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Abstract: Dead space after rectal resection in colorectal surgery is an area with a high risk of compli-
cations. In this study, our goal was to develop a novel 3D implant based on composite hydrogels
enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the
application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns
large with a well-preserved nano-substructure. This retained excellent cell accommodation and
proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout
the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural
and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized
system can serve as a convenient drug delivery system for a controlled release of encapsulated
bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for
controlled release, with a possibility to modify both their biomechanical properties and drug release
intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.

Keywords: dead space; gel rigidification; fractionalized nanofibers; drug delivery system

1. Introduction

Pelvic surgeries, especially those that are extensive such as extirpation of the rectum,
hysterectomy, or pelvic exenteration, result in the development of dead space. This is often
a reason for postoperative complications, such as bowel obstruction due to a relocation of
small bowels into the dead space and their adhesion, hematoma, abscess, or perineal hernia.
The fact that bony walls of the dead space are not compressible hinders the solution to
most biomechanical problems of the filling materials. Optimal fillers should also stimulate
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cell proliferation, serve as antibacterial protection, and act against bowel (tissue) adhesion.
Up to the present, autologous materials, predominantly omental and myofascial flaps,
have mostly been used. The disadvantages of these matrices are that the omentum or
muscle flaps’ length, number, and mobility are limited and often insufficient [1–3] and the
associated surgical techniques are time-consuming and technically challenging [4–7].

Both synthetic and natural meshes have been tested to reconstruct the pelvic floor.
Synthetic meshes like polytetrafluoroethylene or fully resorbable copolymer meshes are
available in spray form only, and a risen thin layer is far from a suitable material capable of
filling up the relatively large 3D dead spaces involved [8,9]. Moreover, since 2005, synthetic
meshes have been practically replaced by biological meshes due to increasing infection
concerns [10]. Biologic implants have been produced from porcine dermal collagen, in-
testinal submucosa, bovine pericardium, or human acellular dermal matrix. However,
their application has not entirely solved the problems mentioned above [11–14]. These
fillers suffer from a lack of prevention of tissue adhesion [15]. Newly developed materials,
such as 4% icodextrin-alfa-1,4, have been found effective against adhesion; however, only
the liquid forms have been found effective, with their effects disappearing within only
four days.

The main aim of this study was to develop applicable fillers for the dead space meeting
the following minimal requirements: 3D material with optimal biomechanical properties,
minimal long-term adhesion formation, active against bacterial colonization, and promoting
cell proliferation. To achieve these goals, agarose gels were chosen as an example of a
biocompatible 3D scaffold, and fractionalized nanofibers were investigated as an active
part of the composite. Agarose fillers are known in the field of aesthetic medicine [16], and
several studies have proven their biocompatibility [17] and drug delivery applications [18],
making agarose gels promising for surgical implants. However, agarose gels are usually
too soft, and the optimal agarose concentration simultaneously showing an optimal rigidity
and migration rate seems to be an obvious obstacle in abdominal surgery. Implant rigidity
should be high enough to resist at least the pressure applied during laparoscopic surgery
and viscous enough to retain in the space after surgery. The recommended pressure
for laparoscopic operations varies between 8 and 16 mmHg [19,20]. These limitations
could be solved by a suitable additive such as nanofibers. As the active component,
nanofibers are also widely proven as a convenient biomaterial with promising applications
in medicine [21]. A clear disadvantage of nanofibers is their fragility and 2D-like structure.
These shortcomings are solved in our study. A combination of biocompatible hydrogels
and fractionalized nanofibers functionalized with bioactive substances adhered on their
surface or encapsulated in their core could trigger the development of a novel generation
of dead space fillers.

