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Abstract: We present results of MD and MC simulations of the equilibrium properties of swelling
gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In
accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases
as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or
is virtually constant) as a function of the polymerization degree and grafting density of side chains.
The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the
side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to
different bottlebrush strands in the swollen gel.

Keywords: gels; bottlebrush; scaling theory; Monte Carlo; molecular dynamics

1. Introduction

Brush-like macromolecules (molecular brushes) have been extensively studied theo-
retically and experimentally for a number of decades [1–11]. Both intra- and intermolecular
interactions between side chains densely attached to the molecular backbone determine
specific conformational and dynamic properties of molecular brushes, as compared to lin-
ear analogues. Chemical (covalent) cross-linking of brush-like polymers with subsequent
swelling in a good solvent gives rise to the so called “hairy” gels with strands constituted
by molecular brushes. The swelling ratios and osmotic moduli of such gels depend in a
complex way on the grafting density and polymerization degree of the side chains dec-
orating the network strands [12–16]. Similar structures (“hairy mesogels”) arise upon
self-assembly of triblock copolymers with a comb-like or bottlebrush central block and
associated terminal blocks [12,17]. In these, physically cross-linked networks the strands
are formed by central blocks of copolymer (molecular brushes) that connect neighboring
domains of associated blocks (network cross-links).

A molecular brush consists of a linear chain backbone with multiple side chains
tethered to it. Three major synthetic approaches: (i) “grafting to” (pre-synthesized side
chains are covalently attached to the backbone); (ii) “grafting through” (polymerization of
the so-called macromonomers), and (iii) “grafting from” (side chains are polymerized from
the backbone as macroinitiator) produced a wide variety of molecular brushes with linear
grafts. An additional structural complexity can be introduced through selective gradients
in grafting density or block copolymers as side chains [2,18,19].

The possibility to vary architectural parameters of molecular brushes (such as side
chain length and grafting density) allows for control and adjustment of static and dynamic
properties of both bulk materials and gels thereof [2,6]. Furthermore, branched architec-
tures with bottlebrush motifs, such as barbwire [20–22] or dendronized polymers [23,24],
have been synthesized and explored theoretically and experimentally [25–27]. Combin-
ing branched architecture with temperature-, pH-, and light-responsive functions in the
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main and side chains of molecular brushes opens new opportunities for smart material
design [17,28–35]. Since properties of the constituent macromolecules play a governing
role in functions of the materials, analytical theories [36–42] and self-consistent field nu-
merical [43] approaches; and coarse-grained computer simulations [44–53] of branched
polymers have been used to corroborate the relationships between macromolecular architec-
ture and experimentally accessible properties of melts, solutions, and thin films comprising
molecular brushes.

It was demonstrated [31] that thermo-responsive triblock copolymers with linear (L)
terminal and bottlebrush (B) central blocks can produce hydrogels upon association of
L-blocks in spherical domains physically cross-linking B-strands. For example, PNIPAM-
bbPEG-PNIPAM triblocks self-assembled upon reaching their lower critical solution tem-
perature (LCST) to produce two types of polymer networks: injectable hydrogels at body
temperature and elastomers after water evaporation [31]. The gelation process was at-
tributed to LCST-triggered microphase separation of the PNIPAM L-blocks, and the forming
network in both hydrogels and elastomers was homogeneous, in contrast to microphase-
separated linear counterparts.

Self-assembly of bottlebrush block copolymers in solutions remains a topic of intensive
experimental [54–64] and theoretical [42,65,66] research. It was demonstrated that branched
architecture of soluble blocks leads to a variety of self-assembling aggregates that could
potentially serve as precursors of gels with bottlebrush strands.

The goal of this paper is to compare the recent theoretical predictions on “hairy” gels
with the results of MD and MC computer simulations. In Section 2, we briefly review
the scaling model of hairy gels, and summarize the theoretical predictions on its swelling
behavior and mechanical properties. We then compare the theoretical predictions with
the data from Monte Carlo (MC) and molecular dynamic (MD) simulations. In Section 4,
we present the details of implemented MC and MD methods. In Section 3, we formulate
conclusions and outline perspectives for further development in theory and modeling of
bottlebrush architectures.

