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Abstract: The aim of the present study was the development of Nb-doped ITO thin films for carbon
monoxide (CO) sensing applications. The detection of CO is imperious because of its high toxicity,
with long-term exposure having a negative impact on human health. Using a feasible sol–gel method,
the doped ITO thin films were prepared at room temperature and deposited onto various substrates
(Si, SiO2/glass, and glass). The structural, morphological, and optical characterization was performed
by the following techniques: X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), and UV/Vis/NIR spectroscopic
ellipsometry (SE). The analysis revealed a crystalline structure and a low surface roughness of the
doped ITO-based thin films. XTEM analysis (cross-sectional transmission electron microscopy)
showed that the film has crystallites of the order of 5–10 nm and relatively large pores (around
3–5 nm in diameter). A transmittance value of 80% in the visible region and an optical band-gap
energy of around 3.7 eV were found for dip-coated ITO/Nb films on SiO2/glass and glass supports.
The EDX measurements proved the presence of Nb in the ITO film in a molar ratio of 3.7%, close
to the intended one (4%). Gas testing measurements were carried out on the ITO undoped and
doped thin films deposited on glass substrate. The presence of Nb in the ITO matrix increases the
electrical signal and the sensitivity to CO detection, leading to the highest response for 2000 ppm CO
concentration at working temperature of 300 ◦C.

Keywords: Nb-doped ITO thin films; Sol–gel; Optical properties; CO detection

1. Introduction

Indium tin oxide (ITO) is an n-type semiconductor with a wide energy band gap
(3.7 eV), low electrical resistance, and high optical transparency in the visible domain. The
development of ITO thin films is of a great interest in the scientific community as a result of
their interesting properties, which make them possible candidates for different applications,
such as optoelectronic devices [1–3], transparent conductive oxides [4], solar cells [5–7],
gas sensors [8,9], biosensors [10–12], thermoelectric applications [13,14], and so on. ITO
thin films can be prepared by various physical (magnetron sputtering [15–19], pulsed lased
deposition [20], ion beam sputtering [21], and electron beam evaporation [22]) and chemical
methods (sol–gel method [23,24], spray pyrolysis [25], and low-temperature combustion
synthesis method [26]).

In terms of the gas sensing properties, these materials based on doped or undoped
ITO thin films have been proven to detect formaldehyde [27], CO2 [28–30], CO [31–33],
NO2 [34,35], chlorine [35], benzene [36], toluene [37], and ammonia gases [38–40]. Ad-
ditionally, ITO thin films can sense ethanol [41,42] and water vapors [43]. Furthermore,
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ITO-coated glass substrates were used in liquid crystals display (LCD) [44–47] and polymer
dispersed liquid crystals device fabrication [48–50]. The suitable material for a certain
application can be achieved by changing several parameters involved in the preparation
process as follows: the deposition technique [16], the metal doping level [51], the pre- and
final annealing temperatures [19], and the film thickness [22].

Carbon monoxide (CO) is among the most harmful gases, being associated with sev-
eral health problems, even death depending on exposure time. CO is released into the
environment because of the partial combustion of fuels from cars and domestic or industrial
activities. Consequently, CO detection is necessary because of its odorless and colorless
properties [52,53]. Over time, researchers have studied metal-oxides based systems, such
as SnO2, In2O3, ZnO [8,54], and indium-tin oxide (ITO) [55,56], with the aim to develop CO
sensors. According to scientific reports, the properties of ITO thin films can be tailored by
doping with various metals: Ag [57], Ga [58], Cr [59], Zn [30,60], Ti [61], Nb [62], and so on.
In contrast with metal-doped ITO films, there are few reports concerning Nb-doped ITO
thin films [51,62–64]. Therefore, these films were successfully obtained by radio frequency
(RF) sputtering, pulsed laser deposition (PLD), and sol–gel methods to investigate the
transparent conductive oxide, optoelectronic, and electrochromic properties [51,62–64]. The
sol–gel method is a versatile and efficient procedure for the preparation of pure and doped
metal oxide films or powders [65,66], showing some advantages such as purity, homogene-
ity, possibility to introduce dopants in large quantities, low processing temperature, ease of
manufacturing, control over the stoichiometry, composition, and viscosity [67].

In this work, we explored the structural, morphological, and optical properties of
multilayer Nb-doped ITO thin films prepared by the sol–gel method, deposited onto
different substrates (glass, SiO2/glass, and Si). The effects of the dopant (4% Nb) and of
the type of substrate were examined by X-ray diffraction (XRD), atomic force microscopy
(AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and
spectroscopic ellipsometry (SE). The Nb doping level was chosen based on our previous
work regarding the Zn-doped ITO as a CO2 sensor.