2. Materials and Methods
2.1. Materials

Poly(vinyl alcohol) (PVA), Poly(ε-caprolactone) (PCL), Agar-Agar (powder BioScence–
Grade, ROTH, Nuremberg, Germany), Standard agarose (powder, ROTH, Nuremberg,
Germany), Fluorescein Isothiocyanate-Dextran (wt. 10,000, Sigma-Aldrich, St. Louis, MO,
USA) (FSC), H3PO4, and Glyoxal (Sigma-Aldrich, MO, USA) were used. In vitro experi-
ments were performed on immortalized BALB/3T3 mouse fibroblast cell lines obtained
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Mouse embryo fi-
broblast BALB/3T3 clone A31 cells (ATCC CCL-163) were cultured as adherent monolayers
in plastic Petri dishes Nunc™ (Fisher Scientific, Waltham, MA, USA) in Dulbecco’s modi-
fied eagle medium (4 mM L-glutamine, 4500 mg/L glucose, 1 mM sodium pyruvate, and
1500 mg/L sodium bicarbonate, Sigma-Aldrich) supplemented with 10% (v/v) fetal bovine
serum (Sigma-Aldrich, MO, USA) and antibiotic–antimycotic solution (Sigma-Aldrich, MO,
USA). MilliQ water was used for the preparation of all aqueous solutions (Milli-Q® IQ 7005
Water Purification System, Millipore, Billerica, MA, USA). All reagents and chemicals used
in experiments were of analytical grade and were used as received.
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2.2. Methods
2.2.1. Preparation of Nanofibers

Nanofibers were prepared using the electrospinning method. PVA (5 and 40 KDa,
90% hydrolyzed, Merck) was dissolved in distilled water at 70 ◦C. A 10% w/w aqueous
solution of PVA was used for electrospinning with the addition of phosphoric acid to lower
pH and glyoxal as a PVA crosslinker. Electrospinning was performed by a spinner with a
wire electrode (NanoSpider N500 Elmarco, Liberec, Czech Republic) and a wire collector
covered with polypropylene nonwoven textile with an electrical field intensity of 25 kV/cm.
The PVA nanofibers were crosslinked using glyoxal for 72 h at a temperature of 60 ◦C to
prevent the dissolution of nanofibers in the wet environment.

PCL nanofibers were also prepared by electrospinning using the Nanospider Elmarco
NS 500 spinner. PCL (Mn 45.000, Aldrich, MO, USA) was dissolved in chloroform at 23 ◦C.
A 24% w/w solution was used for spinning. The fibers adhered to the nonwoven fabric
throughout the spinning process.

Two types of nanofibers have been tested, namely PCL and PVA. PCL is based on
a monomer caprolactone, a cyclic ester that is miscible, but hardly soluble in water, and
possesses a seven-membered ring. This property determines its biological and medical
application as a material with a long degradation time in aqueous environments, including
the human body. PVA is a water-soluble synthetic polymer. It has the idealized formula
[CH2CH(OH)]n. PVA is used in various medical applications because of its biocompatibility,
low tendency for protein adhesion, and low toxicity. PVA is a hydrophilic water-soluble
substance broadly used in medicine and cosmetics. It has a short degradation half-time in
water, which is possible to regulate via degree of polymerization.

2.2.2. Fractionalization of Nanofibers

PVA and PCL fibers were cut into small pieces with scissors. They were then divided
into two parts.

Each working cycle included 10 grinding (1 min) and recooling periods (1 min). The
applied impact frequency was 10 Hz. Nanofibers were ground in liquid nitrogen using
a cryogenic grinder (Freezer/Mill 6870, SPEX SamplePrep, Metuchen, NJ, USA) with
small vials.

2.2.3. Visualization of Nanofibers and Diameter Determination

Nanofiber morphology of PCL and PVA nanofibers as well as fractionalized nanofibers
were examined by electron microscopy. First, samples were sputtered with a thin gold
layer using a rotary pumped coater (Q 150R S, Quorum, Laughton, East Sussex, UK).
Magnification of the electron microscope (VEGA 3 SBU, Tescan, Brno, Czech Republic)
varied from 500× to 2000×, and a secondary electron (SE) detector at an accelerating
voltage of 10 kV was used. Subsequently, the average fiber diameter was measured for
50 randomly selected fibers using Tescan software.

2.2.4. Gel Preparation and Its Functionalization

For preparing different sample mixtures of Agar-Agar, standard agarose was put into
a heating nest (Heating Nest LTHS for 1000 mL), which was heated to 150 ◦C, and the gels
were taken out whilst boiling. The gels were then poured into plastic petri dishes with
diameters of about 3.5 cm, dept 0.5 cm, slowly cooled down to the laboratory temperature
in a humid atmosphere, and stored at 5 ◦C.