2. Results and Discussion
2.1. “Hairy” Polymer Gel: Scaling Model

Swelling of chemically and/or physically cross-linked networks with brush-like
strands in a good solvent yields “hairy” gels. Each strand in a hairy gel constitutes a
molecular brush with degree of polymerization (DP) M in its flexible backbone (main
chain), and equally flexible spacers and side chains with DPs m and n, respectively (see
Figure 1a). In contrast to networks with linear strands, the swelling and elastic proper-
ties of hairy gels depend not only on the cross-linking density defined by the strand DP
N = M(1 + n/m), but also on n and grafting density (1/m) of side chains at a given M.
If n > m, side chains overlap and stretch normally to the backbone due to monomer–
monomer interactions, giving rise to a bottlebrush (molecular brush). If n < m, the side
chains exhibit coil conformations, making the polymer comb-like.

A molecular brush is envisioned as a wormlike chain with thickness D (which is end-
to-end distance of the side chains normally to the backbone), spacer end-to-end distance h,
effective contour length L ∼= Mh/m, and persistence length lp ' D. In the framework of
scaling model [36,42], the strand thickness D and spacer end-to-end distance h are specified
by the balance between the elastic stretching of side chains and spacers, and repulsive
monomer-monomer interactions in the cylindrical layer around the main chain, to give

D/a ∼=
{

nν(n/m)ν(1−ν)/2, m ≥ m∗

n2ν/(1+ν)m−(1−ν)/(1+ν), m ≤ m∗
(1)

h/a ∼=
{

mν(n/m)ν(1−ν)/2, m ≥ m∗

m, m ≤ m∗
(2)
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The first and the second lines in Equations (1) and (2) correspond to partial and close
to maximal stretching of spacers in the main chain, respectively (with m∗ ∼= nν/(2+ν)

separating two elasticity regimes for the backbone); a is the length of monomer unit in the
backbone and side chain; and ν is Flory exponent (ν ≈ 3/5 in good solvent, and ν = 1/2
in theta-solvent). Notably, the scaling relations in Equations (1) and (2) have asymptotic
character—that is, they apply only for n� 1, n� m, and M� M∗ with

M∗ '
{

m1−νnν, m ≥ m∗

n2ν/(1+ν)m−(1−ν)/(1+ν), m ≤ m∗

In scaling terms, M ' M∗ (or, equivalently L ' D) separates bottlebrushes with
L � D from starlike polymers with L � D. In realistic experimental and simulation
systems, n ≤ 102 and m ' 1. Due to the local cylindrical symmetry, a strong overlap of
moderately long side chains occurs only close to the backbone, and therefore the scaling
dependences predicted by Equations (1) and (2) are only approached in the currently
attainable range of n, m, and M. However, due to still noticeable stretching of the side
chains normally to the backbone (D > anν), a bottlebrush molecule behaves as a self-
avoiding chain composed of L/D impermeable subunits (“superblobs” with size D each),
and its overall size Req in dilute solution scales as

Req ∼= D
(

L
D

)3/5
=

(
Mh
ma

)3/5(D
a

)2/5
(3)

Rmesh

x

(c)

D

Req

(b)

M

n

n n
n

m
m

nn
m

m
m
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Figure 1. Schematics of graft-polymer, with {M, n, m} being the DPs of the main and side chains
and of the spacers, respectively. (a) Hairy gel with bottlebrush strands in hollow mesh (b) and filled
mesh (c) regimes. Backbones of strands are colored in black, side chains are in red, and cross-links
are marked as blue circles. Req is the equilibrium end-to-end distance of the main chains of the gel
strands (the mesh size). Superblobs with size D (hollow-mesh regime) and concentration blobs with
size ξ < D in semi-dilute solution of side chains (filled-mesh regime) are shaded light gray.

