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Abstract: Curcumin is a potent natural compound used to treat Alzheimer’s disease (AD). However,
the clinical usefulness of curcumin to treat AD is restricted by its low oral bioavailability and
difficulty permeating the blood-brain barrier. To overcome such drawbacks, various alternative
strategies have been explored, including the transnasal route. However, rapid mucociliary clearance
in the nasal cavity is a major hindrance to drug delivery. Thus, designing a delivery system for
curcumin to lengthen the contact period between the drug and nasal mucosa must be employed.
This study describes the optimization of KLVFF conjugated curcumin microemulsion-base hydrogel
(KCMEG) to formulate a prototype transnasal preparation using the response surface method to
improve a mucoadhesive property. A central composite design was employed to optimize and
evaluate two influencing factors: the concentration of carbopol 940 and the percentage of KLVFF
conjugated curcumin microemulsion (KCME). The physicochemical properties, anti-cholinesterase
activity, and anti-aggregation activities of KCME were investigated in this study. The studied factors,
in terms of main and interaction effects, significantly (p < 0.05) influenced hardness and adhesiveness.
The optimized KCMEG was evaluated for pH, spreadability, and mucoadhesive properties. Ex
vivo nasal ciliotoxicity to optimize KCMEG was performed through the porcine nasal mucosa.
KCME was transparent, with a mean globule size of 70.8 ± 3.4 nm and a pH of 5.80 ± 0.02. The
optimized KCMEG containing 2% carbopol 940 showed higher in vitro mucoadhesive potential
(9.67 ± 0.13 min) compared with microemulsion and was also found to be free from nasal ciliotoxicity
during histopathologic evaluation of the porcine nasal mucosa. The result revealed that both the
concentration of carbopol 940 and the percentage of KCME play a crucial role in mucoadhesive
properties. In conclusion, incorporating a mucoadhesive agent in a microemulsion can increase the
retention time of the formulation, leading to enhanced brain delivery of the drug. Findings from the
investigation revealed that KCMEG has the potential to constitute a promising approach to treating
AD via transnasal administration.

Keywords: microemulsion-based hydrogel; curcumin; KLVFF; central composite design; microemulsion;
transnasal; Alzheimer

1. Introduction

Alzheimer’s disease (AD) is a disorder that causes degeneration of the cells in the
brain, and it is the main cause of dementia marked by declines in cognitive abilities and
behavioral alterations [1]. Swallowing impairments in Alzheimer’s patients are the leading
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cause of progressive reductions in solid and liquid drug or food intake [2]. Thus, solid
dosage forms such as tablets or capsules used to treat AD can pose problematic issues for
patients, particularly those with late-stage AD who may experience problems associated
with swallowing [1]. Moreover, conventional oral administration presents relevant limi-
tations such as bioavailability, rapid metabolism, limited brain exposure, and even some
undesirable side effects [3]. These factors led to the development of drug formulations that
are not taken orally. The parenteral route also limits the accessibility of drugs during blood
circulation to the brain due to blood-brain barriers (BBB) [4]. Moreover, systemic clearance
also affects the bioavailability of drugs for parenteral administration. However, drugs can
be directly delivered to the brain via intrathecal drug administration but may result in oper-
ative and postoperative complications such as hemorrhage or catheter-related infection [5].
Hence, an alternative route of administration should be preferable. Transnasal dosage form
has been strongly demonstrated as a potential carrier for drugs to directly transport in the
central nervous system (CNS) via the olfactory and trigeminal pathways [6,7]. Administra-
tion through the nasal mucosa promotes faster and higher levels of drug absorption. This
is primarily attributed to the nasal cavity’s high permeability, low enzymatic environment,
and rich vasculature [8–10]. Transnasal administration has recently received attention due
to several advantages, including direct access to medications from the nasal cavity to the
central nervous system, noninvasive administration, simplicity of use for self-medication,
and improved patient compliance [11,12]. Additionally, the blood-brain barrier and hepatic
first-pass metabolism, the principal barriers to oral medication administration, can be
avoided with transnasal delivery to the brain [13,14]. This suggests that the transnasal ad-
ministration route has the potential to maintain therapeutic drug concentrations in the brain
while minimizing the required drug doses. Due to the higher permeability of the nasal mu-
cosa compared to the blood-brain barrier (BBB), transnasal drug delivery is gaining interest
as an effective method for delivering peptides and protein drugs. These types of drugs are
particularly challenging to deliver to the brain through systemic circulation [15–17]. For the
treatment of AD, several transnasal drug delivery systems have been investigated for their
potential to transport drugs directly to the brain, e.g., microemulsion [18], noisome [19],
and nanostructured lipid carriers [20]. However, transnasal delivery is constrained by
poor drug diffusion through the nasal mucosa, resulting in insufficient concentrations of
drug delivery to the desired target region and the inability to accomplish the therapeutic
effect [12]. In addition, nasal mucociliary clearance is a natural defense mechanism that
limits nasal administration [11]. Hence, improving drug absorption and avoiding fast nasal
drainage are key strategies for developing formulations; therefore, formulations considered
for transnasal administration should lengthen the contact period between the drug and
nasal mucosa [11,21]. Transnasal drug delivery comes with several other disadvantages.
These include the possibility of active drug degradation by the enzymes found in the nasal
mucosa [22], reduced drug absorption for drugs with higher molecular weight [23], the
potential for drug-induced irritation of the nasal mucosa, the risk of mucosal damage from
frequent use, and significant changes in drug deposition caused by local nasal infections
like the common cold [6,17].