Agar and agarose concentrations were selected based on the standard concentration
for agar and agarose medium preparation. Other agarose concentrations (1% and 3%) were
also prepared before the desired concentration (1.5%).

Agarose (0.15 g + PCL 0.15 g)/10 mL distilled water, (0.15 g + PCL 0.015 g)/10 mL
distilled water and Agarose (0.15 g + PVA 0.15 g)/10 mL distilled water, (0.15 g + PVA
0.015 g)/10 mL distilled water–agarose gels were prepared using the above methods. How-
ever, 0.15 g of fibers per 10 mL of gel were added to the gel after cooling to approximately
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60 ◦C. The reason for the reduced temperature was that nanofibers are not damaged at this
temperature rate and their functionality is preserved.

2.2.5. Determination of Mechanical Properties

The samples of gels were divided into 6 pieces with a sterile surgical scalpel measuring
approximately 7 × 7 × 4 mm. Half of the pieces were used for the constant force load
test-creep, and the other half for the destructive simple pressure test. The exact thickness
of the individual samples was measured throughout the loading process. The unloaded
cross section of each sample was measured using a calibrated photograph in the Autocad
2014 program. The instantaneous average cross section of the samples was calculated on
the basis of the incompressibility condition, i.e., a constant sample volume, and Poisson’s
constant was estimated as 0.5.

Quantities used:

E [Pa], modulus of elasticity from Kelvin model
η [-], viscosity from the Kelvin model
τ [s], relaxation time from Kelvin model
EY [Pa], Young’s modulus of elasticity of a simple pressure test
σ [Pa], internal tension
σS [Pa], limit of simple pressure test
ε [-], relative elongation of the simple pressure test
εS [-], maximum relative elongation of the simple pressure test
T [mm], thickness of unloaded sample
S [mm2], cross section of unloaded sample
V [mm3], volume of the unloaded sample

Destructive Simple Pressure Test—Estimation of the Elongation and Strength Limits and
Young’s Modulus

The pressure test was determined using a Vertical Thermomechanical Analyzer TMA
PT600 (Selb, Germany). The controlled variable was the deformation. All samples were
compressed at a speed of 0.5 mm/s. The movement consistently started approximately
10 mm before reaching the sample and continued until the sample was compressed to a
thickness of 1.1 mm, i.e., until it was completely crushed. The shredding machine was
very oversized, so we considered the stress rate to be constant. This statement was also
checked from the detection system record. The acquisition system stored data on time,
sample thickness in the direction of stress, and tensile force throughout each test with a
frequency of 200 Hz. From these records, the time course of the uniaxial stress σ [Pa] and
the relative elongation ε [-] on time were determined. The stress was calculated from the
applied force at each time point according to the instantaneous cross section of the sample.
The cross section was calculated from the instantaneously measured sample thickness
and assuming incompressibility, i.e., constant volume. From these calculated data, the
functional dependences of the internal stress on the relative elongation σ (ε) were created.
The mechanical characteristics of the individual gel samples were calculated from the graph
of this dependence: Young’s modulus of elasticity EY, yield strength σS, and maximum
relative elongation εS. The complex modulus of elasticity EY was determined by linear
regression (Figure 1).
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using the linear regression of the stress versus relative shortening curve.

Constant Load Test (Creep)-Estimation of Modulus of Elasticity and Viscosity

The tests were performed on a 1-axis loading device. The device was powered by a
Kistler NCFH 10 actuator capable of developing a force of up to 10 kN with a working stroke
of 200 mm. The drive was controlled by the Kistler MaXYmos system with a minimum
step of 0.01 mm and precise control of the feed rate. Measurements of displacement,
length, and elongation of the samples were provided by two independent incremental
sensors with a step of 0.001 mm, which were in perfect agreement throughout the tests.
We estimate the maximum absolute error of the sample elongation measurement to be
±0.01 mm. The tensile force on the sample was measured by two complementary connected
3-axis piezoelectric calibrated dynamometers Kistler 9317c. Their signal was processed
by Dewetron DAQP ChargeB amplifiers (Grambach, Austria) and AD converter NI PCI
6281 (TX, USA). Position and force were recorded and analyzed in Dewesoft 7.1 software
(Trbovlje, Slovenia); further postprocessing, calculations, analysis, and statistical processing
were performed in MS Excel 2010 and OriginPro 2020. The accuracy of force gauges is
given <1%, measuring range was ±8 N, and division size was <0.0001 N. Our estimation
of force measurement error was ±2% of the magnitude of the quantity. The frequency of
scanning all quantities was 2000 Hz; for analysis the data were reduced to a frequency of
200 Hz by selecting every 10 values. No hardware or software signal filters were used in
the measurement or signal processing.

