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Abstract: Hydrogels have played a significant role in many applications of regenerative medicine and
tissue engineering due to their versatile properties in realizing design and functional requirements.
However, as bioengineered solutions are translated towards clinical application, new hurdles and
subsequent material requirements can arise. For example, in applications such as cell encapsulation,
drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of
natural extracellular matrix-based materials, but with defined, controllable, and modular properties.
Advantages for these clinical applications include ultraviolet light-free and rapid polymerization
crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or
in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and charac-
terization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a
bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated
by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chro-
matography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular
weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed success-
ful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays,
protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed
in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with
or without the hydrogel. These initial studies present a defined, and well-characterized extracellular
matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications
in regenerative medicine and tissue engineering.

Keywords: hydrogel; hyaluronic acid; gelatin; rapid crosslinking; maleimide

1. Introduction

Hydrogel biomaterials have shown immense potential in a variety of regenerative
medicine and tissue engineering applications [1–3]. These applications range from de-
livery vehicles for drugs and cell therapies, to serving as a bioengineered environment
for creating 3D tissue constructs via bioprinting and other biofabrication approaches, to
cell-free biomaterial therapies [4–8]. Across these broad applications, a wide variety of
hydrogel types have been explored and implemented. These include synthetic hydrogels
such as polyethylene glycol (PEG) and its derivative PEG diacrylate (PEGDA) [9–13], and
natural hydrogels such as collagen type I, fibrin, glycosaminoglycans such as hyaluronic
acid (HA) [14–19], and less defined matrices such as Matrigel [20,21].

In the context of either cell therapy or biomaterial-only therapeutic deposition, a
limiting step in successful utility of a biomaterial is how one can control the sol-gel transi-
tion (generally through a crosslinking reaction), a dynamic process in which a liquid or
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less viscous hydrogel is deposited to a particular site, followed by a transition to a more
solid and robust material state in order for the hydrogel to hold its shape or geometry.
For example, in the context of applications such as 3D bioprinting or in situ delivery to
a wound, if one deposits a material too early (prior to crosslinking), one may end up
depositing a fluid, resulting in essentially a flat puddle of material. Conversely, if one
deposits a material too late, it may crosslink early and end up clogging the printer or
syringe delivery mechanism [22,23]. In wound healing specifically, if one is trying to
administer a hydrogel—with or without cells—as a wound healing therapy, one runs a risk
of improper wound coverage of a therapeutic material if the sol-gel transition fails and
results in hydrogel precursor liquid falling or sluffing off of an irregularly shaped or not
flat wound site [24,25]. As such, direct on-site polymerization of a hydrogel product is a
crucial feature that has widely been overlooked in developing wound healing therapies.
To be specific, one cannot simply apply some hydrogels commonly used in cell culture,
such as rat tail collagen or Matrigel materials to a wound and wait 20–60 min for them to
crosslink in place. Rather, a fast-crosslinking solution is significantly more amenable in a
clinical setting.

As described above, hydrogels come in both synthetic and natural varieties. While
synthetic biomaterials have shown utility in a variety of applications, both as hydrogels
such as PEG-based materials [9–13], and as load-bearing orthopedic implants generated
using synthetic polymers such as poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone
(PCL) [26–28], our team has largely focused on the use of naturally derived hydrogels.
In general, natural hydrogels include those formed from collagen, gelatin, fibrin, HA,
and other individual ECM components. On the other end of the spectrum are more
complex natural hydrogels such as Matrigel and those derived from whole decellularized
tissues. These complex ECM hydrogels have immense potency for supporting cell types
of many lineages, including difficult to culture cell populations, due to preservation of
ECM-bound growth factors and cytokines [29–32]. However, these come with a significant
drawback in that they are essentially uncharacterized black boxes in which their complete
compositions cannot be completely defined or controlled, posing hurdles in terms of
regulatory hurdles and clinical translation [22,33,34]. While we have used undefined ECM
materials in our hydrogels [31,35–37], we now focus on building ECM-derived hydrogels
from the ground up, therefore ensuring that the entire system’s composition is well-defined.
These hydrogel platforms are considerably simpler and more defined than Matrigel, while
offering capabilities of tissue-specific ECM complexity. They are generally modified with
functional chemical groups to aid with crosslinking and to imbue other attachment points,
thus enabling manipulation of biochemical complexity by modular inclusion synthetically
modified natural proteins, peptides, and polymers.

To address these challenges, we aimed to combine defined ECM-derived components,
rapid gelation kinetics for controlled deposition, crosslinking conditions amenable to high
cell viability that do not employ photocrosslinking, to generate a natural ECM-based
hydrogel platform with utility across applications in regenerative medicine and tissue engi-
neering. We employ HA and gelatin base materials, based on our long-standing expertise
in deploying these natural materials within a variety of hydrogel systems and subsequent
applications including wound healing [25,38], bioprinting [17,39–43], and organoid/tissue
chip platforms [15,36,44–47]. These past studies have largely utilized thiol, acrylate, or
methacrylate modified HA, gelatin, and collagen, which have been effective tools. How-
ever, the chemistries involved have relied on ultraviolet (UV) photopolymerization to
support rapid crosslinking. While these rapid and easy to control gelation kinetics are
beneficial, the UV irradiation could be undesirable in the clinic due to potential toxic
effects of UV exposure to cells. Without UV photopolymerization, the gelation kinetics
of these previous hydrogel systems are relatively slow. As a result, herein we describe
the synthesis of a hydrogel system comprised of maleimide-modified HA and gelatin
to support UV-free rapid crosslinking with a thiol-functionalized crosslinker, complete
with chemical characterization of synthesized components, hydrogel material testing, and
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in vitro biocompatibility assessment. The studies described focus on the development and
testing of this hydrogel system, with a plan for future deployment in preclinical tissue
regeneration applications.

