision making and execution. The proposed method is a suboptimal
Dec-POMDP solution. Even for two agents, it is known that the exact solution to a
Dec-POMDP is intractable and complete non-deterministic exponential (NEXP) [12].
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Here is a summary of the paper’s structure. Our presentation of the relevant literature
is in Section 2. In Section 3, the mathematical foundation is laid. In Section 4, we examine
and improve upon both cost-free variations of the Max-Plus algorithm, and in Section 5,
we introduce the novel cost-based distributed Max-Plus algorithms. In Section 6, we
looked at the Max Plus Hybrid Algorithm from a cost perspective. In Section 7, there
is information about the FV-MCTS-Hybrid Cost-Max-Plus approach that was suggested.
Section 8 contains our findings and suggestions for the future.

2. Related Work

The subject of multi-agent decision-making behavior coordination is a popular re-
search topic that is tackled in various communities such as Game Theory, Reinforcement
Learning, Decision Theory, Cybersecurity, Constraint Programming, Control, and Robotics,
to mention a few [11,13–20]. The incorporation of game theory principles into algorithms
facilitates the implementation of advanced and strategic decision-making processes inside
intricate contexts. Although they function in distinct situations, the notions of agents in
decision theory and players in game theory are comparable. According to decision theory,
an agent is a person or thing that makes decisions, frequently considering their preferences,
the information at hand, and possible results. The best solution for distributed agents
sharing a Global Reward is of particular interest [1,6,8,10,21]. Figure 1 depicts a taxonomy
of distributed and local optimization techniques for Multi-agent global behavior.
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This paper focuses on the coordination of centralized and distributed decision making
in which agents interact while making decisions. In such CMAS, agents’ prospective
decisions are constrained by the cost of their actions. Little is known about the effect
of action costs on decisions and the distributed coordination algorithms used to solve
real-time distributed planning scenarios when agents share a common objective.

In the context of a multi-agent POMDP model, which is a centralized model, the
concept of employing the MCTS algorithm to utilize the MAS structure was introduced
for the very first time in [2]. The elegant technique that was proposed uses the precise
method of solving the Coordination Graph (CG), which is known as Variable Elimina-
tion (VE) [3–5,9,10]. The Factored Value Partially Observable Monte Carlo Planning (FV-
POMCP) method that is proposed in [2] is not anytime, which is unfortunate. This aspect
was discussed in [1], in which the MCTS algorithm was utilized in conjunction with the
centralized implementation of the Max-Plus method in order to pick joint actions. In [22],
the strategy that was used was the same.

Our approach to the challenge of distributed coordination of multi-agent planning is
distinct from that of [1,2,10], all of which take a centralized approach to solving the problem.
In addition, the solutions that have been offered do not take into account the costs of the
actions. Only in the first stage of our solution do we make use of the MCTS algorithm with
the cost of [11], and this is to choose a limited, ordered collection of the promising actions
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of agents that will be presented to the group in the subsequent stage. Our approach makes
use of the Hybrid Cost Max-Plus method in the subsequent step. This algorithm will be
presented later in this work.

The MCTS methodology utilized in [1,2] is utilized for two reasons:

(1) To advance agents to the following global state, where the CG structure does not
change over time, by performing a global simulation from the current global state.

(2) To change each agent’s joint action choice only in the last stage of the algorithm (after
the centralized Max-Plus algorithm’s convergence).

Additionally, the uniform distribution selections of activities as suggested in [22]
will be improved by our hybrid method. The CG is used in other noteworthy works as
suggested in [3–5,9,10] without the MCTS extension. Because of the naive implementation
of the MCTS technique, the Dec-MCTS strategy utilized in [8] is unable to deal with the
exponentially enormous action space it causes. In some circumstances, the proposed
method in [8] is convergent.

3. Mathematical Background

We explore a cooperative multi-agent planning problem with a system that has N
agents, a finite horizon called T, and an approach that takes place in discrete time. At every
time step t, 1 ≤ t ≤ T, every agent i, 1 ≤ i ≤ N takes an individual action ai from its
set of actions Ai. The team has decided on the joint action represented by the vector of
team actions denoted by a = (a1, a2, . . ., ai, . . ., aN) and the reward function associated
with the team is denoted by Q(a). This function does not consider the cost of joint action.
The goal of the classic coordination issue [6] is to determine the global optimal joint action
a∗ = (a∗1 , a∗2 , . . . , a∗i , . . . , a∗N) that maximizes the global payoff function Q(a), i.e.,

a∗ = argmax
a

Q(a) (1)

If one were to take a naive approach, they would list all the various joint actions that
might be taken by all the agents and then choose the one that maximizes the global payoff
function Q(a). This is obviously unrealistic because the global team action space A = ×Ai
is an N fold cartesian product that grows exponentially as the number of agents N rises.
Since the cost of actions is not negligible in some application domains, it is challenging to
apply this model to some real-world situations because the payoff function Q(a) utilized in
Equation (1) does not take this into account [11].