The samples were loaded with a constant force. The results were converted to a
constant tension. To determine the rheological properties, the Kelvin viscoelastic model, a
parallel connection of the damper and the spring, was chosen (Figure 2).

σ = E.ε + η
dε

dt
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2.2.6. Degradation of PVA Nanofibers

PVA nanofibers were produced from a 10% PVA stock polyvinyl alcohol solution.
For fluorescent labeling, a solution of PVA and 5-88 (Merck) at 1:1 v/v ratio was mixed
with 0.042% Fluorescein Isothiocyanate-Dextran (FSC), (Sigma-Aldrich, MO, USA). Non-
crosslinked nanofibers were prepared by electrospinning from a stock solution without
any further treatment. Crosslinked nanofibers were prepared from the stock solution
mixed with 0.6% H3PO4 and 0.4% Glyoxal (Sigma-Aldrich, MO, USA) and crosslinking
was induced by 82 h incubation at 60 ◦C and 15% relative humidity. Nanofiber degradation
was monitored by dissolving fluorescent labeled nanofiber scaffold in a 0.9% NaCl aqueous
solution. Six identical fluorescent labeled samples with a weight of 0.280 g ± 0.003 g were
put into glass bottles with 177 mL of 0.9% NaCl aqueous solution. The bottles with samples
were placed in a shaking incubator with a shaking frequency of 60 Hz and a temperature of
37 ◦C. Aqueous solution samples of 100 µL from each glass bottle were taken at predeter-
mined time intervals and analyzed using SYNERGY H1 (BioTeK, El Segundo, CA, USA) at
an emission wavelength of 520 nm and excitation wavelength of 490 nm. Degradation of
the functionalized PVA loaded with FSC was statistically determined using a calibration
curve prepared by dissolving 0.007 g, 0.014 g, 0.028 g, 0.056 g, 0.084 g, 0.112 g, 0.14 g,
0.0168 g, 0.196 g, 0.224 g, 0.252 g, and 0.28 g of noncrosslinked fluorescent labeled samples
loaded in 177 mL of 0.9% NaCl aqueous solution.

2.2.7. Cell Proliferation Analysis

The MTS test was used to evaluate the influence of gels on cells proliferation. Samples
comprising 2 mL of growth media (DMEM with FBS and ATB) were incubated for 48 h on
the tested gels. 3T3 cells were seeded in 96-well culture plates at a density of 3000 cells/cm2.
Each cell was supplemented with 20 µL of MTS substrate (Promega, Madison, WI, USA)
and 100 µL of growth media. The cells were cultivated for 1 h under normal cell culture
conditions (37 ◦C; 5% CO2; 95% humidity). Then, absorbance was spectrophotometrically
measured (100 µL of product media at wavelength 490 nm) with a reference wavelength of
690 nm. Cells cultivated in a culture medium without incubation on gels were used as a
negative control. Proliferation was measured on the 1st, 3rd, and 7th day of the experiment.
Cell concentrations were determined by microscopy using a Burker chamber. On the
1st, 3rd, and 7th day of the experiment, samples were visualized using phase contrast
microscopy (Optika, Ponteranica, Italy). Cells were seeded in a Petri dish with gel at a
density of 3000 cells/cm2. The cells were cultivated under normal cell culture conditions
(37 ◦C; 5% CO2; 95% humidity). After 72 h of cultivation, cells on gels were stained
by the LIVE/DEAD® Viability/Cytotoxicity Kit (L3224, Thermo Fisher, Selb, Germany)
following protocol (Cell Viability Assays for Neural Stem Cells|Thermo Fisher Scientific,
Selb, Germany).
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3. Results
3.1. Gel Maturation Is a Key Step for Biomechanical Parameters