2. Results and Discussion
2.1. HA-Mal and Gel-Mal Syntheses and Evaluation

HA-maleimide (HA-Mal) and gelatin-maleimide (Gel-Mal) were successfully synthe-
sized via one-pot reactions (Figure 1). Unlike other published methods, which involve
performing a two-step protocol and organic solvents [48,49], this maleimide functional-
ization method occurred under aqueous conditions using water soluble reagents, 1-Ethyl-
3-(3-dimethylaminopropyl) carbodiimide) (EDC) and N-hydroxysuccinimide (NHS), to
activate the carboxylic acid groups on hyaluronic acid (HA) and gelatin for 30 min prior to
adding the 1-(2-Aminoethyl) maleimide molecule that forms the amide linkage. Following
the overnight reactions, crude mixture solutions were purified by dialysis under acidic con-
ditions to remove excess unreacted reagents and byproducts, frozen and lyophilized. The
resulting HA-Mal and Gel-Mal materials were characterized by nuclear magnetic resonance
(NMR) spectroscopy to confirm the modification as well as the purity (Figure 2a). The
singlet peak at 6.8 ppm corresponding to the two symmetrical protons on the maleimide
ring was present both HA-Mal and Gel-Mal spectra. This confirms that both HA and gelatin
were successfully covalently modified with maleimide groups. For HA-Mal specifically,
the degree of substitution (DS%) was determined to be 7.2 ± 0.5% (n = 7) by normalizing
the integration of the maleimide peak to the peak at 1.9 ppm that is associated with the
three protons on the N-acetyl group on the N-acetyl-glucosamine moiety in HA. The NMR
spectra were also analyzed for the purity in both materials, which was confirmed by the
absence of additional peaks associated with residual reagents and byproducts. Performing
dialysis of the crude mixture solutions in acidic water (pH < 5) for 3 days was necessary to
remove the impurities entirely.
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Figure 2. Chemical characterization of HA-Mal and Gel-Mal. (a) 1H NMR spectrum of unmodified HA and HA-Mal (left)
and unmodified gelatin and Gel-Mal (right). The peak corresponding to the maleimide hydrogens (red ‘a’) is at 6.8 ppm.
(b) UV–Vis absorption spectrum (200–400 nm) for HA, HA-Mal, Gelatin and Gel-Mal. Maximum absorbance values of the
maleimide group in both HA-Mal and Gel-Mal occurred at a wavelength of 300 nm (black arrow). (c) SEC-MALS spectrum
of HA and HA-Mal for MW determination.



Gels 2021, 7, 13 5 of 17

Maintaining the pH of the solutions was found to be critical throughout the reaction
process due to the sensitivity of the maleimide group under neutral and basic conditions.
To further investigate the stability of the maleimide group under various pH conditions,
UV–Vis spectroscopy was used to monitor the change in absorbance values at 295 nm of
maleimide dissolved in solutions of various pH (3–8) for 4 days (Supplementary Figure S1).
It was shown that pH had a significant impact in the conservation of the maleimide group.
Over a period of 96 h, the maleimide dissolved in solutions pH < 5 was conserved by
sustaining absorbances of 0.90–0.95. However, absorbance values began to decrease within
24 h when dissolved in solutions greater than pH 6. As pH increases, the molecule loses its
conjugation system and thus reduces the absorbance values, which continues over time.
Therefore, it was concluded that the maleimide group is pH sensitive and that it should be
below pH 5 throughout the reaction and purification processes in order to conserve the
maleimide for hydrogel crosslinking.

UV–Vis spectroscopy was also used to characterize and quantify the maleimide con-
centration of the resulting HA-Mal and Gel-Mal materials. While the max absorbance
value of the maleimide was already determined to be measured at a 295 nm, HA-Mal and
Gel-Mal solutions were scanned between 200–400 nm to confirm the maximum absorbance
wavelength (λmax). As shown in Figure 2b, both the unmodified HA (red) and gelatin
(blue) did not result in a maximum absorbance peak above 280 nm, while both HA-Mal
(dotted red) and Gel-Mal (dotted blue) materials expressed a prominent maximum ab-
sorbance peak at 300 nm. While it was found at a wavelength slightly higher than the small
molecule maleimide, this result offers confirmation that HA and gelatin were modified with
maleimides. Once the λmax was set to 300 nm, the maleimide concentration (µmol/mg)
was determined using a standard curve of 1-(2-Aminoethyl)maleimide hydrochloride and
absorbance values of HA-Mal and Gel-Mal with absorbance measurements of HA and
gelatin subtracted from them. The resulting concentrations of maleimide in HA-Mal and
Gel-Mal were 0.34 ± 0.06 µmol/mg (n = 4) and 0.11 ± 0.03 µmol/mg (n = 4), respectively.
In comparison to HA-Mal, the maleimide concentration in Gel-Mal was not as high because
the number of carboxylic acid (COOH) groups in gelatin (found in glutamic acid and
aspartic acid amino acid residues) is known to be less frequent than the COOH groups on
the repeating glucuronic acid units of HA.