Curcumin, the major polyphenol found in the rhizome of Curcuma longa, is widely
recognized for its potent therapeutic properties in the treatment of Alzheimer’s disease
(AD) [24]. However, the clinical usefulness of curcumin to treat AD is restricted by its low
water solubility (11 ng/mL); thus, it is rapidly eliminated from the body and has low oral
bioavailability [25]. Moreover, the use of curcumin faces obstacles due to its difficulty in
permeating the blood-brain barrier. In order to enhance the biological and pharmacological
activity of curcumin, a number of drug delivery systems offered by the transnasal route are
utilized to deal with these limitations, such as nanocrystals [26] and nanoemulsions [27].

Over the decades, microemulsions (ME) have attained special attention as a colloidal
drug delivery system for transnasal administration owing to their effectiveness in permeat-
ing across the nasal mucosa, bypassing the blood-brain barrier, and delivering the drugs
at adequate concentrations to the brain [28]. Moreover, ME have many characteristics
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that make them attractive for transnasal drug delivery, including their ease of preparation
due to spontaneous formation, thermodynamic stability, transparent and elegant appear-
ance, increased drug loading and enhanced penetration through the biological membranes,
increased bioavailability, and less inter- and intra-individual variability in drug pharmacoki-
netics [21,29]. Although the transnasal route presents numerous advantages, an inherent
disadvantage is mucociliary clearance, which reduces the time allowed for drug absorption
due to the fast clearance of the administered formulation from the nasal cavity [30]. Thus, to
deliver the drug using the transnasal route, the formulation should be rapidly transported
across the nasal mucosa and retained on the mucosa for a prolonged time before being
cleared by nasal mucociliary clearance [30]. Various formulation factors, such as formula-
tion viscosity, have been found to influence drug absorption during transnasal delivery [6].
A study conducted by Jansson et al. revealed that increasing the viscosity of the formulation
prolongs the duration of contact between the drug and nasal mucosa, leading to enhanced
drug absorption [31]. Consequently, a higher amount of the drug is absorbed into the
system. Related literature has reported that improved drug absorption through the nasal
mucosa could be achieved using mucoadhesive agents, whereby their interaction with
mucin takes place and results in prolonged contact time between the applied formulation
and the nasal mucosa [29,32,33]. The results of Barakat et al. revealed that after transnasal
administration, the mucoadhesive formulation demonstrated a higher concentration of
carbamazepine in the brain than that in plasma, indicating that extending the residence
duration on the mucosa enhanced drug absorption [21,34]. Mucoadhesive formulations
can be produced by incorporating mucoadhesive agents, which are substances that aid in
adhering to a mucosal membrane, leading to continuous drug delivery to the brain [35].
There are various mucoadhesive formulations that have been reported, such as gel, tablet,
ointment, and film agents [36]. Extensive research has been carried out on the delivery
of drugs via the intranasal route using mucoadhesive microemulsion for the treatment of
AD [18,30,37,38]. One notable example is the study of Jogani et al., which demonstrated
that intranasal administration of mucoadhesive microemulsion loaded with tacrine, an
Alzheimer’s therapeutic drug, showed that the brain bioavailability was more than twice
that of intranasal tacrine solution [39]. As mentioned above, mucoadhesive drug delivery
systems prolong the retention time at the site of application and improve bioavailability;
thus, concomitantly formulating ME would be beneficial using mucoadhesive agents as
mucoadhesive ME for the transnasal route.

In order to fabricate an optimized formulation presenting desirable mucoadhesive
properties, many variables may influence the product’s performance. Design of Exper-
iment (DOE) has been effectively employed to statistically evaluate the significance of
multiple independent variables to response variables by a small number of experiments
at once, together with the optimal levels of the response variables. Eventually, DOE can
generate mathematical models of the optimized process used to predict the formulation’s
performance under different conditions. Not only precise information but also reduced
experimental time and cost are the advantages of DOE over traditional experimental meth-
ods [40]. Central composite design (CCD) is one of the powerful experimental designs of
DOE used in response surface methodology (RSM), consisting of a full factorial design plus
center and axial points, which allows fitting a second-order polynomial model and more
accurate estimation of the response variables [41].

In our related study, we have formulated a curcumin-loaded microemulsion coupled
with the KVLFF peptide (KCME) as dual targeting to treat Alzheimer’s disease using the
transnasal route [32]. Although we successfully developed KCME, it was highlighted that
KCME characteristics should be improved to facilitate the attachment of KCME in the nasal
cavity [30]. Notably in the literature, muco-adhesive ME can extend their time in contact
with the mucosa and increase the viscosity of their formulations [21,33]. Hence, the strategy
of this current study was to synthesize KCME-based hydrogel (KCMEG) to enhance the
formulation’s muco-adhesiveness. This study aimed to investigate the pharmacologic
effects of KCME on inhibiting acetylcholinesterase and amyloid aggregation. KCMEG
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was optimized and evaluated regarding significant factors on muco-adhesive properties in
terms of texture profiles of KCMEG using an applied aspect as central composite design
(CCD). Optimized KCMEG was further evaluated for physicochemical properties and ex
vivo nasal cytotoxicity to ensure the feasibility of KCMEG for transnasal administration.

2. Results and Discussion
2.1. Physicochemical Characterization of ME and Microemulsion-Based Hydrogel

The physicochemical properties of the formulation play an essential role in predicting
the system’s behavior and stability. Small globule sizes are expected to present a high
permeation rate for nasal administration [42]. The pH value should be close to nasal
secretion to avoid nasal irritation for patients [42]. Thus, globule size, pH, polydisperse
index (PDI), % transmittance, zeta potential, and spreadability of KCME are shown in
Table 1. KCME exhibited a small globule size of 70.8 ± 3.4 nm, and the pH value of KCME
was in the range of nasal secretion (4.5 to 6.5), indicating less chance for irritancy in the
nasal mucosa [7,42]. The percentage of transmittance was greater than 97%, confirming
the system’s transparency. Based on the results, it could be concluded that KCME was
expected to have good physical stability and less irritancy for nasal administration. Thus,
KCME is optimal for preparing microemulsion-based hydrogels.