Agar and agarose gels were selected in this study as a basis for the preparation of
3D implants. All gels were prepared as described in the methods section. Importantly,
maturation was found to be an essential step towards implant biomechanical property
formation. We compared two freshly prepared samples of agar and agarose with maturated
samples kept for one week at 5 ◦C under 100% humidity. The relative deformation ε at
temperatures ranging between 31 ◦C and 45 ◦C was measured. A phase transition between
30 ◦C and 37 ◦C was identified in the agar sample (Table 1). This indicated that the material
at the body temperature was too soft for an optimal implant. Agarose gel, however, showed
much better characteristics, and a significantly broader phase transition makes it favorable
for a clinical application. Clearly, such a gradual transition makes the implant more stable
in case of temperature variation around 37 ◦C. In addition, we found that one-week-lasting
maturation at 5 ◦C resulted in further broadening of the phase transition (Table 1), which
makes the artificial implant even more biomimetic. Thus, we can apply maturation as a
method for controlling biomechanical parameters.

Table 1. Dependence-relative deformation on gel maturation.

Gel Composition Heated to 37 ◦C ε =∆l/l (%)

Agarose 1.5% matured 14 ± 1

Agarose 1.5% fresh 18 ± 2

Agar-Agar 1.5% 24 ± 2

3.2. Characterization of Fractionalized Nanofibers

Nanofibers from PVA and PCL were prepared by electrospinning as described in
the methods section, and their structure was visualized by scanning electron microscopy
(Figure 3a,b). SEM analysis of materials proved the fibrous morphology of both samples.
Diameters of at least 50 different filaments were measured for each image and the resulting
data were processed to yield the structural characteristics of the nanofiber mesh (Figure 4).
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favorable for a clinical application. Clearly, such a gradual transition makes the implant 
more stable in case of temperature variation around 37 °C. In addition, we found that one-
week-lasting maturation at 5 °C resulted in further broadening of the phase transition 
(Table 1), which makes the artificial implant even more biomimetic. Thus, we can apply 
maturation as a method for controlling biomechanical parameters. 
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ure 3a,b). SEM analysis of materials proved the fibrous morphology of both samples. Di-
ameters of at least 50 different filaments were measured for each image and the resulting 
data were processed to yield the structural characteristics of the nanofiber mesh (Figure 
4).  
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distribution of PCL nanofibers, and subfigure (b) describes the average distribution of PVS nanofibers.

Clearly, the diameter distribution showed significantly different structural charac-
teristics for each nanofiber mesh. Different structural characteristics of nanofibers were
observed for different polymers and for different physical parameters employed during
the electrospinning process. Consequently, determination of structural characteristics be-
longs among the key parameters for reproducible production of the nanofiber-based drug
delivery system. The average diameters of the PCL and PVA were determined immediately
after electrospinning (Figure 4) and remained constant even after NaOH treatment.

Nanofiber meshes prepared as described above are 2D-like materials due to their
minimal thickness. This is hardly acceptable for filling large 3D lesions. To solve this
problem, we prepared nanofibrous materials suitable for dispersion in liquids or gels. First,
nanofiber mesh was fractionalized on micro-sized particles at a temperature below the gel
phase transition. It was then mixed with a suitable gel. Such a 3D system maintained all
the advantages of nanofibers, as fractionalization at liquid nitrogen temperatures yielded a
fine powder with preserved nanofiber internal substructure (Figure 3c,d).