Distribution of polymer’s density within a swollen hairy gel could be inhomogenuous.
Two structural regimes, hollow mesh and filled mesh gel, are distinguished depending
on the ratio between the mesh size, Rmesh , and the superblob size, D [15,16]. In the hol-
low mesh regime (Figure 1b), each strand constitutes a molecular brush with thickness
D � Rmesh, and weak overlap of neighboring strands ensures hollow space (mesh) between
cross-links. In this case, the mesh size Rmesh can be evaluated using the c∗-theorem of de
Gennes, [67] to give Rmesh ' Req. In the filled-mesh regime (Figure 1c), the neighboring
strands strongly overlap, giving rise to a semi-dilute solution of side chains with an al-
most uniform concentration c ' Na3/R3

mesh. The interior of the gel is envisioned as a
closely-packed array of the concentration blobs with size ξ(c) ∼ ac−ν/(3ν−1) < D. In this
case, the equilibrium mesh size Rmesh results from the balance between gel osmotic pres-
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sure, π/kBT ∼= ξ−3(c), and the conformational elasticity of the backbones (renormalized
according to the polymer concentration c inside the gel).

To facilitate comparison between the theoretical predictions and the simulation data,
we present in Figure 2 the scaling-type diagram of states for hairy gels [16] in n, m log–log
coordinates (with ν = 3/5). In the hollow-mesh regimes C∗a and C∗b , each spacer in the main
chain is, respectively, partially or almost fully stretched. The boundary C∗a −C∗b corresponds
thereby to m = m∗, indicating the onset of spacer strong stretching in individual strands
at given n. Similar situation occurs in the filled mesh regimes C∗∗a and C∗∗b . That is, the
boundary C∗∗a − C∗∗b corresponds to the onset of spacer strong stretching in the filled-
mesh regimes (semi-dilute solutions of the side chains). At the boundaries C∗b − C∗∗b and
C∗a − C∗∗a (red lines in Figure 2), DP M of the backbone becomes equal (in scaling terms)
to M∗, separating bottlebrush and starlike conformations of strands. At these boundaries
(indicated by M∗), each strand comprises on the order of one superblob with size D (L ' D),
as schematically shown in Figure 2.

n

m1

M *
M *

M13/9

m*

M1/3

M 2

c >1

M

aM

D

L

anv

Cb
*

Cb
**

Ca
**

Ca
*

Figure 2. Scaling-type diagram of states for hairy gel in {n, m} coordinates in good solvent (ν = 3/5).
In the hollow-mesh regimes C∗b and C∗a , bottlebrush strands have either partially or almost fully
stretched spacers, respectively. In filled-mesh regimes C∗∗b and C∗∗a , the interior of the gel constitutes
a semi-dilute solution of side chains. Schematics demonstrate strand conformations in regimes C∗b
and C∗a , and at boundaries C∗b − C∗∗b and C∗a − C∗∗a (that correspond to backbone length M = M∗

at which bottlebrush transforms in starlike polymer with L = D). Boundary C∗b − C∗a (marked m∗)
separates bottlebrush strands with fully (m < m∗) and partically (m > m∗) stretched spacers. In the
shaded green area, strands are comb-like (side chains are unstretched coils). Strands in regimes of
semi-dilute solutions C∗∗b and C∗∗a are shown in Figure 1.

The scaling expressions for the equilibrium mesh size Rmesh/aMν, gel swelling coeffi-
cient (that is, ratio of volumes V in the swollen and dry states)

Q =
V

Vdry
' R3

mesh
a3N

=
R3

mesh
a3M

·
(m

n

)
, (4)

with N = M(1 + n/m) and n� m, and osmotic bulk modulus

G
kBT

= c
(

∂π

∂c

)
c=ceq

'
{

R−3
mesh hollow mesh regimes C∗a , C∗b

ξ(c)−3 filled mesh regimes C∗∗a , C∗∗b
(5)

are collected in Table 1 with corresponding exponents specified for ν = 3/5.
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Table 1. Asymptotic power-law dependencies for normalized mesh size Rmesh, swelling ratio Q, and
bulk osmotic modulus G in a free-swelling hairy gel with DP M of strands in good solvent (ν = 3/5).