Table 1. Physicochemical parameters of KCME.

Formulation Globule Size
(nm) PDI Zeta Potential

(mV) %T pH

KCME 70.8 ± 3.4 0.409 ± 0.048 −0.07 ± 0.74 97.03 ± 0.01 5.80 ± 0.02

The pH value of optimized KCMEG from CCD was 4.77 ± 0.23, which is in the range
of the normal pH of nasal fluid, indicating less irritation for nasal use. Spreadability is a
criterion for the topical dosage form to investigate the ease of application [43]. Interestingly,
the diameter of the spread area of KCMEG was less than that of KCME (Table 2), which was
probably due to the effect of their viscosity, which was reported as inversely proportional to
spreadability [43]. To evaluate the morphology of optimized KCMEG, photomicrographs
were taken at different magnifications (100× and 200×) using scanning electron microscopy
(SEM), as shown in Figure 1. KCMEG was relatively uniform in size and spherical in shape.

Table 2. Spreadability and mucoadhesion properties of KCME and KCMEG.

Formulation Diameter of Spread Area
(cm)

Retention Time
(Min)

KCME 3.22 ± 0.17 2.32 ± 0.08
KCMEG 0.90 ± 0.15 9.67 ± 0.13
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2.2. Fourier Transform Infrared (FTIR) Spectroscopy

The IR spectra of curcumin, blank KLVFF-Pluronic F127 ME hydrogel (KMEG),
and KCMEG in the frequency region from 400 to 4000 cm−1 are illustrated in Figure 2.
The curcumin spectrum shows stretching vibrations of OH from the phenolic hydroxyl
group at 3385.07 cm−1, at 2929.13 and 2854.65 cm−1 representing C-H stretching, and at
1624.51 cm−1 is the so-called C=C symmetric aromatic ring stretching. The FTIR spectrum
of curcumin appeared similar to that reported in the literature [44]. The IR spectra of
KCMEG differed significantly from those of curcumin but were very similar to those of
KMEG. The FTIR spectra of carbopol in KMEG and KCMEG (Figure 2B,C) showed the
carbonyl stretch band at 1635 cm−1 which was well in agreement with reported data [45,46].
However, KCMEG exhibited peaks at 2294 cm−1 and 2845.65 cm−1, which are the char-
acteristic peaks of curcumin, indicating the existence of curcumin in KCMEG. In the case
of curcumin in KCMEG, the characteristic bands of curcumin have either disappeared or
had their intensity reduced due to restrictions within the formulation matrix. Based on the
results, it was revealed that there were no interactions between curcumin and excipients.
The reduced intensity and minor shifting of the characteristic peaks of curcumin might be
attributed to some bonds, such as Van der Wall forces, hydrogen bonds, or dipole interac-
tions, between curcumin and other excipients [47]. No additional peak was observed in the
IR spectra of KCMEG, indicating the absence of any possible interaction between the drug
and the formulation components used [48].
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2.3. Anticholinesterase Activity

Cholinergic neurotransmission plays a central role in impaired cognitive function in
AD [49]. One of the most effective treatment strategies against AD is to enhance the acetyl-
choline level in the brain using acetylcholinesterase (AChE) inhibitors [50,51]. To evaluate
the potential of KCME to treat AD, the inhibitory effect on AChE activities must be quanti-
fied. The dose-response curves for the anti-AChE action of KCME are depicted in Figure 3.
The IC50 value of KCME was calculated to be 3.30 µg/mL, while that of galantamine
hydrochloride was 0.065 µg/mL. Compared with a related study showing an IC50 value of
67.69 µM (24.68 mg/mL) for curcumin [52] and the reports of the improved solubility of
curcumin by microemulsion [53,54], it would be reasonable to conclude that KCME has
the potential to constitute an effective treatment strategy for AD treatment. Nonetheless,
in vivo and clinical research needs to be undertaken to offer convincing evidence.
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2.4. Anti-Aggregation of Beta-Amyloid

The accumulation of aggregated Aβ with an extensive β-sheet structure forming senile
plaques in the brain is one of the pathologic hallmarks of AD [55]. Therapeutic approaches
targeting inhibiting Aβ aggregation are one promising treatment to overcome AD. Thus,
the inhibitory effect on Aβ aggregation of KCME should be investigated. A thioflavin T
assay revealed the inhibition of β-amyloid (Aβ) aggregation of KCME with a calculated
IC50 value of 0.36 µg/mL, which was 5.18-fold stronger than that of the positive control,
curcumin (1.87 µg/mL), as shown in Figure 4. This phenomenon might be explained
by the KLVFF peptide and curcumin in KCME. The KLVFF peptide corresponds to the
Aβ16–20 fragment, which plays a critical role in inhibiting Aβ aggregation by binding the
confined region of the Aβ strand and interfering with the assembling and aggregation
of Aβ from the attachment of neighboring Aβ by hydrogen bonding and hydrophobic
interactions [55,56]. Additionally, curcumin has been demonstrated to inhibit aggregation
and promote disaggregation of fibrillar Aβ in vivo and in vitro [57,58]. The mechanism of
curcumin’s action on anti-Aβ aggregation may be due to the hydrophobicity of curcumin
or the interactions between the keto or enol rings of curcumin and aromatic rings of Aβ

dimers destabilized by the attractions requisite for forming beta-sheets in Aβ plaques [55].
In addition, hydroxyl groups of curcumin interact with polar pockets of the Aβ peptide,
destabilizing beta-sheets [58]. The result demonstrates the potential of KCME to inhibit
Aβ aggregation and indicates the potential of KCME to treat AD. However, the synergistic
reaction between KLVFF and curcumin in KCME should be tentatively explained and
requires more confirmation by mathematical modeling and experiments.