As aforementioned, our aim was also to examine the influence of Nb doping on the
detection properties of ITO thin films. Although this type of material was previously
studied for certain applications, as far as the authors are aware, there are no literature data
regarding its sensing properties. Therefore, the novelty of this work was the improvement
in the electrical properties of ITO film through Nb doping, making it a more sensitive
material for CO detection. Accordingly, the sample with the most suitable properties
(thickness and porosity) was used for gas measurements of CO.

2. Results and Discussion
2.1. Structural Characterization
XRD Analysis

Figure 1a–c shows the XRD profiles of multilayer ITO/Nb thin films. Different sub-
strates (Si, SiO2/glass, and glass) were coated by five successive layers using the ITO/Nb
sol–gel solution. To highlight the influence of the dopant on the ITO film structure, pre-
viously reported data [30] on the undoped ITO thin films are presented in Figure 1. The
diffraction lines, corresponding to crystal planes (2 2 2), (4 0 0), (4 4 0), and (6 2 2), were
observed for both ITO/Nb and ITO thin films. ITO, which is Sn-doped In2O3, crystalizes in
the bixbyite-type cubic structure of In2O3, with Ia-3 space group (ICDD file no. 06-0416).
Except for the diffraction line of Si (marked with an asterisk on the Figure 1a) belonging to
the substrate, no other phases were detected in the XRD patterns, indicating that the Nb
and Sn dopants were incorporated into the In2O3 structure. The doped samples present
an improved crystallinity, based on the shape of the diffraction line (higher intensity and
narrower width). The lattice constants are slightly larger for the doped samples, most likely
owing to the incorporation of the dopants into the cubic bixbyite structure. The crystallite
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size was estimated using Scherrer’s equation [68] only for the crystal plane (222) and was
found to be around 10 nm (Table 1).

D =
0.94× λ

β× cosθ
, (1)

where D is the average size of the crystallites, λ is the X-ray wavelength, β is the full
width at half the maximum intensity (FWHM), and θ is the location of the diffraction line
(Bragg angle).
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Figure 1. XRD patterns of ITO films undoped and doped with 4% Nb deposited on (a) Si, (b)
SiO2/glass, and (c) glass.

Table 1. Structural parameters and crystallite size of undoped and Nb-doped ITO films deposited by
the sol–gel method on three different substrates.

Sample Name d-Value FWHM
Lattice Constants Size

Da = b = c α =β = γ

(Å) (◦) (Å) (◦) (nm)

ITO on SiO2/glass 2.912(4) 0.77(5) 10.101(10) 90 11
ITO on Si 2.910(4) 0.82(5) 10.106(6) 90 10.5

ITO on Glass 2.907(6) 0.90(7) 10.137(14) 90 9.5

ITO/Nb on SiO2/glass 2.910(2) 0.89(2) 10.1219(3) 90 10
ITO/Nb on Si 2.912(4) 1.00(5) 10.1356(6) 90 9

ITO/Nb on Glass 2.907(3) 0.86(3) 10.103(6) 90 10
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The ITO/Nb films, as well as undoped ITO films, deposited on the SiO2/glass type of
support show a better crystallinity in relation to those deposited on glass or Si substrate.

2.2. Morphological Studies
2.2.1. AFM Measurements

The surface morphology and the roughness of the ITO/Nb thin films were assessed
by AFM. Figure 2 shows the 2D topographic AFM micrographs at the scale of (1 × 1) µm2

for the ITO/Nb films deposited on three different substrates: glass (Figure 2a), SiO2/glass
(Figure 2b), and Si (Figure 2c). As could be seen, the films are compact and exhibit a
uniform structure of nanometric-sized particles (Figure 2) with the root-mean-square (RMS)
roughness values in the range of 0.85–1.29 nm and average roughness in the range of
0.67–1.02 nm (Figure 3). It is suggested that the sol–gel deposition of a SiO2 layer between
the glass substrate and the ITO/Nb film slightly increases the roughness of the ITO film, in
comparison with the ITO film deposited directly on glass, related to a better crystallinity
as observed in XRD. On the other hand, the deposition of the ITO film on Si leads to the
lowest roughness in this series, indicating a denser layer (in agreement with the refractive
index curves).
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2.2.2. SEM Investigation 

Figure 3. RMS (solid fill) and average (gradient fill) roughness for the ITO/Nb films deposited on
different substrates.