Lastly, the molecular weight of HA-Mal was quantified using SEC-MALS (size-
exclusion chromatography with multi-angle light scattering). Initially, there was concern
of the potential acidic hydrolysis of HA that would decrease the average molecular weight
during synthesis and purification. However, instead of seeing a suspected decrease in
molecular weight of HA-Mal compared to the HA, the average molecular weights of the
peaks with elution times of 10–14 min increased (Figure 2c). The HA that was purchased
from Lifecore was characterized to have an average molecular weight of 200 kDa, but
instead it was determined to be 142 ± 4.4 kDa. Compared to this, HA-Mal from 4 differ-
ent synthesis batches resulted in molecular weights of 203 ± 2.6, 271 ± 4.5, 200 ± 3.48,
and 174 ± 1.76 kDa, demonstrating that despite batch-to-batch variability, the addition
of the maleimide groups consistently increased the overall molecular weight of the HA
component. It should be noted that Gel-Mal was not put through the HPLC system due
to the nature of gelatin varying considerably in terms of molecular weight. As stated,
SEC-MALS revealed some variation in molecular weight of HA-Mal batches. However, this
is of relatively minor concern as upon crosslinking into a hydrogel, the HA-Mal polysaccha-
ride chains join into a single macromolecular network, where the original polysaccharide
molecular weight is less of a driving factor of hydrogel material properties and more
derived from the crosslinking density, which is based on the relative molecular weights of
polysaccharide regions between crosslinking points.

2.2. Hydrogel Preparation

Crosslinked hydrogels were prepared using 3 components, HA-Mal, Gel-Mal and
a PEGDSH crosslinker (Figure 3a), which form a macromolecular polysaccharide and
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protein network, visualized in Figure 3b,c. In this particular biomaterial, the crosslinking
mechanism uses the Michael-Addition reaction between the thiolated groups on the PEG
and the maleimide groups on the HA-Mal and Gel-Mal. After having synthesized HA-Mal
using batches of HA with a range of average molecular weights (60–200 kDa), and Gel-Mal
with gelatin with different bloom strengths (90–100, 175, 300 g), and then combining them
at varying ratios with thiolated PEG crosslinkers of several weights (3.4 kDa, 10 kDa) and
arms (2, 4), two formulations (HMGM 1 and HMGM 2) were developed that resulted in
self-standing, easily controllable hydrogels (Supplementary Table S1). Supplementary
Table S2 describes the variety of formulations tested wih qualitative assessment of whether
or not they were self standing and could be easily extrudable for subsequent applications.
It should be noted that our team has used 3.4 k PEG crosslinkers (PEG diacrylate) in a wide
variety of biomaterial, tissue engineering, and in vivo studies [25,41,44,47,50–52]. When
paired with natural polysaccharides of much larger molecular weight, these mixtures
formed soft, pliable, but robust hydrogels that weer employed in wound healing studies
and studies focused on generating 3D organoids for drug screening and disease modeling.
As such, we expected that the 3.4 kDa would be optimal, and it was the most effective.
HMGM 1 consisted of final concentrations of HA-Mal, Gel-Mal and PEGDSH of 1%, 0.4%,
0.25% w/v, respectively, and HMGM 2 had concentrations of 0.5, 0.4, 0.25% w/v. Materials
had a resulting pH of 3.0 (to ensure the maleimides were conserved) and were dissolved
in 10× phosphate-buffered solution (PBS), which increased the individual component
solutions to a pH 6. When the solutions were combined and mixed, crosslinking occurred
and had a final pH of 6.5–7. It was observed that solutions did not successfully crosslink
(remained a liquid) when the overall pH was <6. Fortunately, these final conditions upon
mixing fell near neutral pH, meaning that the crosslinking reaction was likely safe in the
presence of cells, thus enabling the use of the hydrogel for cell-based applications such as
cell encapsulation or in situ crosslinking.

2.3. Hydrogel Gelation Testing

To confirm proper hydrogel gelation, we used an initial visual observation, followed
by NMR evaluation of the thiol-maleimide reaction. Hydrogels were formed as described
below, using HA-Mal, Gel-Mal and PEGDSH components, but inside glass vials for hy-
drogel inversion tests. Figure 4a(i) demonstrates the inability for the materials to form a
gel due to the absence of the PEGDSH crosslinker, with the uncrosslinked solution falling
downwards in the vial. In Figure 4a(ii),(iii), visual images correspond to hydrogels labeled
as HMGM 1 and HMGM 2, which used 2 different molecular weights and bloom strengths
of HA and gelatin. The addition of PEGDSH in both formulations caused gelation to occur
within 5 s resulting in a self-standing gel, that holds its location within the vial.