Gels 2023, 9, x FOR PEER REVIEW 7 of 18 
 

 

thioflavin T assay revealed the inhibition of β-amyloid (Aβ) aggregation of KCME with a 
calculated IC50 value of 0.36 µg/mL, which was 5.18-fold stronger than that of the positive 
control, curcumin (1.87 µg/mL), as shown in Figure 4. This phenomenon might be ex-
plained by the KLVFF peptide and curcumin in KCME. The KLVFF peptide corresponds 
to the Aβ16–20 fragment, which plays a critical role in inhibiting Aβ aggregation by binding 
the confined region of the Aβ strand and interfering with the assembling and aggregation 
of Aβ from the attachment of neighboring Aβ by hydrogen bonding and hydrophobic in-
teractions [55,56]. Additionally, curcumin has been demonstrated to inhibit aggregation 
and promote disaggregation of fibrillar Aβ in vivo and in vitro [57,58]. The mechanism of 
curcuminʹs action on anti-Aβ aggregation may be due to the hydrophobicity of curcumin 
or the interactions between the keto or enol rings of curcumin and aromatic rings of Aβ 
dimers destabilized by the attractions requisite for forming beta-sheets in Aβ plaques [55]. 
In addition, hydroxyl groups of curcumin interact with polar pockets of the Aβ peptide, 
destabilizing beta-sheets [58]. The result demonstrates the potential of KCME to inhibit 
Aβ aggregation and indicates the potential of KCME to treat AD. However, the synergistic 
reaction between KLVFF and curcumin in KCME should be tentatively explained and re-
quires more confirmation by mathematical modeling and experiments. 

 
Figure 4. Dose-esponse curve of curcumin (A) and KCME (B) for anti-aggregation of amyloid beta. 

2.5. Formulation Optimization and Data Analysis 
Because mucoadhesiveness of the formulation plays a crucial role in the therapeutic 

outcome of transnasal formulation, factors involving these characteristics in terms of 
hardness and adhesiveness as response variables were evaluated by CCD, implying sta-
tistical correlations between studied factors and responses using simultaneous determi-
nation of various factors at one time [59]. 

The experimental data of the two response variables, including hardness (Y1) and 
adhesiveness (Y2), as shown in Table 3, were analyzed to establish the best statistical mod-
els using Design-Expert® Software (Version 10.0; Stat-Ease Inc.). The obtained models 
showed a high coefficient of determination (R2) in the range of 0.9010 to 0.9464, implying 
that more than 90% of the variations of the two responses could be explained using the 
models. The software statistically generates the F-value and p-value according to the cal-
culations of the sum of squares and mean squares of the final model, including significant 
terms and residuals, which are non-significant terms excluded from the final model. In 
addition, as shown in Table 3, a high F-value and a small p-value for each term indicate a 
highly significant effect on the response variables. The regression coefficient of each term 
was positively correlated to its F-value. Independent variables were rationally included 
by considering a p-value less than 0.05 to generate the significant model (p < 0.05) for sta-
tistically describing the correlation between two studied factors and hardness (Y1) as fol-
lows: 

Y1 = 7.06 + 0.129X1 − 11.82X2 − 6.26X1X2  

Figure 4. Dose-esponse curve of curcumin (A) and KCME (B) for anti-aggregation of amyloid beta.

2.5. Formulation Optimization and Data Analysis

Because mucoadhesiveness of the formulation plays a crucial role in the therapeutic
outcome of transnasal formulation, factors involving these characteristics in terms of hard-
ness and adhesiveness as response variables were evaluated by CCD, implying statistical
correlations between studied factors and responses using simultaneous determination of
various factors at one time [59].

The experimental data of the two response variables, including hardness (Y1) and
adhesiveness (Y2), as shown in Table 3, were analyzed to establish the best statistical
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models using Design-Expert® Software (Version 10.0; Stat-Ease Inc.). The obtained models
showed a high coefficient of determination (R2) in the range of 0.9010 to 0.9464, implying
that more than 90% of the variations of the two responses could be explained using
the models. The software statistically generates the F-value and p-value according to
the calculations of the sum of squares and mean squares of the final model, including
significant terms and residuals, which are non-significant terms excluded from the final
model. In addition, as shown in Table 3, a high F-value and a small p-value for each term
indicate a highly significant effect on the response variables. The regression coefficient of
each term was positively correlated to its F-value. Independent variables were rationally
included by considering a p-value less than 0.05 to generate the significant model (p < 0.05)
for statistically describing the correlation between two studied factors and hardness (Y1)
as follows:

Y1 = 7.06 + 0.129X1 − 11.82X2 − 6.26X1X2

Table 3. R-squared (R2), adjusted R2, probability values, and the significance probability (p-value,
F-value) of regression coefficients in the final reduced models.

Variable
Hardness (Y1) Adhesiveness (Y2)

F-Value p-Value F-Value p-Value

Main effects
X1 0.0148 0.9072 9.93 0.0161 a

X2 87.91 <0.0001 a 53.78 0.0002 a

Quadratic effects X1
2 - - - -

X2
2 - - - -

Interaction effects X12 11.60 0.0144 a - -

R2 0.9464 0.9010
Adjusted R2 0.9197 0.8727

p-value of model 0.0003 a 0.0003 a

a indicated not significant at p > 0.05.