Rmesh/aM3/5 QM−4/5 Ga3 M9/5/kBT

C∗a (n/m)9/25 (n/m)2/25 (n/m)−27/25

C∗∗a (n/m)9/25 (n/m)2/25 (n/m)−9/50

C∗b (n/m)3/10m1/5 (n/m)−1/10m3/5 (n/m)−9/10m−3/5

C∗∗b M2/5 M6/5(n/m)−1 M−27/10(n/m)9/4

As follows from Table 1, an increase in DP n of the side chains at fixed DP M of the
backbone leads to the monotonous increase in mesh size, Rmesh ∼ nβ, in regimes C∗a and
C∗∗a (exponent β = 9/25 = 0.36), C∗b (exponent β = 3/10), approaching full extension,
Rmesh ∼ aM, in regime C∗∗b (exponent β = 0). At the same time, both swelling ratio Q and
osmotic bulk modulus G exhibit non-monotonic dependences on n. Swelling coefficient
Q(n) ∼ n3β−1 passes through a maximum at the boundaries C∗a − C∗b and C∗∗a − C∗∗b , and
osmotic modulus G(n) passes through a minimum upon crossing the boundaries of regime
C∗∗b . The maximum in Q(n) dependence is weak due to a small value of the exponent
which changes from +0.08 to −0.1 at the C∗a − C∗b boundary, and this maximum could even
disappear if the apparent exponent βapp < 1/3. Recall that the values of exponents in
Table 1 were calculated in the limit of n/m� 1. The predicted sharp (jumpwise) minimum
in G(n) at the boundaries of regime C∗∗b could be smoothed in computer simulations,
leading to shift in the minimum location far left (to smaller values of n).

2.2. Computer Simulations of Hairy Gel

We used both MC and MD simulations to explore the equilibrium-swelling behavior
of hairy gels in a good solvent (ν = 3/5). In Figure 3, we present the simulation box
which has the same geometry in MC and MD simulations. That is, 16 polymer chains
were connected to a diamond-like network by eight tetrafunctional cross-linking units, and
the network element was put into cubic simulation box of the volume V with periodic
boundary conditions to emulate an infinite polymer network. It is worth mentioning that
MD and MC simulations were performed in NVT and NPT (with pressure P = 0 and V
fluctuating) ensembles, respectively.

Figure 3. A view of a simulation unit cell with gel backbone (in black color, length M = 19) and side
chains (in various light colors for clarity, length n = 16) grafted every second monomer unit (m = 2)
intentionally in a state with pressure P < 0 (volume V greater than in free swelling equilibrium with
pressure P = 0) to avoid excessive overlapping of side-chains and clearly showing the gel branching.
Backbones are indicated in black with side chains in various colors (to avoid crowding).

In Figure 4a,b, we present the scaling-type diagrams with positions of the boundaries
calculated specifically for DP M = 37 and DP M = 13 of the backbone, respectively,
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together with set of symbols {n, m}marking the architectural parameters of bottlebrush
strands modeled in MC simulations. In Figure 4c, a similar diagram is presented for M = 30
with set of symbols{n, m}marking the parameters of strands modeled in MD simulations.
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Figure 4. Scaling-type diagrams with positions of boundaries calculated specifically for DP M = 37
(a) and DP M = 13 (b) of the backbone, respectively, together with ordered set of symbols {n, m}
marking the architectural parameters of bottlebrush strands modeled in MC simulations and (c) for
M = 30 in MD simulations.Shaded area with n ≥ mM2 corresponds to unphysical values of c ≥ 1.

While positions of the boundaries in Figure 4 are specified with accuracy of the
numerical prefactors on the order of unity, it is still expected that MC simulations for
M = 37 (Figure 4a) with small values of 1 ≤ m ≤ 4 and increasing n (up to n = 128) cover
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regimes C∗a and C∗b . In contrast, Figure 4b indicates that for M = 13, MC data pass through
regimes C∗a C∗b , and even enters regime C∗∗b . According to Figure 4c, MD simulations cover
a considerably larger interval of m-values (up to m = 50). However, many of the symbols
correspond to comb-like strands (area with n/m < 1, shaded gray), and the rest of the
data probes only regime C∗a .

2.2.1. Average End-to-End Distances of Strands and Side Chains

In Figures 5, we plot the average mesh size Rmesh ' 〈V〉1/3 of a free-swelling gel,
and the average end-to-end distance 〈r〉 ' rsc ' D of the side chains obtained in MC
simulations as a function of n for m = 1, 2, 3, and 4 in log–log coordinates.