2.2.2. SEM Investigation

SEM was also used for the characterization of ITO/Nb films. As can be seen in the
tilted film micrographs of different magnifications (Figure 4), the surface of the film is very
smooth. Figure 4a is a low-magnification (20,000×) micrograph showing a scratch on the
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film surface, where the Si substrate (the darker zone marked with an arrow) is exposed.
Figure 4b is a higher-magnification image (100,000×) showing the step at the edge of the
film on top of the Si substrate, indicating that the film thickness is above 20 nm. The inset
is the magnification of the area marked with a square in Figure 4b.
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The elemental compositional analysis by energy dispersive spectroscopy (EDX) (Table 2)
revealed that niobium is incorporated into the film. A cationic ratio Nb/(In+Sn) of 0.037 was
determined from the EDX measurements for the Nb-doped film.

Table 2. Cation composition measured by EDX elemental analysis of the ITO/Nb film deposited on
Si substrate.

In (%) Sn (%) Nb (%)

ITO 83.1 16.9 0
ITO/Nb 79.9 16.4 3.7

2.2.3. TEM Analysis

As revealed by TEM images, the thickness of the ITO/Nb film deposited on Si is
generally between 26 and 29 nm for the main layer, which is in accordance with SEM and
SE results.

The low-magnification XTEM images (Figure 5a) show that the film has crystallites of
the order of 5–10 nm, as well as relatively large pores, around 3 to 5 nm in diameter. The
deposited layers are not clearly distinguishable; instead, there is an apparent morphology
in three layers separated by rows of pores (Figure 5a).

The high-resolution transmission electron microscopy (HRTEM) images of the ITO/Nb
film on Si (Figure 6a) exhibit that the first layer is denser (1), followed by a pore area layer
(2) and then another denser layer (3) of half thickness. In the upper area (4), no layers can
be distinguished, but there is a mixture of crystallites and pores. The surface layer (5) looks
like a “crust” and is less compact. No pores are present in this upper layer, leading to
low roughness values as observed in AFM. The polycrystalline ITO film structure has no
texture, as revealed by the SAED pattern exposed in Figure 5b. The Si substrate is oriented
along the [1 1 0] zone axis and the Si reflections are connected by the white line in the SAED
pattern. The HRTEM obtained in the thinner area of the XTEM specimen (Figure 6b) shows
a dense morphology of the layer at the bottom of the film. This layer is from 4 to 5 nm thick
and can be probably identified with the real first deposited layer. In the rest of the film, the
pores appear in the film volume. These pores are aligned in the bottom part of the film
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but are randomly arranged in the rest of the film. The pores are not clearly delimited and
can also consist of less dense zones containing some amorphous material. The coherent
lattice fringes in the HRTEM images (Figure 6b) revealed that the ITO crystallites are in the
range of 5 and 10 nm. The morphology of the layer-by-layer deposited ITO film is strongly
affected by the crystal growth process, because the final size of the ITO crystallites is bigger
than the initial thickness of each deposited layer (about 5 nm). If we compare these results
with the case of Zn-doped ITO films [30], it can be observed that the crystallization process
and the total film thickness are influenced by the dopant nature [30].
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The morphology of the apparent layers is shown in Figure 6a. The ITO crystallites size
is revealed in the image by the coherent lattice fringes areas (Figure 6b). At the interface of
the ITO film with the Si substrate, a SiO2 layer with a thickness of about 3 nm is formed.

2.3. Optical Characterization
SE in UV/Vis/NIR Domain

In the UV/Vis/NIR ellipsometric data analysis, the “General Oscillator” model [69]
was applied to the ITO/Nb structure considering Tauc–Lorentz and Drude oscillators. The
surface roughness was considered a mixture of 50% material (film) and 50% voids (air) and
was fitted with the Bruggeman’s effective medium approximation (B-EMA) [70]. The layer
thicknesses (dfilm), the optical constants (refractive index—n and extinction coefficient—k),
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and the band gap energy (Eg) computed by Tauc formula [71] of the ITO/Nb films evaluated
from the best fit are presented in Figure 7 and Table 3. A regression analysis of optical data,
based on MSE, was used to evaluate the fit quality [69].
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Table 3. Parameters determined by SE analysis of ITO/Nb thin films for different substrates.