According to the model of Y1, the p-value is 0.0003, and R2 is 0.9464, implying that this
model could accurately interpret approximately 94.64% of the hardness values. Quadratic
terms of both concentrations of carbopol 940 (X1) and the percentage of KCME (X2) did not
exhibit a significant impact on hardness, thereby choosing the two-factor interaction (2FI)
model. In the case of the nonsignificant main X1 effect (p-value 0.9072), this term was also
included in the model owing to the significant interaction effect of X1X2 (p-value 0.0144).
From the Y1 model, the percentage of KCME (X2) showed the strongest negative influence
on hardness (p < 0.0001), implying a decrease in hardness value with respect to an increase
in KCME. In addition, the interaction effect of X1 and X2 is illustrated in Figure 5. The
highest hardness value could be achieved at the highest concentration of carbopol (X1) and
the lowest percentage of KCME (X2). Similarly, no significant difference in hardness value
was indicated by the variation of X1 in the experimental range.

Moreover, the adhesiveness values (Y2) could be interpreted using the following linear
model below:

Y2 = 9.49 + 5.65X1 − 18.82X2

According to the model R2 of 0.9010, in which the significant main effects of X1 and X2
were included, 90.10% of adhesiveness can be accurately predicted. As shown in Table 3,
the p-value of the model is 0.0003, implying a significant model describing the correlation
between independent variables and adhesiveness. Two significant main effects, including
the concentration of carbopol 940 (X1) (p-value 0.0161) and the percentage of KCME
(p-value 0.0002), are included in the final model. In the final model, the concentration of
carbopol 940 (X1) was positively proportional to the variation of adhesiveness, whereas the
percentage of KCME (X2) was negatively proportional. Moreover, the influence of X2 was
superior to that of X1, which corresponded to that of the hardness model.
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The desirable attributes of mucoadhesive formulation gels include ease of removal
from the primary package, ease of application, and retention of the product at the appli-
cation site without disintegration [60]. The hardness is considered a necessary force to
provide the deformation of gels [60]. This parameter implies the applicability of the gel to
the desired site. In addition, high adhesiveness enhances the stickiness of the formulation
and prolongs the attachment even in the absence of mucoadhesive bonds. Our results
revealed that both the hardness and adhesiveness of the formulation containing carbopol
940 were decreased owing to the increase in KCME content, which corresponded to that
of the study of Špaglová et al. [61]. Carbopol is one of the polyacrylic acid gelling agents
that forms a network of cross-linked polymer chains that stabilize the gel. By increasing
the concentration of carbopol, a more tightly cross-linked network of polymer chains is
generated, conferring higher hardness to the formulation. This also contributes to the
adhesiveness of the mucoadhesive gel by providing a better bind force for the gel to the
applied surface [62]. Owing to the increase in KCME content, the final concentration of
carbopol in the formulation was proportionally reduced, thereby decreasing both hardness
and adhesiveness.

According to the study of Basu et al., hardness less than 28 g and adhesiveness greater
than 30 g.s were considered the optimum conditions for the transnasal formulation [63].
Therefore, these targets were numerically optimized to generate the optimized formulation,
which could be fabricated using a concentration of carbopol 940 of 2% and a percentage of
KCME of 25%, which was observed in hardness and adhesiveness as shown in Figure 6.
The experimental and predicted values generated by the models are shown in Table 4. In
the case of the model of hardness, the prediction error calculated by the difference between
experimental and predicted values of less than 5% implied the good accuracy of the verified
model. However, in the model of adhesiveness, the difference between experimental and
predicted values was higher than 5%, indicating the unacceptable accuracy of this model.

Table 4. Experimental and predicted values in terms of hardness and adhesiveness of the opti-
mized formulation.

Response Experimental Value Predicted Value Prediction Error (%)

Hardness (g) 25.360 25.277 0.33%
Adhesiveness (g.s) 38.98 33.874 15.07%
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2.6. In Vitro Mucoadhesive Study

The mucoadhesive potential of optimized KCMEG was evaluated using an in vitro
method, and the result is tabulated in Table 2. The retention times shown by KCME and
KCMEG were 2.32 ± 0.08 and 9.67 ± 0.13 min, respectively. The retention time on the agar
plate shown by KCMEG was significantly higher than that shown by KCME. Thus, the
developed mucoadhesive preparation, KCMEG, was hypothesized to be able to increase the
contact time between the dosage form and mucosal layers of nasal cavities, which could be
attributed to the presence of carbopol 940, which agreed with another report [58]. Moreover,
related literature reported that the retention time of formulation on the mucosal membrane
affects drug diffusion across the nasal mucosa and reduces nasal mucociliary clearance,
thereby affecting brain delivery [59]. Nasal mucociliary clearance is a crucial mechanism
responsible for eliminating foreign particles adhered to the mucus surface. Consequently,
drugs administered via the transnasal route may be cleared by this mechanism, leading
to low drug absorption into the brain [6,64]. To overcome mucociliary clearance, drugs
need to be designed to strongly interact with the nasal mucosa, thereby increasing the
contact time and enhancing drug absorption. Therefore, an effective transnasal formulation
should extend the residence time on the nasal mucosa. Furthermore, the study conducted
by Khan et al. confirmed a significant increase in drug accessibility to the blood and
brain when administered intranasally as a mucoadhesive formulation compared to a
nasal solution [46]. It is worth noting that conventional liquid formulations are typically
eliminated from the nasal cavity within approximately 15 min of being deposited on
the mucus surface. Therefore, the mucoadhesive properties of formulations should be
investigated concurrently with drug diffusion to the brain [65].