We then investigate the discrete variable Si, the local state of agent i. The global state
of the system is denoted by S which is factored across the agents S = S1 × S2 × . . .× SN .
At time t, the MAS is in a global state s ∈ S , and in the next time step t + 1, the system will
transition to a new global state s′. The probability of transitioning to the next state s′ is
p(s′|s, a). We look at the most basic circumstances for factorizing the action space (FAS),
where the system’s state is entirely observed and available for determining an action for
each component in the action space factorization. An MMDP can be used to model the
aforementioned FAS [23].

The cost function ci of doing an individual action ai from its set of actions Ai maps
an action ai to a real number. The cost of the global joint optimal action a of the team C(a)
is also a real-valued function. When two agents i and j interact with each other, the cost
incurred due to their interaction is denoted by Ci,j, which maps a pair of actions

(
ai, aj

)
to a

real number. In the version that is distributed, we assume that only connected agents on an
edge coordinate their local activities at a specific time t.

Following the approach from [1] the overall cost, C(a), in CMAS is linear in the number
of agents N, and in N , the number of pair interactions (i, j):

C(a) = ∑N
i ci + ∑N

(i,j) Ci,j (2)
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We define the global payoff (a.k.a. Global Reward) of the team as R(a) = Q(a)−C(a),
where Q(a) is the benefit to mission accomplished by the team of agents, and C(a) is the cost
of the global joint action.

The new coordination problem is to find the cost-optimal joint action a∗ that maximizes
the Global Reward of the team with cost, i.e.,

a∗ = argmax
a

R(a) (3)

The reward (payoff) function with the cost of an action of agent i is defined as
Ri(ai) = Qi(ai)− ci [3] and, for two agents that are connected on the edge (i, j), the reward
function is defined as Ri,j

(
ai, aj

)
= Qij

(
ai, aj

)
− Ci,j, where the joint payoff values are given

by Qij
(
ai, aj

)
and the associated joint cost values are Ci,j.

In general, in the Max-Plus algorithm, each agent calculates the edge reward by
dispatching messages to its neighbors [6]. Including the cost ci for action ai (assuming
the cost of the action is not dependent on the local state) and the cost of joint action Ci,j,
then a general message is sent from agent i to agent j (which is action aj) is a scalar-valued
function of the action space of the receiving agent j as given below:

µij
(
aj
)
= Qi(ai)− ci + ∑k∈Γ(i)\j µki(ai) + Qij

(
ai, aj

)
− Ci,j (4)

The only variable in the right part of (4) is the action ai. For convergence, the local
agent i will select its local action ai (from its set of local actions Ai) to send the maximum
payoff value Qi given by (4) to its neighbor j, producing the following message:

µij
(
aj
)
= max

ai
{Qi(ai)− ci + ∑k∈Γ(i)\j µki(ai) + Qij

(
ai, aj

)
− Ci,j} (5)

The message µij
(
aj
)

can be regarded as a local payoff function of the agent i. Due to the
cost, the scalar value given by (5) could become negative. In this case, the contribution to
the edge payoff due to the other agents is defined as

[
µij
(
aj
)]+

= max
[
0, µij

(
aj
)]

. Finally,
each agent computes its optimum action individually:

a∗i = argmax
ai
{0, [Qi(ai)− c(ai) + ∑j∈Γ(i) µji(ai)]} (6)

If the edge payoff is 0, then the agent does not need to take any new action and keep
the old action.

4. Both Variants of No Cost Max-Plus Algorithms

Max-Plus is a well-known algorithm for computing the maximal posterior config-
uration in an (unnormalized) undirected graph model. This algorithm is like the belief
propagation (BP) algorithm or the sum-product algorithm in Bayesian Networks [5,7].
In this algorithm, two agents i and j send information regarding their locally optimized
payoff values in an iterative manner. The earlier versions of this algorithm [1,2] did not
incorporate the cost of actions and the mission benefit for a particular agent.

A. Centralized Max-Plus Algorithm with no Cost

The iterative sequential operation of iterations is utilized by the centralized Max-Plus
algorithm. The central coordinator picks an agent i and starts the process. In every iteration,
each agent i computes and sends a message µij to the neighbor j (connected on an edge) in a
predefined order. This process continues until all messages are convergent to a fixed point,
or until a “deadline” signal is received (either from an external source or from an internal
timing signal). Then, the most recent joint action is reported. For anytime extension, we
update the joint action when it improves upon the best value found so far.

A coordination graph (CG) is a graph G = (V, E) where each node V represents an
agent and each edge E defines the dependency between two agents: N = |V| and N = |E|.
The Max-Plus algorithm is scalable in terms of the number of agents N and their number
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of local connections N in the CG representation [3]. In general, for any CG, we can factor
the global payoff function value as follows:

Q(a) = ∑i∈V Qi(ai) + ∑(i,j)∈E Qij
(
ai, aj

)
(7)

where Qi(ai) denotes a local payoff for agent i and it is only based on its individual action
when contributing to the system individually.