At n & 10 (when the side chains stretch normally to the backbone), different m-
values produce almost parallel lines in Rmesh(n) ∼ nβ dependences, with apparent slopes
βapp = 0.22− 0.25, i.e., smaller than the theoretically predicted β (i.e., 0.36 in regime C∗a and
0.30 in regime C∗b ). For rsc(n) ∼ nα, the correspondence between the theoretical exponents
α (i.e., 0.75 in regimes C∗b and 0.72 in regime C∗a ) and apparent slopes is expectably [50]
worse, consistent with smaller apparent values of βapp. Notably, at M = 37, Rmesh(n),
and rsc(n) do not intersect at fixed m at any considered n (see Figure 5a), indicating that
the hairy gel remains in the hollow mesh state. In contrast, at M = 13, Rmesh(n) and
rsc(n) become close at the largest values of n (see Figure 5b), indicating that the hairy gel
approaches the filled-mesh state. In Figure 5c , we plot normalized mesh size Rmesh/aM3/5

as a function of (n/m) for M = 13, 19, 25, and 37 to demonstrate how MC data collapse
on mastercurve with slope βapp = 0.25, with maximal deviations for the smallest value of
M = 13 (presumably approaching regime C∗∗b with Rmesh/aM3/5 ∼ (n/m)0).
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Figure 5. Cont.
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(c)
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1
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−
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1
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Figure 5. Average mesh size R = 〈V〉1/3 and end-to-end distances of the side chains 〈r〉 as a function
of n for m = 1, 2, 3, 4 for M = 13 (a) and M = 37 (b) obtained from MC simulations. In panel (c), the
mesh size is normalized by Mν. Here and below, the gray area corresponds to comb-like strands with
n/m < 1.

In Figure 6, the equilibrium strand end-to-end distance Rmesh(n) ∼< V >1/3 is pre-
sented for a series of m-values and fixed M = 30, as obtained from MD simulations.
While values of n < m correspond to comb-like strands, the data for relatively small
m and n > 10 are used in Figure 6 to evaluate apparent exponent βapp in the depen-
dence Rmesh(n)M−3/5 ∼ (n/m)βapp to give βapp ≈ 0.26, in accordance with the results of
MC simulations.
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Figure 6. Cont.
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(b)
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1
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Figure 6. Equilibrium mesh size from MD simulations, Rmesh(n) ∼ V1/3, as a function of n for a
series of m-values and fixed M = 30 (a), and normalized mesh size Rmesh(n)M−3/5 versus n/m with
slope βapp = 0.26 (b).

2.2.2. Gel Swelling Coefficient

In Figure 7, we present the normalized equilibrium swelling coefficient QM−4/5 = VM−4/5/a3N
as a function of n/m predicted by the scaling model (Figure 7a) and obtained from MC
simulations (Figure 7b) in log–log coordinates. The power-law dependences QM−4/5 in
Figure 7a were calculated for M = 37 with slopes indicated in Table 1 (that is, 2/25,−1/10,
and −1 in regimes C∗a , C∗b , C∗∗b , respectively) and m = 1, 2, 3, with all numerical prefactors
assigned unity. For m = 2, Q is shown by red lines; for m ≥ 4 only regimes C∗a , C∗∗b are
feasible. The maximum predicted for M = 37 corresponds to QM−4/5 ≈ 1.38. A decrease
in M shifts location of the maximum to the left and makes it less pronounced.

MC simulations data in Figure 7b show the dependence of QM−4/5 on n/m for series
of M-values. The predicted weak maximum is not well pronounced; mostly, its decreasing
(right) branch is seen in MC simulations. As strands with M = 37 are not expected to
enter regime C∗∗b (see Figure 4a), the slope dQ/dn is far from the predicted exponent −1.
However, for smaller M = 13 for which regime C∗∗b is feasible (see Figure 4b), the slope of
MC data approaches −1, as predicted.