2.7. Nasal Cilio-Toxicity

Nasal ciliotoxicity was studied to evaluate the toxic effect of the sample used for nasal
mucosa formulations. The porcine nasal mucosa was treated with isopropyl alcohol, a mu-
cociliary toxic agent, optimized KCMEG, and a negative control (PBS pH 6.4). The porcine
nasal tissue treated with isopropyl alcohol destroyed the epithelium layer with damage
to internal nasal tissues (arrows), as shown in Figure 7A. In contrast, those treated with
KCMEG and PBS showed an intact epithelium layer without tissue damage (Figure 7B,C),
indicating the safety of excipients used in the formulation of KCMEG in this study. Our
results agreed with other reports on the toxicity of oleic acid, tween 80, and carbopol,
which are the major components of KCMEG [42,66], demonstrating the safety profile of
KCMEG for transnasal administration. In vitro techniques are frequently a useful screening
method for identifying substances that may have undesirable impacts on the nasal mucosal
structure [67]. To demonstrate a safety profile for human use, it is essential to investigate
the effect of a nasal drug formulation at biopharmaceutically and therapeutically related
concentrations Further, the effects of long-term use of nasal formulations in animals and
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humans should be determined for accuracy and reliability in evaluations of the potential
side effects [67].
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However, the safety profile is insufficient to explain the efficacy, biodistribution, and
pharmacokinetics of the formulation when delivered into the brain. Thus, it is necessary to
perform in vivo studies to verify the efficacy of the formulation. Interestingly, the literature
has reported that nanoformulation can enhance the stability, bioavailability, bioaccumu-
lation, and pharmacokinetic parameters of curcumin compared to free curcumin [68]. In
addition, Zang et al. formulated a curcumin/hydroxypropyl-β-cyclodextrin inclusion com-
plex and reported that the plasma and brain concentrations of the formulation were higher
than those in the control group after intranasal administration [69]. Moreover, Li et al. re-
ported that curcumin-lactoferrin nanoparticles demonstrated excellent brain accumulation,
prolonged elimination half-life, and improved bioavailability of curcumin after intranasal
administration [70]. Based on this information, it indicates the strong performance of
nanoformulations to improve the pharmacokinetics and efficacy of curcumin. Hence, it
can be hypothesized that KCME and KCMEG could improve the pharmacokinetics and
efficacy of curcumin. However, in vivo tests are essential to verifying this hypothesis.

3. Conclusions

In this present investigation, KLVFF conjugated curcumin microemulsion (KCME) was
prepared using water titration. In vitro anticholinesterase activity and anti-amyloid beta
aggregation demonstrated the opportunity for KCME to serve as a candidate to treat AD
through the transnasal route. Based on hardness and adhesiveness tests conducted with
CCD, the formulation contains 2% carbopol 940 and 25% KCME, which was considered an
optimized microemulsion-based hydrogel in this study. KCMEG demonstrated suitable
mucoadhesive properties with a safety profile for the transnasal delivery of curcumin.
However, in vivo studies and biodistribution studies are required to display and confirm
the potential of KCMEG for the nasal transport pathway to the brain directly. In addition, a
detailed animal study followed by clinical trials is required to establish the clinical safety
and efficacy of this formulation.

4. Materials and Methods
4.1. Materials

Pluronic F-127® was a gift from BASF Chemical Company (St. Louis, MO, USA), and 1-
Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC), N-hydroxysulfosucci
nimide (sulfo-NHS), tetrahydrofuran (THF), dimethylaminopyridine (DMAP), acetylthio-
choline iodide (ATCI), acetylcholinesterase (AChE), and 5,5′-dithio-bis-2-nitrobenzoic acid
(DTNB) were purchased from Sigma Aldrich (St. Louis, MO, USA). Ethanol, methanol, and
carbon tetrachloride were obtained from Sigma-Aldrich (Steinheim, Germany). Curcumin,
dimethylsulfoxide (DMSO), tris-HCl, glycine, and thioflavin T were obtained from Merck
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(Darmstadt, Germany). Aβ1–42 and KLVFF peptides were synthesized and purified by Pep-
mic (Suzhou, China). Monobasic potassium phosphate was purchased from RCI Labscan
(Bangkok, Thailand). Sodium hydroxide was obtained from Kemaus (Cherrybrook, New
South Wales, Australia). Carbopol 940 was purchased from Chemipan (Bangkok, Thai-
land). Galantamine was purchased from Calbiochem (San Diego, CA, USA). Polysorbate
80 (Tween 80) and triethanolamine were purchased from UnionSci (Chiang Mai, Thailand).