Considering an edge (i, j) for agents i and j, a local joint payoff function Qij takes an
input, a pair of actions

(
ai, aj

)
, and provides a real number. In the Max-Plus algorithm

with no cost, in each time step t, each agent i that is in its local state Si takes action ai by
collecting the payoffs from its neighbors as in Figure 2a. This agent sends a local message
µij that maps an action aj of an agent j to a real number as shown in Figure 2b.
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In Figure 2b, the transmitted message µij : Aj → R from agent i to agent j in response
to the action aj taken by agent j contains information about the payoff of agent i that is the
local payoff Qi(ai), joint payoff Qij

(
ai, aj

)
, and the cumulated payoff from all its neighbors

Γ(i)\j of node i except node j is as given below:

µij
(
aj
)
= Qi(ai) + ∑

k∈Γ(i)\j
µki(ai) + Qij

(
ai, aj

)
(8)

The first term in relation (8) is the local payoff of the agent i when taking the local
action ai that is independent of the action aj of its neighbor j. The second term of (8) shows
that agent i is collecting all the payoffs from its neighbors µki(ai) (except neighbor j) when
all its neighbors are observing the action ai. The agent i is sending its collected payoff only
to its neighbor j. The joint payoff Qij

(
ai, aj

)
is shared for both agents. Each one contributes

half of it as follows:
1
2

Qij
(
ai, aj

)
=

1
2

Qji
(
aj, ai

)
The agent i can send payoff messages for any action of agent j as in Figure 2b (dotted

arrows). The agents keep exchanging messages at each iteration until they converge. It is
proved that for tree-structured graphs (no loops), the message updates converge to a fixed
point after a finite number of iterations [6].

As an example, a coordination graph with six agents is shown in Figure 3. From Agent
2’s perspective, Agents 1, 3, 4, 5, and 6 are leaves (children), while Agents 1, 2, 3, and 4
are roots (parents). The messages transmitted “up” to roots (parents) are different from
messages sent “down” to their children (leaves). Calculating relation (7) is different for
different types of agents. If an agent is a leaf, it can respond immediately. However, if an
agent is a parent, it waits for its children to send it their payoffs.
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Figure 3. Coordination Graph with 6 agents. Agent 3 is sending messages µ32(a2), µ34(a4) to its
neighbors 2 and 4.

As mentioned before, the Max-Plus centralized coordination problem with no cost is
to find the optimal joint action a∗ that maximizes Q(a), defined in (9) as follows:

a∗ = argmax
a

Q(a) (9)

It should be noted that for the cumulated payoff of the agent from i, all its neighbors
in (8) are already included in the local payoff of agent j in (7). The exact solution of
Equation (9) is the Variable Elimination (VE) algorithm, which unfortunately is not an
anytime algorithm.

B. Distributed Iterative Max-Plus Algorithm with no Cost

The distributed version of the Max-Plus algorithm with no cost is much more complex
in terms of implementation and increased number of iterations since the agents have no
access to the factored global payoff function given by (7). The Global Reward should
be evaluated within the MAS and communicated to all agents. Therefore, the agents
participating in the distributed algorithm will have enhanced capabilities to compare those
participating in the centralized algorithm. We need to distinguish between the evaluated
Global Reward G in distributed MAS, the instantaneous Global reward at iteration m as
Gm and the initial desired Global Reward as G0 that is presented to all agents at the initial
time step of the horizon t = 0. We assume a distributed synchronous coordination.

The global payoff function Q(a∗) after calculating using (7) of every synchronous
time step t must be calculated and stored. A trivial approach would be to centralize
the value Q(a∗) to a single agent in every time step. This agent would then inform the
other agents each time a solution that improves the results on all previous solutions is
obtained. However, this method has drawbacks both in terms of the increase in the number
of messages and the violation of the agent’s privacy caused by the need to inform a
single agent (not necessarily a neighbor) about the joint payoff function Qij

(
ai, aj

)
which

represents the payoff of the coordinated action of the other two agents i and j.
An elegant solution to overcome the above issue is to use a Spanning Tree (ST)

Gt = (V, Et), where at each time step t, the number of agents is fixed as V, while the
number of connections (Et) depends on the MAS configuration at that time. We still con-
sider the case where all agents are connected (the domain is connected). An example of
ST associated with the CG given in Figure 3 is represented in Figure 4. In general, an ST
associated with a CG is not unique and should be known by all the agents at every time
step t. If the ST is fixed (as we assume for simplicity in this paper) then it will be initialized
at the beginning of the distributed Max-Plus algorithm.
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Figure 4, Agent 2 is the root that makes the final calculation based on the payoff received 
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every time step 𝑡. 

Other important issues are (1) the status of every agent in MAS and (2) the time when 
the agents start their local algorithm. Every agent is in waiting mode and any agent will 
initiate the process of calculating the Global Reward in MAS when it believes it will make 
a significant contribution to it. This happens when an agent has an increased change in its 
local payoff or/and edge payoff with its neighbor 𝑗. 

In the distributed Max-Plus algorithm with no cost, the agent 𝑖 at any iteration 𝑚 
may receive four types of messages 𝓂, 1 ≤ 𝑙 ≤ 4 sent by agent 𝑗, and therefore its re-
sponse to agent 𝑗 should match the incoming messages. As mentioned before, any agent 
can initiate exchange messages at any time. In addition, we need to distinguish if the agent 𝑖 is a leaf or root, as shown in Figure 5a,b. 

 
(a) (b) 

Figure 5. (a) Leaf (terminal); (b) root (parent). 