NMR spectroscopy was then used to confirm the chemical crosslinking reaction
between the maleimide and thiol groups. As shown in Figure 4b, highlighted regions of
interest offer insight into the state of the maleimide groups by observing the presence,
reduction or disappearance of the corresponding peak at 6.8 ppm. It was observed that
components without the PEG crosslinker had visual singlet peaks at 6.8 ppm. However,
when the PEGDSH crosslinker was added at the appropriate concentrations, it reacted
with all the maleimides in HA-Mal, most of all maleimides in Gel-Mal, and the most of all
maleimides in the HA-Mal+Gel-Mal mix, based on the the singlet peaks at 6.8 ppm having
disappeared or were significantly reduced. This indicates the successful reactions between
the thiol and maleimide groups.
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2.4. Hydrogel Physical Characterization

Hydrogels then underwent a series of material characterization assays, including
rheological assessment, swelling assays, a mechanical barrier to diffusion assay, and total
protein release quantification. For rheological testing, each hydrogel sample used to de-
termine the mechanical properties was prepared right before each test. Oscillation strain
sweeps from 0.1–100% strain at 1 Hz frequency indicated a hydrogel that is self-standing,
but with relatively weak mechanical properties; in other words, soft (Figure 5a). It was
determined that the average storage modulus value averages (G’) averaged 350 Pa between
0.1–1% oscillation strain, and then around 300 Pa after 1%. While this hydrogel is not very
stiff and rigid, seeing that the material is able to sustain the G’ values between 2 ranges of
strain indicates the ability to be flexible, but still hold its shape. Furthermore, G’ values
between 300 and 350 Pa are similar to those of several hydrogel formulations our team has
successfully employed in past studies. Of particular note is the commercially available
thiolated HA-based hydrogel kit (Hystem) which our team has used in its commercial form
and in customized formulations and variations in applications across tissue engineering
and regeneration, including wound healing [24,25], organoid biofabrication [47,53], bio-
printing [23,41–43,54], and organ-on-a-chip platforms [15,25,36,44,50]. As such, despite
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being relatively soft, the HA-Mal and Gel-Mal-based hydrogel system will likely be suf-
ficiently robust for similar uses. Should stiffer materials be desired, we can employ past
strategies such as further modulation of concentrations, reduction in crosslinker molecular
weight, or use of multi-arm crosslinkers to increase crosslinking density [25,41,43,55].

i ii iiia

Gel-Malb HA-Mal HA-Mal + Gel-Mal

- PEG

+ PEG

8.5 8.0 7.5 7.0 4.56.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 8.5 8.0 7.5 7.0 4.56.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 8.5 8.0 7.5 7.0 4.56.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

Figure 4. Gelation Testing with HA-Mal, Gel-Mal, and PEGDSH. (a) Visual gel formation of hydrogel (i) without PEGDSH
crosslinker (ii) HMGM 1 (iii) HMGM 2. Materials crosslinked in <5 s. (b) 1H NMR spectrum of HA-Mal with PEGDSH (left),
Gel-Mal + PEGDSH (middle), and HA-Mal + Gel-Mal + PEGDSH (right). The maleimide peak is reduced or eliminated at
6.8 ppm (pink highlighted regions) with the addition of the PEG crosslinker.
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Figure 5. Physical HMGM Hydrogel Characterization. (a) Oscillation strain (0.1–100%) rheological results. Storage modulus
(G′) and loss modulus (G”) are indicated. (b) Swelling Ratio %. (c) Cumulative total protein release over 12 days.

To measure swelling, hydrogels were prepared as described below and weighed upon
gelation (initial mass) and then over a course of 24 h (swelling masses). The swelling ratio



Gels 2021, 7, 13 9 of 17

was defined as the ratio of the difference in mass between the swollen and initial hydrogel
to the mass of the initial hydrogel. Swelling properties were observed in both hydrogels
HMGM 1 and 2, where the hydrogels equilibrated at 20% more swelling than the initial
hydrogel after 24 h (Figure 5b). Swelling occurred within the first 4 h and then remained
stable until equilibrium 24 h later (Supplementary Table S3). This similarity between the
two compositions of hydrogels may be due to the balanced crosslinking density in the
hydrogel between the decreased molecular weight HA-Mal at twice the concentration as
the increased molecular weight HA-Mal.

Despite the rheological results indicating a relatively weak gel, the barrier assay
provided information about the ability for this hydrogel to serve as a barrier, a desirable
trait for many regenerative applications. In this assay, hydrogels were formed in hanging
inserts with a solution of FITC-dextran in the insert above the hydrogel. After 2 h, the
migration % of the FITC-dextran solution that had diffused through the hydrogel into
the well was calculated by the ratio between the fluorescence units of the FITC-dextran
that passed through the hydrogel and the FITC-dextran passed through inserts without
hydogel. We saw an average of 14.7± 9.4, 5.3± 2.7, and 1.2± 0.7% migration for hydrogels
HMGM 1, HMGM 1 pH 7, and HMGM 2 (Supplementary Figure S2). It was interesting
to see reduced diffusion rates when the hydrogel component solutions were adjusted to
a pH 7. This suggests that the crosslinking reaction a subsequent crosslinking density is
pH dependent and offers opportunities to manipulate crosslinking kinetics or mechanical
properties based on pH alone. Compared to the HMGM 1 and HMGM 2 hydrogels, we see
a significant difference (p = 0.03) between the passage of the FITC-dextran through the gels.
This may be due to the higher molecular weighted HA-Mal forming a denser network that
would prevent the passing of the FITC-dextran as easily as the HMGM 1, even though the
swelling ratios may be the same, which is a direct correlation with the crosslinking density.