4.2. Preparation of Curcumin-Loaded KLVFF-Pluronic F127 ME (KCME)

In our previous study, we successfully developed curcumin-loaded KLVFF-Pluronic
F127 ME (KCME). Briefly, a pseudo-ternary phase diagram was constructed to determine
the suitable component of the microemulsion. Surfactants (a mixture of Tween 80 and
KLVFF-Pluronic F127 in the ratio 1:1) and several co-surfactants (ethanol, PEG 400, and
PG), namely, Smix, were mixed in different ratios (1:1, 2:1, 3:1, 4:1) to prepare ME according
to the area existing in the phase diagram. For the construction of the phase diagram, the
mixtures of oil, Smix, and water at different ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9)
were formulated using a titration method under continuous stirring until a transparent ME
was formed. The determination of the ME region was performed by visual observation
of the turbidity. The samples were classified as ME when they appeared visually as clear
liquids. Pseudo-ternary phase diagrams were drawn using SigmaPlot software version 11.0
(Systat Software, Inc., Chicago, IL, USA), and the areas of the ME regions were measured by
ImageJ 1.47v software (National Institutes of Health, Bethesda, MD, USA). According to our
previous result, the suitable formulation consisted of oleic acid as the oil phase, a mixture
of Tween 80 and KLVFF-Pluronic F127 in the ratio 1:1 (surfactant), ethanol (co-surfactant)
as a mixture of surfactant and co-surfactant (Smix), and water as the aqueous phase. We
reported that the most suitable ME component was 15:80:5 for the oil:Smix:water ratio,
respectively [71] This microemulsion component exhibited optimal results and was chosen
to create KCME in this study. Curcumin (0.9 mg/mL) was dissolved in the oil phase by
adding the required amount of Smix and water and stirring to create a clear, yellow, and
transparent dispersion. The percentage of transmittance, globule size, zeta potential, and
pH of KCME were all examined.

4.3. Physicochemical Characterization of ME and Microemulsion-Based Hydrogel

Dynamic light scattering (SZ-100, Horiba, Japan) was used to determine the average
droplet size and polydispersity index (PDI) of KCME. All determinations were made
in triplicate. The transmittance of KCME was measured using a UV spectrophotometer
(UV2600i, Shimadzu, Japan) at 650 nm using pure water as a reference [72]. The pH
value of KCME was assessed using a digital pH meter (pH meter, Metrohm, Herisau,
Switzerland). For the pH of the KCMEG, 1.0 g of KCMEG was dispersed in 100 mL of
distilled water, and then the pH was measured after storing it for 2 h [73]. The device was
first standardized using pH 4 and 7 buffers. A spreadability test involved pushing 0.5 g of
each prepared formula between two glass slides and waiting for about 5 min until no more
spreading was anticipated. The diameter of the circle was measured and used as a result
for spreadability [74].

4.4. Fourier Transform Infrared Spectroscopy (FTIR)

To identify the distinctive peaks of materials that would emerge based on their chemi-
cal structure, curcumin, KMEG, and KCMEG were measured using FTIR (470FT-IR Nicolet
Nexus FTIR spectrometer, Thermo Electron Corporation, Madison, WI, USA) [75]. The FTIR
spectra were operated in the range of 4000 to 400 cm−1. The FTIR spectra of the sample
were determined using Multi-Bounce HATR Kits (SMART, Thermo Electron Corporation,
Madison, WI, USA).
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4.5. Anticholinesterase Activity

Ellman’s method was used to perform the enzyme inhibitory action [76]. Acetyl-
cholinesterase (AChE) was employed as an enzyme and ATCI as the substrate, respectively.
Specifically, 50 µL of 50 mM Tris-HCl buffer pH 8.0, 25 µL of 1.5 mM ATCI, 125 µL of 3 mM
DTNB, and 25 µL of KCME in Tris-HCl buffer containing 10% methanol were mixed in the
appropriate amounts. After that, 25 µL of 0.25 U/mL AChE was added, and a microplate
reader was used to measure the kinetic reaction spectrophotometrically every 2 min at
415 nm (SPECTROstar® Nano, BMG LABTECH, Ortenberg, Germany). The cholinesterase
activity of KCME (0.00015–0.005 mg/mL) was assessed using a Tris-HCl solution contain-
ing 10% methanol as a negative control. Galantamine hydrobromide (0.000006–0.6 mg/mL)
was used as a positive control. The tests were carried out in triplicate. The enzymatic
reaction rate was calculated from the slope of the absorbance versus time plot. The equation
below was used to determine the enzyme inhibitory activity.

% Inhibition =

(
Vs −Vb

Vb

)
× 100

where Vs is the reaction rate of the sample and Vb is the reaction rate of the blank. Data were
fitted with nonlinear regression to determine IC50 using GraphPad Prism, Version 8.0 software.

4.6. Anti-Aggregation of Beta Amyloid

The thioflavin T assay was conducted to investigate the inhibition of Aβ aggrega-
tion [77,78]. Nine microliters of 25 µM Aβ solution were mixed with the samples and
incubated for 48 h with no agitation. DMSO, which does not affect the assay, was used as
the solvent. After an incubation period, 200 µL of a 5 µM thioflavin-T solution in glycine
was added. Fluorescence intensity was measured using SpectraMax i3 (Molecular De-
vice, San Jose, CA, USA) with excitation and emission wavelengths at 446 and 500 nm,
respectively. The percentage of inhibition was calculated using the formula below.

% Inhibition =

[
1− (FS − FSB)

(FAB − FRB)

]
× 100

where FS is the fluorescent intensity of the sample, FSB is the fluorescent intensity of the
sample blank, FAB is the fluorescent intensity of the free aggregation control, and FRB is the
fluorescent intensity of the reagent blank. IC50 was determined by nonlinear regression
analysis using GraphPad Prism Software, Version 8.0.

4.7. Optimization of Curcumin-Loaded KLVFF-Pluronic F127 ME-Based Hydrogel (KCMEG)
by CCD

Response surface methods have been ubiquitously employed to create the most desir-
able formulations based on the statistical approach [47]. Based on influencing factors, the
effects of concentrations of carbopol 940 (X1) and percentage of KCME (X2) on response
variables including hardness (Y1) and adhesiveness (Y2) were optimized using CCD, at
which five levels of X1 and X2 were varied as shown in Table 5. Subsequently, 13 experi-
mental runs were created and conducted, as shown in Table 6. The studied responses were
statistically analyzed using analysis of variance (ANOVA) through Design-Expert® Soft-
ware (Version 10.0; Stat-Ease Inc., Minneapolis, MN, USA) to evaluate the significance of
main and interaction effects together to generate the mathematical equation explaining the
correlation between factors and responses in terms of a second-order polynomial equation,
as shown below. The terms that were included in the final model were selected based on
their level of significance, where a p-value less than 0.05 indicates statistical significance.