The main difference between the leaf (terminal node) and the root (parent node) is 
the computational time. If the agent 𝑖 is a leaf, then it can respond immediately in the 
next iteration 𝑚 + 1  with its optimal action 𝑎,   as shown in Figure 5a. Otherwise, the 
agent 𝑎 must wait for payoff calculation from its children denoted by Γ(𝑖)\𝑗 as shown 

Figure 4. Example of spanning tree graph associated with CG from Figure 3.

In an ST, every agent receives information from his children, calculates the resulting
payoff including their own contribution, and passes it to their parents. For example, in
Figure 4, Agent 2 is the root that makes the final calculation based on the payoff received
from its children, Agents 1 and 3, respectively. Agent 3 is also a parent (rooted) and, in its
calculations, it considers the payoff from its child, Agent 4. Agents 1, 5, and 6 are leaves
which report to their parents.

After calculating the global payoff value Q(a∗) in this ST, Agent 2 communicates this
value to other agents, i.e., 1, 3, 4, 5, and 6, by propagating down in the ST. Using this
mechanism, all the agents in the distributed MAS are aware of the global payoff value at
every time step t.

Other important issues are (1) the status of every agent in MAS and (2) the time when
the agents start their local algorithm. Every agent is in waiting mode and any agent will
initiate the process of calculating the Global Reward in MAS when it believes it will make a
significant contribution to it. This happens when an agent has an increased change in its
local payoff or/and edge payoff with its neighbor j.

In the distributed Max-Plus algorithm with no cost, the agent i at any iteration m may
receive four types of messages ml , 1 ≤ l ≤ 4 sent by agent j, and therefore its response to
agent j should match the incoming messages. As mentioned before, any agent can initiate
exchange messages at any time. In addition, we need to distinguish if the agent i is a leaf or
root, as shown in Figure 5a,b.
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Figure 5. (a) Leaf (terminal); (b) root (parent).

The main difference between the leaf (terminal node) and the root (parent node) is the
computational time. If the agent i is a leaf, then it can respond immediately in the next
iteration m + 1 with its optimal action a′i as shown in Figure 5a. Otherwise, the agent ai
must wait for payoff calculation from its children denoted by Γ(i)\j as shown in Figure 5b.
Please note the difference between the actions and the reported payoff as explained below.

The incoming messages received from agent j are explained next.
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(1) Message m1 = µji(ai) (green line in Figure 5a) is a Max-Plus typical message
received from agent j when agent i is taking action ai. Agent i will respond with the
message m′1 = µij

(
aj
)

and will start exchanging messages until the local convergency is
achieved: m1 ≈ m′1 (no improvement of the local reward or no significant difference in
the messages exchanged). The final action of agent i is the action a′i as in (9). Agent j
initiates the process since it observes a significant change in the reported payoff from agent
i, m1 6= m′1. The same process can also be started by agent i which observes a significant
change in the reported payoff of agent j. When local convergency is reached, the action
presented by agent i to its neighbors is a′i (which is not necessarily the optimal one a∗i ).
Since the local information of agent i is modified and possibly improved at convergency,
agent i also believes that the team Global Reward has been improved. In this case, after
local convergency, agent i will ask for a payoff evaluation in the distributed MAS system
and agent j will respond in this regard by sending the message m2. Before asking for this
payoff evaluation, the action of agent i is a′i and its reward is

ri = Qi
(
a′i
)
+

1
2

Qi,j

(
a′i, a′j

)
(10)

since agent i must share the edge reward with agent j which also contributes to ri reward
via its action a′j. In (7), the payoff function Qij

(
ai, aj

)
contains the cumulated factor 1

2 from
each agent on the edge.

The distributed Max-Plus Algorithm runs more iterations than those of the Centralized
Max-Plus Algorithm. The centralized version runs at most M iterations which are necessary
for the convergency to reach the fixed point. Usually, this number is small M ≤ 10 and
depends on the applications. If the convergency cannot be reached within M iterations, the
Centralized Max-Plus algorithm will stop. For the distributed Max-Plus version, there are
additional hops h as illustrated in Figure 4. To send the evaluated Global Reward in the
particular case illustrated in Figure 4, where there are three hops, there are necessary six
additional steps (three upward and three downward) to propagate the evaluated Global
Reward upward to Agent 2 from Agents 1, 3, 4, 5, and 6. There are three other hops to send
the evaluated Global Reward from Agent 2 to Agents 1, 3, 4, 5, and 6. For N agents, the
worst scenario is the 2(N − 1) step, so the distributed Max-Plus algorithm runs at most
1 ≤ m ≤ M + 2(N − 1) iterations.

Let us assume that anytime Global Reward value in the distributed coordination
Max Plus algorithm at iteration m ∈ {1, 2, . . . , M + 2(N − 1)} is Gm. Since we assume a
distributed synchronous coordination, each agent i is synchronized at iteration m. Each
agent will be able to go to iteration m + 1 without a coordinator (controller). There is no
possibility that any other agent j will start iteration m + 1. The rest of the messages (m2,
m3, andm4) described below are necessary to calculate the time Global Reward Gm and
the evaluated Global Reward in the MAS system denoted by G. These two payoff values
Gm and G are compared against the desired Global Reward denoted by G0 presented to all
agents at the initial time step of the horizon time step t = 0.