The data from MD simulations in Figure 8 also indicate weak dependence of swelling
coefficient Q on n/m. Here, the normalized swelling coefficient QM−4/5 is presented as a
function of n/m for a wider variety of m-values and two values of M = 30 (red symbols)
and M = 100 (violet symbols), and probing regime C∗a in which the predicted slope is
2/25 = 0.08. For M = 30, the data in Figure 8 with different m-values remain rather
scattered; the increase in backbone DP M up to M = 100 decreases the scattering of the
data that collapse on mastercurve with close to zero slope. Notably, the numerical prefactor
in QM−4/5 versus n/m dependences is close to unity in both MC and MD simulations,
consistent with the scaling model.
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(a)

(b)

100101

10

1

0.1
m = 4

M = 37

m = 3

M = 25

m = 2

M = 19

m = 1

M = 13

n/m

M
−
4
/
5
〈V

〉/
N

100101

10

1

0.1

Figure 7. Theoretical (a) and MC-simulated (b) swelling coefficient Q as a function of n/m. Scaling
dependences for theoretical Q (with all numerical coefficients equal to unity) were calculated for
M = 37. C∗a − C∗b and C∗b − C∗∗b boundaries are indicated for m = 2.
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Figure 8. Normalized swelling coefficient QM−4/5 from MD simulations for M = 30 (red symbols)
and 100 (violet symbols) as a function of n/m.

2.2.3. Osmotic Bulk Modulus

In Figure 9a we present the MC data for the gel osmotic bulk modulus, G = c(∂π/∂c)c=ceq .
Here, π(c) is osmotic pressure, and ceq ' Q−1 is the equilibrium concentration of monomer
units in the hairy gel. As is seen in Figure 9a, the osmotic modulus G decreases with



Gels 2022, 8, 793 11 of 17

increasing DP M of the strand backbone, in qualitative agreement with the theoretical
predictions in Table 1. However, the predicted minimum in G(n) dependence is not
detected in MC simulations. An increase in M flattens G(n) dependence, only pointing at
the possibility of minimum formation.

A conjecture is that the sharp minimum predicted by the scaling model could be
smoothed in MC simulations, as schematically illustrated by the dashed lines in Figure 9b.
Another factor is the effect of perturbed dense cylindrical layers circumventing the back-
bones. Although Figure 9b is merely schematic and does not specify the shape or position
of the dotted lines, it is clear that the theoretically predicted exponents for G(n) would not
work in the smoothed region, and therefore, collapse of G-data on the mastercurve is not
expected. However, this schematic indicates that minimum in G(n) dependence can move
left and fall out of the considered ranges of the strand architectural parameters.
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Figure 9. Osmotic modulus G as a function of n/m in MC simulations (a) and scaling model (b).
A conjecture that sharp minimum could be smoothed in simulations is illustrated by the dashed
lines (b).

3. Conclusions

Based on the scaling description of molecular brushes, the theory specifies power-law
dependences for the equilibrium properties of “hairy” gels with bottlebrush strands. Four
structural regimes of hairy gels were distinguished: two hollow-mesh regimes, C∗a and C∗b ,
with partially and almost fully stretched spacers; and two filled mesh regimes, C∗∗a and C∗∗b ,
with partially or almost fully stretched backbones embedded in a semi-dilute solution of
side chains. Two supplementary computer simulation techniques, MC and MD, were used
to probe the structure of free-swelling in good solvent gel with varied strand architectural
parameters {M, n, m} to corroborate the theoretical model. It was demonstrated that MC
simulations of hairy gels with short spacers (m ≤ 4) could cover regimes C∗a and C∗b , and
approach regime C∗∗b . MD simulations of gels with a wider variety of m-values could
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probe regime C∗a . In all cases, limited extension of the gel regimes (Figure 4) and restriction
n/m � 1 make it challenging to compare the predicted asymptotic values of exponents
(Table 1) with apparent exponents from MC and MD simulations. In addition, it is not
surprising that apparent exponents deviate from the theoretical ones for the considered set
of strand parameters {M, n, m}.

According to the scaling model, the gel mesh size Rmesh ∼ Mνnβ increases monotonously
with increasing of both the DP n of the side chain and the DP M of the strand backbone.
The apparent exponent βapp ≈ 0.25− 0.26 estimated from MC and MD simulations was
smaller but reasonably close to the theoretical values, β = 0.30− 0.36. Exponent ν was
close to 3/5 as expected for good solvent conditions. The thickness D of the bottlebrush
strand increased with n. However, an approach to the theoretical exponent 3/4 requires
n & 103 (i.e., much larger n-values than have been implemented in MC simulations),
and the correspondence between apparent and scaling exponents in D(n) dependence
was poor.