The average diameter of the PCL and PVA nanofibers was determined from scanning
electron microscopy images by TESCAN software. The average diameter of the PVA
nanofibers was smaller than the average diameter of the PCL nanofibers because, with used
fabrication technology, the higher viscosity of the used PCL solution limits the stretching of
the jet during formation and therefore affects the diameter.
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3.3. Fractionalized Nanofibers at Low Concentration Stiffen the Agarose Gels

Gel functionalization was performed with fractionalized nanofibers to develop a novel
generation of smart scaffolds with modifiable biomechanical and chemical properties. First,
we tested the effect of fractionalized nanofibers on gel structural properties. The optimal
description of biomechanical properties is a stress–strain diagram reflecting properties over
a wide range of applied stress. We determined the stress–strain diagram for the agarose
gel enriched with either PCL or PVA nanofibers (Figure 5). We proved that the addition
of nanofibers (both PCL and PVA) significantly modified the stress–strain diagram, with
PVA having a more profound effect. Tests were performed to determine the ultimate load
capacity of the gels. The graph shows that the admixture of nanofibers significantly affects
the yield strength and relative elongation. In the case of PVA, the yield strength increased
by about 80% and allows the use of up to 10 mmHg of operating pressure, unlike agarose
itself, which is destroyed at 6 mmHg. In the case of PCL, the increase is not as significant
(50%), which corresponds to a destruction pressure of about 8 mmHg. In addition to an
increase in the yield strength, nanofibers allow greater relative compression and elongation
of the material from 0.29 to 0.37, an increase of about 25%.
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Figure 5. Dependence of the internal stress on the relative deformation under the loading of the gel
by simple pressure. The thick line indicates the average of the measurements, the field standard
deviation. The samples were compressed at a rate of 0.5 mm/s.

Nevertheless, owing to the relatively narrow intervals of temperature and stress values
to which the ideal implant should be exposed, the determination of the Young’s modulus
of elasticity (i.e., at a single point of the stress–strain diagram) was chosen to be a sufficient
experimental approximation. Gel deformation as a stress reaction was measured at 23 ◦C
and 43 ◦C, and the Young’s modulus of elasticity was calculated. Figure 6 shows an
almost linear dependence of Young’s modulus on agarose concentration at 23 ◦C. The
same dependence was observed when the material was heated to 43 ◦C, leading to slightly
reduced values of the Young’s modulus.
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Figure 6. Dependence of the Young’s modulus of elasticity on agarose concentration.

Implant structure should resist at least the pressure applied during laparoscopic
surgery. A set of gels withstanding the recommended pressure was prepared, and their
biomimetic parameters were evaluated by surgeons. Based on the surgeons’ experience,
the gel with Young’s modulus of elasticity characteristic for the 1.5% agarose was also
identified as the most biomimetic gel resembling the native tissue macroscopically, as
indicated by a blue arrow in Figure 6. Thus, we considered the pressure range affecting the
optimal abdominal implant ranging from 10 mmHg to 14 mmHg, i.e., 1.3–1.9 kPa, and the
gels with adequate rigidity were prepared and tested (Figure 6).

Biomechanical gel properties belong indisputably among the key parameters of the
optimal implant. The effect of fractionalized nanofibers on gel rigidity was considered as
potentially significant and, thus, was carefully studied.

The thick line indicates the average of the measurements, the field standard deviation.
The samples were loaded with a constant force; the internal stress was calculated according
to the instantaneous average cross section of the samples. The tests were performed in
order to obtain the rheological properties of the gels, the modulus of elasticity, and the
viscosity. These quantities were calculated using the Kelvin rheological model. From the
graph and the calculated values, it can be deduced that the admixture of nanofibers causes
a reduction in the modulus of elasticity and viscosity, more significantly in the case of PCL.
The added gels will therefore be softer, more fluid, and at the same time withstand higher
loads and deformations.

Clearly, the presence of the fractionalized nanofibers significantly influenced the
Young’s modulus of elasticity even at very low concentrations. The PCL nanofibers af-
fected the relative elongation of gels more than the PVA (Figure 7). Both PVA and PCL
fractionalized nanofibers, however, increased the Young’s modulus of elasticity at about
1.5% concentration. However, their effect was clearly observed already at a ten-times-lower
scale, i.e., about 1.5‰ fractionalized gels.
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3.4. Fractionalized Nanofibers Serve as a System for a Controlled Drug Delivery

First, fractionalized nanofibers were found as essential for gel rigidification. However,
gel functionalization by degradable nanofibers could also open the door for the develop-
ment of gels with the controlled release of encapsulated bioactive substances. Thus, the
effect of nanofibers with a controlled degradation was examined and PVA nanofibers were
used as a model system. Clearly, PVA as a hydrophilic substance is easily degradable in
an aqueous environment. However, controlled crosslinking can prolong their degradation
half-life in water.