The Evaluated Global Reward (anytime Gm or at the end of the horizon time T) will
be calculated in three successive phases: (a) request message for payoff calculation sent to
agent i, (b) request message for payoff accumulation in the system, and (c) request message
to calculate the Global Reward of the team which is shared by all neighbors.

(2) Message m2 = evaluate (j) (blue line in Figure 5a) is a request for payoff evaluation
sent to agent i from agent j. Agent i will respond with the message evaluate (i). This process
is illustrated in Figure 6a,b depending on whether agent i is a leaf or root. When agent i
receives this request and it is a leaf (Figure 6a), it will lock the best action a′i found so far and
respond to it. In its response to agent j, agent i will communicate its best action found so far:
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a′i = arg max
ai

{
Qi(ai) + µji(ai)

}
which equals the contribution of the individual function of

agent i and different subtrees with the neighbors of agent i as root and its local payoff

ri = Qi
(
a′i
)
+

1
2

Qi,j
(
a′i, ai

)
(11)
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tribution to the team by calculating the instantaneous Global Reward 𝐺  . If its 
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No further action is required from agent i.
If agent i is a root (Figure 6b), it will not lock its action a′i. It will send the message

evaluate (i) to all its children. As a root, agent i is asking all its children to report their
payoffs to it and it will initiate the calculation of the payoff accumulation, which is explained
next. Agent i will fix its individual action after the evaluation.

(3) Message m3 (purple line in Figure 6c,d) is a request from agent j to calculate the
accumulated payoff in the MAS system. Agent j will send its local reward rj accumulated
so far to agent i as illustrated in Figure 6c (leaf) and Figure 6d (root), respectively. If agent i
is a leaf, then it will modify its accumulated local reward to ri = ri + rj and it will stay in
this state until it receives the last message for calculating the Global Reward for the team as
shown in Figure 7. If the agent is a root (parent), it will send a request message to calculate
the global payoff to all its children (purple arrows) by sending its value ri + rj as shown in
Figure 6d. As a parent, it will receive the payoff for all its children (red line) and send it
to its parent, agent j (red line), as shown in Figure 6d. In other words, after receiving this
message of calculating the accumulated payoff, agent i will send the information regarding its
local payoff either back to the neighbor j or to all its children.
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Note that when agent i is receiving the accumulated rewards from all its children, it
might choose a different value for its action a′i found so far in MAS. Since this action is
fixed in iteration m, the agent must unlock this action for calculating the global payoff of
the MAS for the next iteration m + 1 of the distributed Max-Plus algorithm.

The last message m4 (red line in Figures 5a and 7) is the message sent by agent j to
agent i, and it contains the information about the evaluated Global Reward G of the team
calculated so far. Agent i is not aware of this value when it notices an increase in its local
payoff, and it believes that it can make a significant contribution to the MAS evaluated
Global Reward. Agent i will check if it must continue its local process of finding new
optimal actions or not. To do so, it must compare the evaluated Global Reward G against
the instantaneous Global Reward Gm and finally compare it against the imposed Global
Reward G0. This mechanism is illustrated in Figure 7 and it is called “anytime”.

(4) After receiving the message m4, agent i will lock the action and calculate its contri-
bution to the team by calculating the instantaneous Global Reward Gm. If its contribution
to team (instantaneous Global Reward) Gm is not increasing and it is less than the evaluated
Global Reward so far (NO in Figure 7), i.e., the best action found so far a′i is not increasing
the team’s Global Reward Gm, then it will ask for help from its children. Agent i will unlock
a′i and repeat its optimization process. If its contribution is increasing the team’s Global
Reward Gm (YES) at iteration, m, then its optimal action a′i will be reported as an optional
one a∗i and the evaluated Global Reward G will become Gm. This instantaneous value will
be communicated to its neighbors (team). In this way, its belief that it can contribute to the
instantaneous Global Reward Gm is certain. Now, agent i needs to know if the team must
move forward or stop. The anytime algorithm will STOP if the resources of agent i or a
deadline message arrives, or if the desired Global Reward is met. This is a very important
task. As mentioned before, it will allow the algorithm to escape from local maxima and the
team will move forward to achieve the desired Global Reward assignment G0 presented to
all agents at the initial time step of the horizon t = 0.

If the instantaneous Global Reward Gm (Figure 7) and the evaluated Global Reward
G are both greater than the desired Global Reward G0 (YES), then the root Agent 2 (see
Figure 4) will stop working and communicate its decision to the rest of the team. The actions
can be executed if it is required. If not (NO) then the agent will continue its optimization
process. Therefore, the team will work together in a distributed coordination until the time
T. This is a major difference in contrast with the Max-Plus centralized coordination version.
In the distributed implementation, in addition to the anytime aspect, each member of the
team must check if the desired Global Reward G0 is achieved. Therefore, in the distributed
version, the capabilities of the agent are enhanced in contrast with the centralized version.