Because among the applications for hydrogels are encapsulation and extended release
of drugs, cytokines, or other proteins, protein release was assessed. A cumulative protein re-
lease curve over 12 days was created by quantifying the release of BSA protein (10 mg/mL)
from the HMGM 1 hydrogel (Figure 5c). Protein quantification was performed using the
BCA (bicinchoninic acid) assay after collecting, freezing, and storing all samples during
each time point. We observed that the majority of the protein release occurred within the
first week, with minimal continued releases until day 12. However, at day 12, there is still
an upward trend, suggesting that protein release may be sustained for additional time if
necessary. Despite the concentration of BSA added into the hydrogel was 10 mg/mL, our
results show that protein quantification exceeded above 10 mg/mL. This may be due to the
possible diffusion of uncrosslinked gelatin at the beginning or degradation over this period
of time resulting in free soluble gelatin, being included in the assay. Since the BSA assay
detects total protein, it is possible for this reason to have exceeded that amount. However,
this hydrogel provides the ability to slowly release protein out of the system, about 20%
per day.

2.5. Cell Biocompatibility Studies

Basic cell biocompatibility was assessed by culture normal human dermal fibroblasts
(NHDF) or normal human epidermal keratinocytes (NHEK) in the presence of HMGM
1 hydrogel and measuring mitochondrial metabolism over time. We recognize that this
is a simple assay. In future studies, more in-depth biocompatibility assessment—in vitro
and in vivo—will be performed appropriate for the given hydrogel application. Cell
proliferation in the presence of the HMGM 1 hydrogel was measured using the MTS cell
metabolism assay after 24, 48, and 72 h of exposure. Both keratinocytes and fibroblasts
were unaffected by the presence of the hydrogel over the course of 3 days (Figure 6a).
Without differences observed at any time point, quantification of cell metabolism indicated
a steady increase in absorbance values over time, which are proportional to cell number.
This indicated continued cell proliferation, thus suggesting a cell friendly environment,
free from any toxic unreacted compounds or byproducts. To corroborate these results,
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phase microscopy images were obtained, which are displayed in Figure 6b and provide a
visual representation of the proliferation of both the keratinocyte and fibroblast cell cultures
at 0, 24, 48, 72 h with and without the HMGM 1 exposure. From these images, we can
observe the corresponding cell number increases compared to the control, indicating the
biocompatibility of the hydrogel materials with the cells.
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Figure 6. Proliferation of NHEK and NHDF cells over time under normal culture conditions and exposed to HMGM 1
hydrogels. (a) Relative proliferation of (i) NHEK and (ii) NHDF cells. Absorbance is proportional to cell number, quantified
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(i) NHEK and (ii) NHDF at 0, 24, 48, and 72 h. Scale bar—50 µm.

Interestingly, in early studies we observed that the hydrogel prepared with 10× PBS
prevented proper growth of both of the cells, falsely suggesting that the hydrogel impeded
cell proliferation (data not shown). We investigated the problem of the lack of growth
by separating the components of the hydrogel, which pointed to the 10× PBS that was
perturbing the overall osmolality of the media (from 354 to 549 mOsm/kg). As primary
cells are very sensitive to the media salt concentration, we decided to adjust the pH of
the individual components of the hydrogel to a pH 5 and 4 for HA-Mal and Gel-Mal,
respectively, in order to form a crosslinked hydrogel using only 1× PBS. The resulting pH
of this hydrogel maintained near neutral values (pH = 6.6–6.8), similar to the pH of the
hydrogel made with 10× PBS. This improved the cell metabolism.

3. Conclusions

In this study, we share the initial development and characterization of a hydrogel
system comprised of maleimide-functionalized hyaluronic acid and gelatin that utilizes a
bifunctional thiolated PEG crosslinker. We developed this particular formulation based
on the practical needs of several translational and clinical future applications requiring
(1) rapid crosslinking, (2) a cell-friendly reaction environment, (3) UV light-free polymer-
ization, and (4) natural ECM-derived based components. In particular, we are now in
the midst of deploying this hydrogel system in a number of areas, including recently
initiated in vivo wound healing studies and biofabrication of tissue constructs for in vitro
drug screening and disease modeling. As we progress with these applications, we expect
additional optimization of the hydrogel system. For example, as described above, pH
plays an important role in dictating both crosslinking readiness and kinetics, as well as cell
biocompatibility. Buffering the system appropriately could simplify our current approach
to modulating pH the system prior to use. Additionally, as we note above, the current
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hydrogel formulations were quite low in terms of mechanical properties. While we do not
believe this to be a limiting factor in our immediate applications, elastic modulus plays
an important role in disease progression (for example in cancer, as we have demonstrated
previously [51,55]) and directly influences compatibility with biofabrication technologies
such as bioprinting [22,41,42,55]. As such, further exploration of methods to manipulate the
mechanical properties of these hydrogels will likely be undertaken. In the studies described
herein, we lay down the foundational demonstration of material synthesis, formulation,
and characterization. Importantly, our resulting hydrogel system successfully meets the set
of requirements driving our efforts, by supporting nearly instantaneous thiol-maleimide-
based crosslinking at a neutral pH and physiological temperature environment using HA
and gelatin base components. The data presented describe a well-defined ECM-derived
hydrogel system now ready for subsequent translational experimentation.