PVA nanofibers have been produced from polymers of different degrees of crosslink-
ing, and their degradation was measured in distilled deionized water at a temperature
of 36 ◦C on a vibrating heated platform with a vibrational frequency of 51 Hz. Fluores-
cein Isothiocyanate-Dextran was used as a marker for determination of the degradation
half-time and nanofiber labeling was performed and analyzed as described in the meth-
ods section. Measured data clearly show that crosslinking can significantly prolong the
degradation half-time (Figure 4). While the PVA nanofibers have been characterized with a
degradation halftime shorter than 1 min, crosslinking prolonged this half-time by several
orders. Noticeably, only 8% of the weight of samples with crosslinking modification were
dissolved in 0.9% NaCl aqueous solution during 12 h. Thus, the system allows regulation
of the degradation process on a very broad time window, as the half-time of degradation of
our partially crosslinked sample clearly demonstrated (Figure 8).
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3.5. Biocompatibility Testing

Cell proliferation was used for testing of the fractionalized nanofibers’ biocompatibility.
Both PCL and PVA fractionalized nanofibers were tested, and cells cultivated in a culture
medium without incubation on gels were used as a negative control.

The cell cytotoxicity test did not show significant differences between the standard
culture medium used for cell culture experiments, PCL-conditioned medium, and PVA-
conditioned medium (Figure 9). Therefore, gels with PVA or PCL nanofibers were con-
sidered noncytotoxic and subsequently used for other cell culture testing. High cell vi-
ability was found on both gels’ material, more than 95% by the LIVE/DEAD® Viabil-
ity/Cytotoxicity Kit.
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4. Discussion
4.1. Low Concentration of Fractionalized Nanofibers Can Significantly Modify Hydrogel
Structural Parameters

Dead space after rectal extirpation in colorectal surgery is an area with a high risk of
complications. Unfortunately, optimal methods for avoiding these complications have been
missing. In the present study, we aimed to develop a novel 3D implant based on composite
hydrogels with fractionalized nanofibers. Agarose and agar were chosen as the hydrogel
standard for testing nanofiber effects. Despite the fact that the agarose and agar gels have
been studied for a long time and have been shown as biocompatible, very little information
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about their exploitation in abdominal surgery has been reported [22,23]. Recently, research
and the successful development of agarose fillers in aesthetic medicine and implantation
surgery [24] has proven that agarose fillers cause minimal inflammatory response [16].

Medical application of nanofibers has several clear advantages. Among the more
striking advantages is their biomimetic character, which resembles the structure of an
extracellular matrix. In combination with a suitable gel, such a composite system has
specifically required features, such as adherence to a target location, the possibility of
microshaping, and the high surface area to volume ratio, which favors cell adhesion.
Generally, prepared nanofiber meshes are usually very thin, 2D-like materials. This is
hardly acceptable for filling large 3D lesions. To eliminate this problem, we prepared
nanofibrous materials suitable for dispersion in liquids or gels. We used PVA and PCL,
respectively, as polymers for nanofiber fabrication. Though PVA is approved by medical
authorities, it is a slight irritant [25,26]. PCL is fully biocompatible [27]. We proved that
gels could be used for minimizing the biocompatibility problems.

Nanofiber mesh (i.e., 2D-like material) was fractionalized to form micro-sized particles
at a temperature below the gel phase transition. The microparticles were prepared with
their average size comparable with the nanofiber mesh thickness. This step led to the
production of an interesting material that could be mixed with the macro 3D systems (in
our case, hydrogel on the agarose basis). Such a composite material has several advantages,
their application to endoscopic or laparoscopic surgery undoubtedly being among the most
important. The addition of nanofibers significantly affects the yield strength and relative
elongation. In the case of PVA, the yield strength increased by about 80% and thus allowed
the use of up to 10 mmHg of operating pressure [28–30]; unlike agarose itself, which is
destroyed at 6 mmHg. In the case of PCL, the increase is not as significant; it is up to 50%,
which corresponds to a destruction pressure of about 8 mmHg.