5. Distributed Max-Plus Algorithm with Cost

The iterative Max-Plus algorithm with limited budget and coordination graphs is a
scalable and anytime algorithm that provides the best action a∗i for any agent and the best
global joint action a∗, which will maximize the factored Global Reward value at a given
global state s described below:

R(a) = ∑i∈V R(ai) + ∑(i,j)∈E R
(
ai, aj

)
(12)

The Cost-Distributed Max-Plus algorithm runs individually for every agent i and
works with Spanning Tree (ST) coordinated graphs. This feature confers a major advantage
against CG used in previous works [1,2] because some local interactions could be discon-
nected due to harsh communication channels. The only requirement for our algorithm is
that the domain is “connected” regardless of the number of edges. The algorithm is pro-
vided in [24] and it is part of the Hybrid Max-Plus Algorithm with Cost as described next.
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6. Hybrid Max-Plus Algorithm with Cost

In the Cost Hybrid Max-Plus algorithm, every agent i may receive a vector segmen-
tation status message s = [1, 0]. Message s is a segmentation message (represented with
a dotted red arrow in Figure 8) indicating the communication status to the centralized
coordinator for all agents in the system. Initially, at moment t, all the agents are working
together in a centralized scenario on a CG under the supervision of the centralized con-
troller. Later, at t = t + 1, the agents will regroup together keeping the same complexity
of the message under the same centralized controller. If s = 1 for all agents at time step
t, then no segmentation occurs in the system for all N agents. All agents will continue in
their centralized setting by using CG until a segmentation message occurs. However, if
s = 0 for some N2 < N agents at time step t, then a segmentation process occurs. The
group of N agents will split into two groups, N1 + N2 = N. The N1 agents will continue
under the supervision of centralized coordinators (left side) on a CG, and N2 agents (right
side) will execute the distributed Max-Plus algorithm on a spanning tree (ST). Later, the
two aforementioned groups may reorganize under centralized supervision.
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For N = 6 agents, from our example in Figure 3, the system will split into two groups
by cutting the link between the agents Q3, Q4 and Q1, Q4 respectively, as soon as the
segmentation message s = 0 is received. The grouping N2 is composed of the agents
Q1, Q2, Q3 chosen to take part in a Spanning Tree formation (decentralized) [4]. The group
N1 consists of agents Q4, Q5, Q6 chosen to participate in the centralized CG setting [3]. For
the sake of illustration and numerical experimentation, we have divided them into equal
groups. The group N1 that can still connect with the centralized coordinator will remain in
their centralized setting (CG) (left green arrow in Figure 8). The secondary group N2 that
is unable to maintain communication with the coordinator will continue in a distributed
Max-Plus algorithm (right red arrow in Figure 8) in a Spanning Tree (ST) setting [4]. After a
while, at time step t = t + 1, if s = 1, every agent will reassemble into a group.

Another message received only by agents in the group N2 that loses connection with
the central coordinator is s = 0. Message s = 0 is used by the distributed Max-Plus
algorithm and it typically tells each agent what part of distributed Max-Plus algorithm
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should be executed. For example, it can be m1 = µji(ai), which is a typical Max-Plus
message (line 23 in the algorithm below). When the message is a request to calculate the
accumulated payoff from agent j (line 30 in algorithm below), then the agent i will calculate
the accumulated payoff in the MAS. The last form of incoming message (line 39) is the
message sent by agent j to agent i, and it contains information about the evaluated Global
Reward of the team calculated so far.

We present the pseudocode of the proposed cost hybrid algorithm as Algorithm 1
below. We provided at the input of our proposed algorithm the number of agents N, CG
configuration, and the following information about every agent i:

• Actions for any agent Ai, ai ∈ Ai.
• Initialization by the centralized coordinator for any agent µij = µji = 0, for any

(i, j) ∈ E, ai ∈ Ai, aj ∈ Aj, and for any agent i, ri = 0 and R(a).
• The costs of actions ci for any agent i and the costs Ci,j for any pair of actions

(
ai, aj

)
.

Algorithm 1 Wait for segmentation message s as shown in Figure 8

1. IF an agent receives the segmentation message s = 1 Go to the Cost Centralized Max Plus
algorithm given below://All agents that receive s = 1
2. WHILE the fixed point is not reached, time and cost budget are not reached//the centralized
coordinator is evaluating this condition
3. DO for any iteration m
4. FOR any agent i
5. FOR all neighbors j ∈ Γ(i)
6. a. compute µij(aj) = Qi(ai)− ci + Qij(ai, aj) + ∑k∈Γ(i)\j µki(ai)− Ci,j
7. b. normalize the message µij(aj)

8. c. send the message µij(aj) to the agent j
9. d. check if µij(aj) is closed to the previous message (equivalent to reaching the
convergence)
10. END FOR all neighbors
11. Calculate by centralized coordinator

a∗i = arg max
ai

{
0, [Qi(ai)− c(ai) + ∑j∈Γ(i) µji(ai)]

}
12. Determine a∗, the optimal global action so far including all previous a′i
13. //Use anytime:
14. IF R(a) ≥ r THEN a∗i = a′i ; r = R(a′i)
15. ELSE a∗i = a′i
16. END IF
17. END FOR every agent i
18. END DO for any iteration m
19. END WHILE
20. Return the global reward R(a)
21. ELSE IF//All agents that receive s = 0
22. Provide the Spanning Tree with algorithm in [15] and Go To the decentralized Max-Plus