4. Materials and Methods
4.1. Materials

Sodium hyaluronate (~100 and ~200 kDa molecular weight) was purchased from
Lifecore Biomedical (Chaska, MN, USA). 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC) hydrochloric salt was purchased from Thermo Fisher Scientific (Rockford, IL, USA).
Gelatin from porcine skin Type A (Bloom strength 175 g), 2-Morpholinoethanesulfonic acid
(MES) hydrate, N-Hydroxysuccinimide (NHS), 1-(2-Aminoethyl) maleimide hydrochloride
salt, 1-(2-Aminoethyl) maleimide trifluoroacetate (TFA) salt, pepsin from porcine gastric
mucosa (>250 units/mg, Lot #SLBP2152U), and fluorescein isothiocyanate-dextran (3–5
kDa) were obtained from Sigma Aldrich (St. Louis, MO, USA). Di-thiol PEG crosslinker
(MW 3400 g/mol) was purchased from Creative PEGWorks (Durham, NC, USA).

4.2. Synthesis of Maleimide-Hyaluronic Acid (HA-Mal) Conjugates

Sodium hyaluronate (1.0 g, 2.48 mmol, 1.0 eq) was dissolved in 0.1 M MES Buffer (100
mL, pH 4.5) in a 250 mL single neck round bottom flask with a magnetic stir bar. EDC
(0.57 g, 2.97 mmol, 1.2 eq) and NHS (0.17 g, 2.97 mmol, 1.2 eq) were first dissolved together
in 10 mL of MES buffer (0.1 M, pH 4.5) and then quickly poured into the hyaluronic acid
(HA) solution. The reaction mixture was stirred at 300 rpm for 30 min at room temperature
(23 ◦C). 1-(2-Aminoethyl) maleimide HCl (0.53 g, 2.97 mmol, 1.2 eq) was dissolved in
5 mL of distilled water (for a ~10% w/v solution) and then added dropwise to the reaction.
Following the small molecule addition, the flask was capped and then stirred at 300 rpm
overnight (18–24 h). The crude mixture was dialyzed (MWCO 12–14k) in a 5 L container
with acidified water (pH 3.0–3.5 using 1 M HCl) stirring slowly at 50–100 rpm for 3 days.
The purified solution was adjusted to a pH of 3.0 using 1 M HCl or 1 M NaOH, and then
sterile filtered through a 0.2 µM filter to remove insoluble impurities. The filtrate was set to
freeze at −20 ◦C overnight and lyophilized (<100 mTorr, −50 ◦C) for 3 days or until fully
dried. The HA-Mal materials were stored in the −20 ◦C freezer until used.

4.3. Synthesis of Maleimide-Gelatin (Gel-Mal) Conjugates

Gelatin (1.0 g) was dissolved in 0.1 M MES Buffer (100 mL, pH 4.5) in a 250 mL single
neck round bottom flask with a magnetic stir bar (1.5–2 inches) placed in a water bath
heated at 37 ◦C. EDC (0.575 g, 3 mmol) and NHS (0.345 g, 3 mmol) were first combined
and dissolved in 10 mL of MES buffer (0.1 M, pH 4.5) and then quickly poured into the
gelatin solution. The reaction mixture was stirred for 30 min at 300 rpm. 1-(2-Aminoethyl)
maleimide TFA salt (1.524 g, 6 mmol) was dissolved in 10 mL of distilled water and then
added dropwise to the reaction flask. Following the small molecule addition, the flask was
capped and then stirred at 300 rpm overnight (18–24 h) at 37 ◦C. The crude mixture was
dialyzed (MWCO 12–14 k) in a 5 L container with acidified water (pH 3.0–3.5 using 1 M
HCl) stirring slowly at 50–100 rpm for 3 days. The purified solution was adjusted to a pH
of 3.0 using 1 M HCl or NaOH, and then sterile filtered through a 0.2 µM filter to remove
insoluble impurities. The filtrate was set to freeze at −20 ◦C overnight and lyophilized
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(<100 mTorr, −50 ◦C) for 3 days or until fully dried. The Gel-Mal materials were stored in
the −20 ◦C freezer until used.

4.4. HA-Mal and Gel-Mal Chemical Characterization

4.4.1. 1H NMR Characterization of HA-Mal and Gel-Mal

Purity and degree of substitution (DS%) was determined using 1H NMR spectroscopy
(Bruker Avance 400 MHz spectrometer). Dried HA-Mal and Gel-Mal materials were
dissolved in deuterium oxide (D2O, 99.9%, Cambridge Isotope Laboratories, Inc., Tewks-
bury, MA, USA) at 10 mg/mL. The degree of substitution (DS%) was only determined
for HA-Mal, where all peak integrations were normalized to the peak at 2.0 ppm, which
corresponds to the N-acetyl group on HA. The DS% was calculated as the ratio between the
integral at 6.8 ppm divided by 2 and the sum of the integral at 2.0 ppm divided by 3 and
the integral at 6.8 ppm divided by 2. Values of 2 and 3 used to divide the peak integrations
represent the protons on the maleimide and the N-acetyl groups, respectively.