Yi = β0+∑βiXi+∑βiiX
2
ii+∑βijXiXj

where Yi is a response variable; β0 is a constant; βi, ii, and βij are regression coefficients of
the main quadratic equation and interaction terms, respectively. The desirable values of
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responses were then predicted according to the significant mathematical model (p < 0.05)
with a non-significant lack of fit and an acceptable coefficient of determination (R2), which
was at least 0.80. A non-significant term (p > 0.05) was excluded from the final model.
Unless a quadratic or interaction term of the variable was significant (p < 0.05), the linear
term was then kept in the final reduced model.

Table 5. Code levels and actual values of influencing factors.

Factors
Code Levels and Actual Values

Axial (−α) Low (−1) Center (0) High (+1) Axial (+α)

X1 0.19 0.50 1.25 2.00 2.31
X2 14.64 25 50 75 85.36

X1: Concentrations of carbopol 940; X2: percentage of KCME.

Table 6. Experimental matrix of the central composite design and the experimental data obtained for
the response variables studied; hardness (Y1) and adhesiveness (Y2).

Run
Independent Variable Response Variable

X1 X2
Hardness

(Y1: g)
Adhesiveness

(Y2: g.s)

1 1.25 50 9.981 16.282
2 1.25 50 7.059 10.479
3 0.50 25 10.467 17.208
4 2.31 50 7.546 11.439
5 1.25 50 6.329 8.982
6 1.25 50 6.086 9.409
7 1.25 14.64 26.655 39.575
8 0.19 50 7.181 0.097
9 2.00 75 N/A N/A

10 1.25 50 6.451 11.179
11 2.00 25 23.247 34.523
12 1.25 85.36 N/A N/A
13 0.50 75 N/A N/A

N/A = not analyzed.

4.8. Optimization and Verification

To determine the interaction effect of the independent variables affecting the response
variables, the response surface in terms of the 3D graph was generated according to the final
reduced model of each response. While the interaction effect of two variables was shown as
a variation of response values within the experimental range, another independent variable
was the constant point. Additionally, numerical optimization was employed to enhance
the target values of the independent variables with the highest desirability. Verification of
the final reduced models was then conducted by comparing the actual experimental and
theoretical predicted values in terms of percentage prediction error, which should be no
more than a 5% difference to accept the verified statistical models.

4.9. In Vitro Mucoadhesion Study

The mucoadhesive potential of KCME and KCMEG was evaluated using an in vitro
method reported by Nakamura et al. and Bachhav et al. [74,79]. Each 50 mg of KCME and
KCMEG was placed at the center of an agar plate (1%, w/w in pH 6.4 phosphate buffer).
After 5 min, the agar plate was attached to a USP disintegration test apparatus and moved
up and down in pH 6.4 phosphate buffer at 37 ± 1 ◦C. The formulation on the plate was
immersed in the solution at the lowest point and out of the solution at the highest. The
residence time of the KCME and KCMEG on the plate was investigated visually. The
residence time was noted and recorded at the time point at which the formulation unstuck
on agar.
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4.10. Morphological Analysis (SEM)

The morphology of the optimized KCMEG was observed by SEM (Tabletop TM4000Plus,
HITACHI, Japan). KCMEG was deposited onto a carbon-conductive adhesive carbon tape
(Nisshin EM, Tokyo, Japan), taped to an aluminum grid, and dried in air. The examinations
were performed without any conductive coating [80]. Then KCMEG was conducted in a
high vacuum using a secondary electron detector at an accelerating voltage of 5 kV.

4.11. Nasal Cilio-Toxicity Study

Damage to the cilia may contribute to the problem of formulation for use through the
intranasal route. Therefore, the toxicity of KCMEG on nasal cilia was investigated in this
study. The protocol for the nasal ciliotoxicity test followed the method described by Pailla
et al. [81]. Freshly excised porcine nasal mucosa was obtained from the slaughterhouse
and immediately soaked in phosphate buffer (pH 6.4). The cartridge was gently taken out
to isolate the nasal mucosa. Each piece of the porcine nasal mucosa was mounted on a
Franz diffusion cell for 2 h with isopropyl alcohol as the positive control, PBS pH 6.4 as the
negative control, and KCMEG. After that, each piece of mucosa was thoroughly cleaned
with PBS (pH 6.4) and allowed to soak overnight in a 10% v/v formalin solution. Each
mucosa was preserved in paraffin blocks, and fine sections were taken (7 mm thick) and
stained with eosin and hematoxylin. The produced slides were examined using an inverted
microscope (Motic, AE2000, Quebec, Canada) at a 20×magnification to assess any nasal
mucosa damage; intact nasal mucosa is the criterion for evaluation of the safety profile of
the formulation [21]. The protocol for the use of cadavers was approved by the Animal
Care and Use Committee, Faculty of Veterinary Medicine, Chiang Mai University, Thailand
(FVM-CMU-ICUC Ref. No. R5/2563).

4.12. Statistical Analysis

All data are presented as mean ± SEM, n = 3 experiments. The significance of the
difference between the two groups’ means was assessed using the T-test. A one-way
analysis of variance (ANOVA) followed by the Newman-Keuls post hoc test was used to
conduct statistical analysis to determine the significance of any differences. A value of
p < 0.05 was regarded as statistically significant in each case.
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