WHILE the fixed point is not reached, horizon time T, and cost budget are not reached
//Root agent is

evaluating this condition
23. IF m1 = (regular Max Plus typical message given by (4))
24. FOR any iteration l, 1 ≤ l ≤ M + 2(N − 1)
25. FOR all neighbors j ∈ Γ(i)

a. compute µij(aj)

µij(aj) = Qi(ai)− ci + Qij(ai, aj) + ∑k∈Γ(i)\j µki(ai)− Ci,j
b. normalize the message µij(aj) for convergence
c. send the message m1 = µij(aj) to the agent j if different from previous

d. check if µij(aj) is closed the previous message value
26. END FOR//for all neighbors.
27. Calculate a′i with (6) the optimal individual

action a′i = arg max
ai
{0, [Qi(ai)− c(ai) + ∑j∈Γ(i) µji(ai)]}

28. Determine a′ the optimal global action so far including all previous a′i
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Algorithm 1 Cont.

29. END FOR//all iterations
30. ELSE IF m2 = (a request for payoff evaluation)
31. Lock a′i , set ri = 0, send the evaluation request to all children.
32. IF agent i is a leaf initiate the accumulation payoff
33. END IF
34. ELSE IF m3 = (request to calculate the accumulated payoff denoted by ri for agent i)
35. ri = ri + rj//add payoff of child rj
36. IF the agent i is a root sends the global payoff to all children
37. ELSE sends the global payoff to parent
38. END IF
39. ELSE IF m4 = (evaluate Global Reward)
40. Calculate the evaluated global reward
41. Use anytime:
42. IF R ≥ r
43. a∗i = a′i and r = R(a′i)
44. ELSE
45. a∗i = a′i
46. END IF
47. END IF//(message s = 0)
48. END WHILE
49. Return the best joint actions a∗ and the global reward R(a) accumulated so far
50. END IF//(segmentation message s = 1 or 0)

The anytime extension of the distributed Max-Plus method is more complex. Therefore,
in this system, an agent only initiates the evaluation of distributed joint action when it is
deemed worthwhile. The fact that messages are transmitted in parallel gives this method
a computational edge over centralized Max-Plus algorithms that execute sequentially. A
distributed Max-Plus method, on the other hand, requires more work than a centralized
one because each agent has to decide whether to report the action individually or for the
system to converge.

In a distributed Max-Plus algorithm, each agent computes its local contributions to the
global payout by initiating the propagation of an evaluation message via a spanning tree
and then forwards it to the parent node. A parent node then adds its own reward to the
total of all the payoffs of its children and sends the result to all of its parent nodes before
combining the payoffs for all nodes.

7. Factored-Value MCTS Hybrid Cost Max-Plus Method

The primary innovation we offer is the Cost Hybrid Factored Value MCTS Max-Plus
method (Figure 9), a new approach to planning and acting. Decision making is performed
using this two-phase method:

(I) For Phase I (Figure 9, green), each agent individually runs the MCTS algorithm
(MCTS depth steps are marked by d), resulting in a condensed, ordered list of its best
possible actions (we will not discuss the MCTS findings [11] here). We limit our attention
to the Cost MP algorithm. For each and every state agent s, at time step t, the initial set of
actions Ai is now reduced to the new set Ak

i =
{

a1
i , . . . , ak

i

}
where k < |Ai| as in Figure 9

where an example is illustrated for three actions: k = 3. After Phase I is over, each agent
will give the team this sorted, selected set. After Phase I, the segmentation message may
occur, and Phase I can restart later at any time t ≤ T when the agents are regrouped in the
state s′ as shown in Figures 8 and 9. In Figure 9, this segmentation process is depicted by a
red feedback connection.

Given by decreasing the branching factor |Ai| for every agent, the number of actions
per state Ai will be significantly diminished, as the potential action space for each agent ex-
hibits an exponential cardinality in relation to the time horizon. The proposed methodology
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for decreasing the branching factor |Ai| for each agent is superior to randomly contracting
the sample space as described in reference [8], or selecting actions based on a uniform prob-
ability distribution as mentioned in reference [10]. This is due to the fact that our method
gives the most likely activities for preparation and implementation the highest probability.
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(II) During Phase II, as soon as the segmentation message s occurs, there will be two
subgroups created from the original agent group. If s = 1 (Line 2 of Section V’s algorithm),
the Cost Centralized Max-Plus algorithm will then be used by a small group of agents to
carry out the decision-making process as shown in Figure 2. The other subgroup, which
loses contact with the centralized coordinator (s = 0), will employ the Cost-Distributed
MP algorithm, as outlined in lines 21 through 49 of the pseudocode, during that same
time period. It should be noted that, based on our experiments, there may be a difference
in the number of iterations required to run the cost MP algorithm in a decentralized and
centralized setting. The results will be gathered at time step t + 1 in any case.