Parameters Glass SiO2/Glass Si

dSiO2 * (nm) - 40.3 2.4
dfilm (nm) 53.9 26.7 27.1

drough * (nm) 1.9 0.1 1.4
MSE 4.07 1.38 1.68
n ** 1.63 1.72 1.85

Eg(eV) 3.68 3.64 3.59
T ** (%) 78.45 80.64 -
P ** (%) 38.32 27.09 8.44

* Note: dSiO2 is SiO2 thickness and drough is the thickness of the roughness; ** note: n, T, and P are calculated for
λ = 500 nm.

The porosity (P) of the films was calculated with the following formula [72]:

P =

[
1− n2 − 1

n2
d − 1

]
× 100 (%), (2)

where nd = 1.92 is the refractive index of the pore-free ITO (at λ = 500 nm) from WASE
program and n is the refractive index of the ITO/Nb film at the same wavelength (Figure 7c).

The ITO/Nb films deposited on Si (8.44%) have the lowest porosity compared with
those deposited on SiO2/glass (27.09%) and glass (38.32%) (see Table 3). The transmission
spectra (T) of the ITO/Nb films measured in the 250–900 nm spectral range are shown in
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Figure 7 and their values at λ = 500 nm are indicated in Table 3. The ITO/Nb films deposited
on glass and SiO2/glass exhibit a good transmittance (~80%) from visible and increase to
85% at 800 nm. It was observed that the Nb-doping of ITO reduces the band gap of thin
films and can be attributed to the Burstein–Moss shift [73] in the visible domain (Figure 7c).

2.4. Gas Sensing Measurements
CO Sensing Measurements

Both the comprehension of the gas/solid interaction mechanism and identification
of active regions in the films (surface, grain, and grain boundaries), which are implied in
analyzed gas sensing, were assessed through complex impedance analysis. Using Nyquist
plots (Z” vs. Z’), the impedance measurement results (Z = Z’ + j Z′ ′, where Z’ and Z” were
the real and imaginary components, respectively) were represented.

Upon the exposure to a reducing gas, the resistance of the undoped and ITO/Nb films
deposited on glass decreased, while the exposure to air led to an increase in this parameter.
From our gas measurement results, it was concluded that the investigated films exhibited
an n-type conductivity, as a consequence of the changes in terms of resistance of the films,
function of the reducing gas, or air exposure.

From the intersection of the semicircle in Nyquist plots (Z” vs. Z’), we can determine
DC-resistance for our films. In Figure 8, Nyquist plots are presented for ITO/Nb glass at
300 ◦C for different CO concentrations. In Figure 9, the electrical response of ITO/Nb glass
and ITO glass film is plotted for various concentrations of CO function of the working
temperature. The difference in sensitivity between the two samples can be associated with
the presence of Nb in the ITO film.
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As observed, the response of the Nb-doped ITO/glass sample exhibits a maximum
at 300 ◦C (Rair/RCO = 5), which will be considered the optimum working temperature of
the material. It can also be stated that the films are most sensitive to the 2000 ppm CO
concentration. The maximum sensitivity of ITO/Nb glass is approximately four times
higher than the data achieved for Nb-doped TiO2 samples deposited in similar conditions
through a sol–gel approach [74].
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3. Conclusions

ITO/Nb thin films were successfully deposited onto three different substrates through
the sol–gel method. XRD analysis proved the polycrystalline nature of the films. AFM
measurements indicated that all ITO/Nb films exhibit low surface roughness values, below
1 nm. SEM investigation revealed that the films are continuous, homogeneous, and adherent
to the substrate. TEM analysis showed that the ITO/Nb films are very thin (26–29 nm), in
agreement with SEM and SE, but with a complex morphology (a detailed study will follow
in a next paper). The low-magnification XTEM images show that the film has crystallites of
the order of 5–10 nm, as well as relatively large pores, around 3 to 5 nm in diameter, as also
seen in the coherent lattice fringes of the HRTEM. The polycrystalline ITO film structure has
no texture, as observed in SAED patterns. The morphology of the layer-by-layer deposited
ITO film is significantly affected by the crystal growth process, because the final size of
the ITO crystallites is bigger than the initial thickness (~5 nm) of each deposited layer.
The Nb doping of ITO reduced the band gap of the films and can be attributed to the
Burstein–Moss shift in the visible domain. The optical transmittance of the films deposited
on transparent substrates (glass and SiO2/glass) was found to exceed 80%. The detection
properties were characterized in terms of resistance and gas-sensing response. It was found
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that the response of the ITO/Nb glass sample exhibits a maximum at 300 ◦C (Rair/RCO = 5)
and that the ITO films are most sensitive to the 2000 ppm CO concentration. The sensitivity
data are promising, but still preliminary, and will be expanded in future studies.