4.4.2. UV–Vis Spectroscopy Characterization of HA-Mal and Gel-Mal

UV–Vis spectroscopy was used to display the maleimide group addition on HA and
gelatin as well as to determine the maleimide concentration in both HA-Mal and Gel-
Mal. Materials were dissolved in DI water at a concentration of 1 mg/mL and solutions
were measured in plastic cuvettes using the UV Spec 2600 Spectrophotometer (Shimadzu
Scientific Instruments Inc., Kyoto, Japan). Absorbance values were first measured between
200–400 nm to determine the maximum absorbance values of the maleimide group. Then,
solutions of varying known concentrations of maleimide were used to create a standard
curve to determine the maleimide concentration (µmol/mg) in HA-Mal and Gel-Mal.

The stability of the maleimide group was investigated in 0.1 M MES buffer at various
pH conditions (pH 3–8). MES buffer solutions were adjusted at various pH conditions
with NaOH and HCl and then used to dissolve maleimide (99%, Sigma Aldrich, St. Louis,
MO, USA) at 10 mg/mL (n = 3). Then, solutions were diluted (1:50) and absorbance
(λmax = 295 nm) was measured at 1, 24, 48, 72, and 96 h. It should be noted that the pH of
each maleimide solution was monitored during this time study. Absorbance values were
compared across pH conditions to demonstrate maleimide sensitivity to pH.

4.4.3. Molecular Weight Quantification of HA-Mal with SEC-MALS

Unmodified and maleimide-modified HA samples were dissolved in 1× PBS, cen-
trifuged at 20,000 RCF for 10 min, and filtered through a 0.45 µm nylon milter unit. Samples
were injected into an HPLC system composed of a Waters 717 plus autosampler, two Waters
model 510 chromatography pumps, and three detectors in series (MALS detector at 661 nm,
differential refractive index detector at 658 nm, UV/Vis detector monitoring at 214 nm).
Data acquisition and analysis were performed using Wyatt ASTRA software to determine
the average molecular weight of the polymer.

4.5. HA and Gelatin Hydrogel Formulation

Hydrogels (HMGM 1, 2) for all characterization studies were formed using materials
dissolved in 10× PBS, except for the cell proliferation assay. The crosslinked hydrogel
(HMGM 1) tested in the cell proliferation assay used 1× PBS to dissolve HA-Mal and
Gel-Mal, which were adjusted to pH 5 and pH 4, respectively, post-dialysis. HA-Mal,
Gel-Mal, and PEG-dithiol (PEGDSH) crosslinker were initially dissolved at 1.0%, 1.6%, and
0.5% w/v, respectively and combined at a 2:1:1 ratio. Due to the rapid crosslinking reaction,
HA-Mal and Gel-Mal solutions were first combined and then crosslinked with PEGDSH.

4.6. Hydrogel Gelation Testing
4.6.1. Visual Gelation Confirmation by Vial Inversion

Hydrogel precursor solutions were prepared without a crosslinker, the HMGM 1
formulation, and the HMGM 2 formulation, in 5-dram glass vials and allowed time suffi-
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cient for crosslinking to occur (in crosslinkable groups). Vials were then inverted to allow
uncrosslinked solutions to flow. In comparison, crosslinked gels hold their shape at the
end of the vial.

4.6.2. Nuclear Magnetic Resonance Evaluation

NMR spectroscopy (Avance II 400 MHz spectrometer, Bruker Corporation, Billerica,
MA, USA) was used to confirm the thiol-maleimide reaction by comparing proton spectra
of pre- and post-crosslinked solutions and observing the presence of the maleimide peak
at 6.8 ppm All materials were dissolved in D2O at the corresponding concentrations and
part ratios as described in Section 4.5. Resulting solutions were combined in the same
NMR tube, vortexed for 10 s, and allowed to react for 5 min prior to reading samples in the
instrument.

4.7. Hydrogel Physical Characterization
4.7.1. Rheological Mechanical Characterization

Rheological mechanical properties of the hydrogel (HMGM 1) were examined with an
oscillatory strain test using a Discovery HR-2 rheometer (TA Instruments, New Castle, DE,
USA) and an 8 mm parallel plate geometry, roughened with sandpaper, similar to previous
studies by our team that characterized HA-based hydrogels [39,40]. Measurements were
conducted at 23 ◦C; a gap height of 1200 µm; an axial force of 0.05 ± 0.01 N. Hydrogels
(80 µL, n = 3) were prepared as described in Section 4.5 in 8 mm PDMS molds and allowed
to completely crosslink for 5 min prior to transferring hydrogel disc onto the roughed
platform. The amplitude strain sweep was performed with an oscillating strain range of
0.1–100% and an oscillating frequency of 1 Hz.

4.7.2. Hydrogel Swelling

Aliquots of 500 µL of each hydrogel formulation were allowed to crosslink for 10 min
at the bottom of replicate pre-weighed glass vials (n = 5). Initial weights of vials with
hydrogels were measured (initial mass). Then, 1 mL of PBS was added on top of each gel
and incubated at 37 ◦C. Swelling in this set up occurred uniaxially vertically. At 1, 2, 3,
6, 24 h, the buffer solution from each vial was carefully removed, the vials were weighed
(swollen mass), and then fresh PBS was replaced. The masses of the original and swollen
hydrogels were calculated by subtracting the mass of the empty vials from the total masses.
The mass swelling ratio (%) was then calculated as the ratio of the difference between the
swollen and initial masses to the initial mass.