The theory predicts that the swelling ratio Q of the hairy gels is controlled primarily by
the DP M of the strand backbone, whereas the dependence on the DP n and grafting density
1/m of the side chains is weak. This prediction is in agreement with the MC and MD simu-
lation data. The theory also predicts non-monotonic dependences of osmotic modulus G
and swelling ratio Q of hairy gels on DP n of the side chains. The osmotic modulus G passes
through a minimum corresponding to the overlap threshold of the side chains emanating
from different strands. In contrast, swelling ratio Q passes through a maximum upon onset
of strong stretching of spacers in nonoverlaping strands. The MC computer simulations did
not find pronounced extrema in Q(n/m) and G(n/m) dependences and demonstrated only
the decreasing branch in Q-dependence (with slope approaching −1, predicted in regime
C∗∗b ) and the increasing branch in G-dependence (with slope approaching 9/4, predicted
in regime C∗∗b ). Lack of maximum in Q(n) dependence can be explained by the values of
apparent exponent βapp < 1/3 in Rmesh ∼ nβapp dependence that automatically eliminates
the increasing branch in Q = R3

mesh/a3N ∼ n3βapp−1. The relatively small values of βapp
could follow from the limited extension of the scaling regimes for currently considered set
of {M, n, m} parameters. A wider set of architectural parameters {M, n, m} is desirable to
confront the scaling model of hairy gel with better accuracy.

4. Materials and Methods

The model of the gel as a network of 16 linear polymer chains, each consisting of M
monomer units. These polymer chains are connected to a diamond-like network by eight
cross-linking units. The side chains of the lenght n are grafted on each m-th monomer
of the main chain (see Figure 3). The network was put into cubic simulation box of
the volume Vgel with periodic boundary conditions, which virtually emulates an infinite
polymer network.

4.1. Monte Carlo Simulations

In Monte Carlo simulations, we used a variant of the Hamiltonian (originally called
hybrid [68]) Monte Carlo (HMC) method and coarse-grained (CG) models. The HMC uses
Hamiltonian dynamics to sample probability distribution exp(−H/kBT), where H(p, q)
is the Hamiltonian, q are generalized coordinates, and p are generalized momenta. In the
simplest case, a separable Hamiltonian H(p, q) = K(q)+V(p) is used, where K is kinetic en-
ergy and V is potential energy for sampling Boltzmann distribution exp(−V(q)/kBT). The
momenta p can be sampled directly, and Hamiltonian dynamics q̇ = ∂H/∂p, ṗ = −∂H/∂q
are followed for some time to prepare a new proposal for a Metropolis step [69] with accep-
tance probability Pacc = min(1, exp(−∆H/kBT)). For the exact dynamics ∆H, it would be
zero (time independent Hamiltonian is conserved), and all proposals would be accepted.
In practice, instead of exact dynamics, we must use an approximate numerical evolution
with numerical integrators. Fortunately, time-reversible, phase-space volume-preserving
integrators are available, and their procedure is exact, and any bias due to approximate
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dynamics is then removed by Metropolis rejections. Moreover, the Hamiltonian for dy-
namic evolution can be different from the targeted one. This allows for great variability
of the method. In the case of polymer simulations, a big improvement can be achieved
by a suitable transformation of variables. The potential energy for the standard Rouse
(harmonic) model is diagonal in bond vector coordinates ri − ri−i. With the freedom of
choosing the evolution Hamiltonian, we use new canonically conjugated momenta with
bond vector coordinates, and it allows for sampling all normal modes at the same rate [70].
For other potentials and approximate integrators, the method somewhat deteriorates, but it
is still much better than simple molecular dynamics and leads to a smaller scaling exponent
of the integrated autocorrelation time of the end-to-end distance with chain length, and
thus is arbitrarily faster.