4. Materials and Methods
4.1. Thin Film Deposition

The Nb-doped ITO (ITO/Nb) films were prepared by the sol–gel method on the
investigated substrates (glass, SiO2/glass, and Si) using the following as precursors: indium
nitrate and 2-tin-ethyl hexanoate as In2O3 and SnO2 sources, 2,4-pentanedione as chelating
agent, and niobium (V) ethoxide as dopant. Figure 10 describes the procedure for ITO thin
films preparation: In(NO3)3·H2O and 2-tin-ethyl hexanoate solutions of 0.1 M concentration
were homogenized by magnetic stirring at room temperature, obtaining a clear transparent
solution. The dopant precursor (niobium (V) ethoxide) was added in the solution after
30 min of homogenization. Acetyl-acetone was added after 30 min and the homogenization
continued for 3 h at room temperature. A light-yellow sol was obtained and it was kept
at room temperature for 24 h. The as-obtained sol was used for the thin film deposition.
The obtaining of ITO/Nb films with five layers was carried out by repetitive depositions
(at a 5 cm/min withdrawal rate). The final films were achieved after 2 h of annealing
treatment at 400 ◦C, with the heating rate of 5 ◦C/min. For the SiO2-coated glass substrate
(SiO2/glass), the SiO2 layer was prepared according to the sol–gel method as presented in
our previous work [75], preventing the diffusion of some elements from glass to ITO.
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4.2. Thin Film Characterization

The structure of the ITO/Nb films was evaluated by the X-ray diffraction (XRD)
method. XRD patterns were recorded using a Rigaku Ultima IV multifunctional diffraction
system (Rigaku Corp., Tokyo, Japan), with Cu Kα (λ = 1.5406 Å) radiation, generated at a
voltage of 30 kV and a current of 30 mA. The diffractometer was set in thin film geometry
with a fixed incidence angle at α = 0.5◦. The measurements were performed at a scan rate
of 5◦ (2θ)/min over a range of 5–90◦. Crystallite size was obtained from the Scherrer’s
formula only for the crystal plane (222).
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AFM measurements were performed with an XE-100 apparatus (Park Systems) select-
ing the so-called non-contact working mode, in order to decrease the tip–sample interaction.
All AFM images were registered using NCLR tips (Nanosensors™), with less than 8 nm
radius of curvature. The AFM micrographs were processed with XEI (v.1.8.0) Image Pro-
cessing Program developed by Park Systems for tilt correction and roughness evaluation.

Microstructural evaluation of the samples was achieved by SEM investigations using
a FEI Quanta 3D microscope operating in the range of 5 and 30 kV.

TEM analysis working in low and high resolution as well as selected area electron
diffraction (SAED) using a JEOL ARM200F analytical electron microscope operated at
200 kV was performed for systematic morphological investigations of the prepared thin
films. The sample was prepared through the classical method of cross section by cutting
2 × 1 mm2 pieces, gluing them face to face, followed by mechanical polishing and final
ionic thinning with the help of a Gatan PIPS System.

SE measurements were carried out at room temperature on J.A. Woollam Co. Inc.
(Lincoln, NE, USA) equipment composed of a variable angle spectroscopic ellipsometer.
The SE spectra were recorded in the 300–1700 nm (UV/Vis/NIR) wavelength range with
a 10 nm step, at an incident angle of 70◦. For multi-parameter fitting, WASE program
provided by Woollam was used. To minimize the difference (mean square error—MSE)
between the experimental and the theoretical data, an iterative least-squares method was
used. From the ellipsometric data analysis, the film thickness and the refractive index
(n) were obtained with an accuracy of ±0.2 nm and ±0.005, respectively. The optical
transmission was measured with the same equipment at a 0◦ incidence angle.

The ITO/Nb films deposited on glass were evaluated for gas sensing performances
by impedance measurements. The four-point probe method inside a Probostat standard
cell was used for gas sensing measurements. The samples were placed in a controlled
atmosphere under a continuous gas flow of 177 mL/min, using a calibrated system of
mass-flow controllers. Air and CO were mixed inside a vessel placed before the inlet of the
impedance measurement cell. The electrical measurements were performed with a four-
probe method AC impedance spectrometer equipped with a Solartron 1260 electrochemical
interface, with an applied AC bias amplitude of 500 mV. Electrochemical impedance spectra
(EIS) were recorded in the frequency domain from 3 MHz to 100 Hz at temperatures of 200
to 400 ◦C with a ProboStat cell (NorECs, Oslo, Norway).
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