4.7.3. Cumulative Total Protein Release

Hydrogels (n = 5) as described in Section 4.5 were prepared with BSA protein (final
concentration of 10 mg/mL) in 0.5 mL volumes in a 24-well plate. PBS (0.5 mL) was added
to the top of each hydrogel and the plate was incubated at 37 ◦C. At 24-h increments, the
buffer solutions were frozen for storage at −20 ◦C and then replaced with fresh PBS for 12
days. The collected samples were used to quantify the total protein content using a Pierce
BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA) and the resulting data
was used to generate a cumulative protein release curve.

4.7.4. Hydrogel Barrier Function Assay

Hydrogels (100 µL, n = 5) were prepared in Millicell 3.0 µM PET hanging cell culture in-
serts (MilliporeSigma, Burlington, MA, USA) in a 24-well plate. A solution of FITC-dextran
(MW 3–5 kDa) was made in Dulbecco’s Phosphate Buffered Saline (DPBS) (5 mg/10 mL)
and gently layered on top of the crosslinked hydrogel in each insert. Hanging inserts
filled with only FITC-dextran was the control. Once DPBS (900 µL) was placed in the
receiving wells of the 24 well plate, the plate was covered in foil and incubated at RT for
2 h. The hanging inserts were removed and the solution in the receiving well were mixed
before transferring 200 µL of solution to a black, flat bottom 96 well plate. Fluorescence
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was measured at λex = 490/λem = 520 nm and the barrier function of the hydrogel was
determined by the percent migration of the FITC-Dextran molecule through the hydrogel.
This was described as the ratio of the relative fluorescence units (RFU) of the hydrogel
samples and the RFU values of the FITC-dextran only control.

4.8. Human Dermal Fibroblasts and Epidermal Keratinocytes Cell Culture

Primary normal human dermal fibroblasts were obtained from a single adult donor
(PromoCell, Lot #458Z020.2) and cultured in Fibroblast growth medium 2 (PromoCell
GmbH, Heidelberg, Germany) supplemented with fetal calf serum (0.02 mL/mL), recom-
binant human basic fibroblast growth factor (1 ng/mL), and recombinant human insulin
(5 µg/mL). When fibroblasts reached 70–80% confluency (37 ◦C, 5% CO2), they were
detached with TrypLE Express Enzyme (1X) without phenol Red (Gibco, Thermo Fisher
Scientific, Rockford, IL, USA) for 3–5 min, centrifuged at 200× g, and counted for the cell
proliferation assay (passage 3).

Normal human epidermal keratinocytes were pooled from 3 adult donors (Promo-
Cell GmbH, Heidelberg, Germany, Lot #418Z026) and cultured in keratinocyte serum-
free growth medium 2 (PromoCell GmbH, Heidelberg, Germany) with supplements
of bovine pituitary extract (4 µL/mL), recombinant human epidermal growth factor
(0.125 ng/mL), recombinant human insulin (5 µg/mL), hydrocortisone (0.33 µg/mL),
epinephrine (0.39 µg/mL), recombinant human transferrin (10 µg/mL), and calcium chlo-
ride (0.06 mM). When keratinocytes reached 60–75% confluency (37 ◦C, 5% CO2), they
detached with Hyclone 0.05% Trypsin protease solution with EDTA and phenol red (Cytiva,
Marlborough, MA, USA) for 5–7 min, neutralized with 5% FBS, centrifuged at 150× g, and
counted for the cell proliferation assay (passage 3).

4.9. Cell Proliferation Assay

Fibroblasts and keratinocytes were prepared as above and seeded separately into 24-
well plates at a density of 6.5k/cm2. After an overnight incubation to allow cell attachment,
Millicell 3.0 µM PET hanging cell culture inserts (MilliporeSigma, Burlington, MA, USA)
were transferred into the corresponding wells. Control groups (n = 3 per timepoint)
included cells and hanging inserts with 1× DPBS (100 µL) and the respective cell medium
(100 µL); experimental groups (n = 3 per timepoint) included cells and hanging inserts with
hydrogels (HMGM 1) prepared as described in Section 4.5 (100 µL) with the respective
medium (100 µL) on top. Metabolism was quantified using the 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega,
Madison, WI, USA) at 24, 48, and 72 h after sample exposure. Each well was replaced with
MTS working solution (20% v/v with media, 300 µL) and the plate was incubated (37 ◦C,
5% CO2) for 1 h. Aliquots (100 µL) were transferred into a white, clear flat bottom 96 well
plate and absorbance values were measured at 490 nm on a plate reader (SpectraMax
i3x MiniMax 300, Molecular Devices, San Jose, CA, USA). It should be noted that media
was not changed during the time course of the MTS assay. In addition, phase constrast
photographs were captured of the cells within wells to visually assess confluency using a
Zeiss Axiovert invertedd microscope.

Supplementary Materials: The following are available online at https://www.mdpi.com/2310-286
1/7/1/13/s1, Figure S1. Sensitivity of maleimides at various pH conditions (pH 3–8) using UV–Vis
Spectroscopy. Absorbances (n = 3) per condition were measured at 295 nm. Figure S2. Mechanical
Barrier Assay with HMGM hydrogels. Migration percentages of FITC-dextran solution passed with
hydrogels were calculated (n = 3). Table S1. Hydrogel composition. Table S2. Swelling table.
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