During this time step t, the MAS is in the global state s ∈ S , and in the following time
step t + 1 the system will undergo a global transition. s′. The possibility of transitioning
to the following state s′ is p(s′, s, a) = 1 (is certain) if the intended Global Reward R(a)
is not achieved by the team as in Figure 9 (NO option). If p(s′, s, a) = 0, the MAS is
going to maintain its current state. s or s′ with p(s′, s, a) = 0 if the intended Global
Reward is met (YES option). In the latter scenario, MAS agents execute the best joint
action a∗ = (a∗1 , a∗2 , . . . , a∗i , . . . , a∗N) discovered thus far if it is needed by the team, and the
algorithm will terminate.

Our approach is capable of surmounting the centralized MCTS solution that was
suggested in reference [1]. The final coordinated actions of the team are determined
within that system via simulation of the global state n. Nevertheless, progress towards
the subsequent global state cannot be assured. Our proposed approach is capable of
surmounting this challenge.

In order to comprehend the hybrid algorithm’s performance characteristics, we only
provide the numerical results of the Payoff Value and Convergence of reaching the fixed
point in this paper. Any online strategy must consider convergence as a primary concern,
and the suggested algorithm’s efficiency in achieving the set payoff value is a determining
factor. The Cost-Distributed Max-Plus algorithm (Figure 10) and the Cost Centralized MP
algorithm (Figure 11) are graphical plots that represent our results. The four primary sce-
narios of decentralized deterministic, decentralized randomized, centralized deterministic,
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and centralized randomized are generated by the combination of the reached Payoff value
and the convergence of the algorithms.
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The blue plots show random actions, and the red plots show deterministic payoff, or
performing actions in a deterministic order. In order to compare with sequential decision-
making systems, randomized action (uniform distribution) is taken into consideration.
For every plot, the red scale on the left represents the payoff value range, and the green
scale on the right represents the convergence scale. The splitting segmentation process in a
three-node MAS configured in both distributed and centralized algorithms depends on the
actual case at time t. This is explained in the above section.

We examine the CG scenario with six agents, akin to Figure 3. We will split into
two groups if a segmentation message s is received by either of them (red arrow). In this
scenario, there will be no communication between the two groups of six agents. The results
are plotted in Figure 10 for the first tree agents, Q − 1., Q − 2., Q − 3., which will be
configured in a Spanning Tree configuration (distributed or decentralized). The payoff
value and the convergency performance for the second group (centralized in CG settings)
of agents, Q − 4., Q − 5., and Q − 6., will be plotted, respectively, as shown in Figure 11.
We maintained the same action costs.
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Every plot has a convergence threshold and four graphical structures. The maximum
payout for the centralized algorithm is reached after approximately 374 iterations for
a convergence threshold of 0.001, whereas the maximum payout for the decentralized
algorithm is reached after approximately 1023 iterations. But the centralized algorithm
reaches convergence after roughly 344 iterations, and the distributed algorithm does so
after about 215 iterations. Take note of the various maximum payoff amounts as well. In
the decentralized case, the maximum payoff value is approximately 67, whereas in the
centralized scenario, it is approximately 74.

The payoff value is greater in the centralized scenario because the centralized controller
has “global view” information of all the agents in the MAS and can therefore control the
Global Reward (GR) or payoff. Local agents in the scenario involving distributed control
have a “partial view” of the environment in which they function. It has been observed that
the distributed algorithm converges more quickly than the centralized algorithm for the
same number of agents; nevertheless, it requires a longer duration to reach GR.

Within a centralized environment managed by a central coordinator, the agents are
prohibited from sharing any information. A completely decentralized coordination strategy
for MAS might enable correlated and localized decisions for every agent capable of commu-
nication. When local rewards are considered, the decentralized approach is unable to attain
the maximum network-wide reward that the centralized case is capable of accomplishing.

As a result, we can conclude that (a) the centralized algorithm reaches a maximum
payoff before the distributed algorithm, (b) the distributed algorithm converges more
quickly than the centralized algorithm, (c) the centralized algorithm reaches a maximum
payoff earlier than the distributed algorithm, and (d) the centralized algorithm reaches a
higher maximum payoff than the distributed algorithm during the convergence process.

8. Conclusions and Future Work

The focus of our research was on real-time multi-agent decision making, with a par-
ticular focus on the incorporation of a cost factor. To tackle this challenge, we employed
the Coordination Graphs and Spanning Tree setups. For the first time, the Cost Hybrid
Max-Plus algorithm was presented. The proposed technique, called Cost Hybrid Factored
Value MCTS Max-Plus, has properties that make it suitable for practical uses, like cybersecu-
rity [11]. These characteristics include online functionality, anytime capability, distribution
over multiple agents, and scalability in terms of the number of agents and local interactions.

Future work on enhancing the Global Reward with the MAS cost based on the agent
interactions’ locality offers numerous avenues.

Using the most recent developments in Deep Reinforcement Learning, which have
shown the enormous potential of neural networks for function approximation in handling
a large state space, is one potential future direction.

“Regret techniques” from Game Theory serve as inspiration for another path. One
or more agents may feel “regret” for their prior actions when the team selects the global
optimal course of action. Maximizing the Global Reward is the same as minimizing the
counterfactual regret. The essential concept is that the data changing at a specific node is
qualitatively represented by the information state.

The information statistical approach is an additional approach to maximize the infor-
mation from a specific state of MAS.
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