Nanofibers allow an increase in the yield strength and a greater relative compression
of the material of about 0.39 in the case of PVA and about 0.35 in the case of PCL, i.e., an
increase of 25 resp. 17 percent.

The results of determining rheological properties using creep are very interesting.
With the admixture of nanofibers, the modulus of elasticity decreases significantly, and
at the same time, the viscosity of the materials decreases significantly. Together with the
simple pressure test results, these data prove that adding nanocomposites to the gels makes
them become softer and more fluid, and at the same time withstand higher loads and
deformations. In the case of the addition of PVA, the limits of possible stress increased
more significantly, while the elasticity and viscosity increased only slightly. By adding PCL
fibers, we did not achieve great durability, but the material softened more significantly.

4.2. Fractionalized Nanofibers Could Serve as a Superior Drug Delivery System

The unique properties of nanofibers, such as the high surface-to-volume ratio, porous
structure, and nanoscale microarchitecture, make them ideal candidates for tissue engineer-
ing applications [31]. Surface modification of nanofibers is one of the simplest methods of
their functionalization and could be used for adhesion optimization. In addition, nanofibers
could be functionalized at their core. Several types of bioactive molecules have been suc-
cessfully adsorbed into the surface of nanofibers, such as growth factors for the acceleration
of tissue regeneration in hernia repair [32], antibiotics for the prevention of post-op adhe-
sions [33], or liposomes loaded with growth factors to promote cell proliferation [34,35].
A clear advantage of nanofibers is their small diameter, facilitating the construction of
microsystems able to accommodate cells, and the internal nanostructure serving as a cis-
tern for the long-lasting release of bioactive molecules. These properties are unique and,
combined with gels, could solve one of the main disadvantages of nanofibers in medicine:
their pseudo2D structure, which is sufficient for acceleration of healing on surfaces, but
insufficient for the healing of 3D lesions.

In our study, fractionalized nanofibers were found to be an ideal additive for in-
novative 3D hydrogel-based implants. Besides their effect on biomechanical properties,
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low-concentrated nanofibers have been shown to be effective as a drug delivery system
for a controlled release of encapsulated bioactive substances from their core. The scoring
system was developed for the implant characterization and its further optimization, namely
for a specific application (Appendix A).

In this study, we employed a combination of fractionalized nanofibers on pieces several
microns or dozens of microns large. These pieces preserve their nano-substructure, which
is important for cell accommodation, and their size simultaneously allows them obstacle-
free migration throughout the gel. Thus, we could create three-dimensional nanofiber-
based gels and exploit all the advantages of nanofibers for healing 3D lesions such as
those following rectal extirpation. In summary, hydrogels enriched with fractionalized
nanofibers functionalized bioactive substances (anti-inflammatory, growth stimulator, etc.)
in their core.
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Appendix A

Scoring for Gel Fillers

We found some gels to be suitable for filling up the space after the extirpation of the
rectum. However, scoring is necessary to select the optimal gel from all gels tested and
compare them with gels developed in the future. Selection of suitable gels for filling up the
space after extirpation of the rectum is a difficult task from the medical and physical point
of view, since each of them may be better in some respects and worse in others. The gel
should meet the following minimal properties:

• biomimetic with optimal biomechanical parameters in the range between 36 ◦C and
41 ◦C

• high biocompatibility
• minimal invasion by prokaryotic cells
• optimal colonization by eukaryotic cells
• optimal surface parameters (optimal interface between the gel and tissue)
• optimal degradation halftime

Thus, based on the experience of the group leaders, the following scoring has been
implemented:

• 0–5 points for optimal biomechanical parameters between 31 ◦C to 46 ◦C (most impor-
tantly 37 ◦C)

• 0–3 points for high biocompatibility
• 0–3 points for optimal colonization by eukaryotic cells
• 0–3 points for minimal invasion by prokaryotic cells
• 0–5 points for optimal degradation halftime
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• Possibility of functionalization by bioactive substances
• Y/N extra points for optimal surface parameters (optimal interface between the gel

and tissue) for some types of fillers
• Y/N extra points for including antibiotics

The maximum score is 20 points.
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