In our CG model we use two types of interactions, bonding and non-bonding. For the
bonding one, we use a variant of finitely extensible nonlinear elastic (FENE) potential [71]
in a form uF(r) = −ekBT log((r0 + d − x)(x − r0 + d)/d2) for r ∈ (r0 − d, r0 + d) and
infinite elsewhere, with mild singularities at r0 ± d. It is a relatively small complication for
simple molecular dynamics where small time-steps are used that potential does not exist
outside (r0 − d, r0 + d). In HMC, we use the advantage of much longer time-steps that
could lead to stepping out of the definition interval. We resolve this in the spirit of HMC
and prepare a new potential finite, everywhere being uF(r) on (r0 − d + ε, r0 + d− ε) and
v(r) + u(r0 + d− ε)− v(r0 + d− ε), where v(r) = ekBT(r0/d)2(r/r0 − 1)2 elsewhere that
is used for dynamic evolution in HMC and the original uF(r) is used for the Metropolis step.
By this combination, we achieve the exact sampling with uF(r) while avoiding numerical
problems. For non-bonding potential, we use soft repulsive potential uS = e((r− c)/r)2

for r ∈ (0, c) and 0 elsewhere, where e > 0 is an energy parameter and c is a cutoff.
The potential is smooth at cutoff. Frequently, the standard Lennard–Jones potential [72],
originally suggested for simulations of neon, is used for this purpose. Although the
1/r6 part can be justified for two atoms (with at least one in an S-state) at very long
distances, the 1/r12 part lacks such a simple justification, the less for the potential that
should represent CG macromolecular system in a solution. By taking a systematically
coarse-grained model based on all-atom empirical force-field and fitting the corresponding
part for small distances, we find a much smaller exponent [73] of about 2, as for our u(r).

The simulations were performed in NPT ensemble by adding volume-changing
moves [74]. The simulations started from extended conformations of gel backbone and
coiled side-chains as corresponding to a good solvent. A thorough equlibration was per-
formed for box sizes, energies, and end-to-end distances. The free (tuning) parameters of
our HMC method were roughly set up according to optimal acceptance probability and the
smallest integrated autocorrelation times. After equilibration (as illustrated by Figure 10),
samples were accumulated, and standard deviations of their averages were estimated using
the blocking method [75].
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Figure 10. Traces of instantaneous box sizes during NPT Monte Carlo sampling for P = 0 and gel
architectural parameters (M, m, n), as indicated in the legend.
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4.2. Molecular Dynamics Simulations

Each pair of the particles interact via the truncated Lennard–Jones interaction potential,
which imposes strong repulsion between all particles at short distances:

ULJ(r) =


4ε

(σ

r

)12

−
(

σ

r

)6
 if r < rcut

0 elsewhere

, (6)

where r is the interparticle distance, σ = 0.35 nm is a chosen characteristic size of the
particles, ε = kBT is the depth of the potential, and rcut is the cut-off distance beyond which
the potential is set zero.

The bonds connecting the gel to a network are modeled using finite extension nonlinear
elastic potential (FENE):

UFENE(r) = −
1
2

K∆r2
max ln

[
1−

(
r− r0

∆rmax

)2
]

, (7)

where r is the distance between the bonded segments, K is the magnitude of their interaction,
∆rmax is the maximal stretching length of the bond, and r0 is the equilibrium bond length.
In our simulations we set K = 10kT/σ2, ∆rmax = 3σ and r0 = 0.0 [76].

The Langevin thermostat [71] was used to guarantee the constant temperature of the
system, T = 300 K. The two additional terms to force in equation of motion were added.

fi = −γvi(t) +
√

2γkTηi(t), (8)

where the first term corresponds to constant friction, with γ being a friction coefficient, and
the second one corresponds to random thermal force, with ηi being a normally distributed
random vector; vi—velocity of i-th particle, t—time.

In order to calculate the swelling ratio of hydrogel, we performed a series of simu-
lations of the gel in a box of different volumes V. Each simulation results in a particular
value of pressure P.

Our target observable is the free swelling equilibrium state, i.e., at the state where the
applied to the gel pressure equals to zero. In order to localize this state, we first plotted
P(V) dependence; then, using the least-squares method, we drew a line passing through
the nearest to the V axis points. The place where this line crosses the V-axis defines the
volume of free swelling equilibrium state.
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