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Abstract: Current research is moving towards iron and ammonia elimination from groundwater.
Here, we are using a poly acrylic–poly acrylamide hydrogel that is grafted with 3-chloroaniline.
This copolymer was synthesized by addition polymerization technique. The effects of agitation
time, dosage and adsorbent temperature on the removal process sensitivity were investigated. The
copolymer was described experientially and theoretically. Isothermal kinetic adsorption models
are discussed. This hydrogel could be regenerated efficiently (98.3% removal of iron and 100%
removal of ammonia). The density functional theory (DFT) method, using B3LYP/6-311G(d,p), and
the LANL2DZ level of the theory were managed to investigate the stationary states of the grafted
copolymer and the complexation energy of the hydrogel with the studied cations. DFT has been
used to investigate the Natural Bond Orbital (NBO) properties to locate the most negative centers on
the hydrogel. The calculated complexation energy showed hydrogel selectivity with regard to the
studied cations.

Keywords: grafted hydrogel; groundwater; ammonia and iron removal efficiency; DFT; MEP;
binding energy

1. Introduction

Groundwater is one of the world’s primary sources of drinking water. Iron and
ammonia are present in groundwater in a dissolvable reduced state due to natural, chemical
environment and human activities [1–3]. Metal ions in water resources cause a variety of
aesthetic and operational issues, including a repulsive unpleasant taste, laundry stains
and network accumulation [4–7], which are caused by the ammonia in groundwater. The
chemical oxidizing of ammonia and iron is useful, but harmful byproducts and secondary
pollutants limit their use [8–11]. Iron is the fourth most prevalent element, the second
most abundant metal in the Earth’s crust [12] and a common part of groundwater. There
are two types of iron sources in groundwater: geogeic and anthropogenic. A geogeic
source is where groundwater flows from the aquifer’s soil, sand, gravel and rocks [13].
Anthropogenic sources, e.g., industrial effluents, landfill leakages, acid mine drainage and
others, lead to high concentrations in the groundwater [14]. Water percolating through
soil and rock dissolves iron-containing minerals and keeps them in solutions [15] that are
widespread in groundwater and surface waters with a significant groundwater input [16].
Staining, disagreeable tastes and appearances come from these solutions [17]. Higher Fe
concentrations hamper Fe+2 oxidation and cause undesired properties. In addition, the
presence of iron bacteria in the water supply system alters the water smell and promotes
bacteria growth in pipes. Excessive iron content in groundwater creates technical challenges,
such as the failure of water supply systems, water quality degradation and the formation
of unwanted incrustations in higher oxygen water, resulting in a reduction in the pipe
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flow cross-section [18–21]. There are no health-related recommendations for the content
of iron in drinking water. Based on taste and annoyance concerns, the World Health
Organization recommends that the iron concentration in drinking water be less than
0.3 mg/L [22]. Polluted water causes 80% of diseases in affluent countries, with a death
toll of 10 million every year [23]. Elemental Fe is rarely found in nature because Fe+2 and
Fe+3 interact with oxygen and sulfur-containing molecules, creating oxides, hydroxides,
carbonates and sulfide. Oxides are the most common form in nature [24]. Ammonia
removal from water is accomplished using a variety of processes [25–28]. Many techniques
are employed to recover Fe compounds from groundwater [29]. Extracting iron compounds
from groundwater for drinking purposes using aerobic oxidation is not sufficient due
to the full oxidation of Fe+2 and the growth of iron bacteria in sand filters or valves,
causing discoloration and turbidity. There are many hydrogels used in the removal of
iron and ammonia, such as a recyclable phytate–polyaniline hydrogel [30], the sodium
alginate-g-poly(sodium acrylate) hydrogel [31], the chitosan-g-poly (acrylic acid)/rectorite
hydrogel composite [32] and the acrylic acid polymer hydrogel nano Fe3O4 [33]. This
study used a poly (acrylate/acrylamide) grafted with 3-chloroaniline to extract iron and
ammonia through the adsorption technique [34–37]. The synthesized grafted hydrogel was
studied using TEM, SEM, TGA, XRD and FTIR computationally. The efficient removal
of iron and ammonia from the groundwater was studied using contact time, adsorbent
dosage and temperature. The sorption data were evaluated by Langmuir, Frendlich and
Temkin’s models.

2. Results and Discussion
2.1. Characterization of Obtained Polymeric Samples

Infrared spectroscopy of the hydrogel and the graft is presented in Figure 1a. The
main IR bands of the acrylamide, acrylate and 3-chloroaniline are clearly shown [38]. The
C–O and C–N stretching vibrations are found between 1100 and 1200 cm−1 [39,40]. The
CH2 bending appeared between 1300 and 1459 cm−1 [41]. The stretching vibration of
C=C of benzene appeared in case of the graft at 1590 cm−1. The carbonyl group (C=O)
stretching vibration for both hydrogel and grafted hydrogel compounds appeared at
~1656 cm−1 [42]. The aliphatic CH vibrations are shown after 2900 cm−1 [43]. The broad
stretching vibrations of the OH group and the free or bonded NH2 group appear after
3400 cm−1 [44]. The stretching vibration of substituted benzene was found for the graft
between 608 and 783 cm−1 [38], confirming the grafting process. For more details for all
absorption bands and their assignments, see Table S1 (Supplementary Material).
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2.1.1. XRD and TGA Analysis

Figure 1b shows XRD of both the hydrogel and graft, indicating that the hydrogel
and graft are semi-crystalline materials. Thermogravimetric analysis (TGA) for both
the hydrogel and grafted hydrogel is presented in Figure 2a,b [8,45]. The temperature
midpoints of the degradation are summarized in Table S2 (Supplementary Material). It
is concluded that the bonded water molecules which are absorbed by the hydrogel and
graft are degraded at the end of 233 ◦C. Also, it is clear that the quantity of absorbed
water of the hydrogel is higher. Both the hydrogel and graft are thermally degradable with
different stages. The progressive degradation of both hydrogel and the grafted hydrogel at
~480 ◦C is evident in Figure 2a,b. In addition, a higher residual quantity of the graft at ~40%
is shown in Figure 2b, indicates that the grafted hydrogel is more thermally stable than the
hydrogel. The TGA for both fabricated copolymers is tabulated in Table S2 (Supplementary
Material). The TGA curves showed a three-stage weight loss. The hydrogel showed an
initial decomposition temperature (IDT) of 230 ◦C and a final decomposition temperature
(FDT) of 466 ◦C. The IDT and FDT of the grafted hydrogel were found at 220 ◦C and
460 ◦C. The first-stage weight loss of the hydrogel took place in the temperature range
of 70 to 230 ◦C with about 21% weight loss, and in the range of 90 to 220 ◦C with about
13% weight loss in case of the grafted hydrogel. This may be attributed to the removal of
moisture and bonded water loss. The second-stage decomposition of hydrogel started at
230 ◦C and ended at 466 ◦C with about 72% weight loss, and between 220 and 460 ◦C with
about 60% for the grafted hydrogel. This weight loss may be due to the degradation of
the hydrogel and the graft. The third-stage weight loss was shown above 460 ◦C which
showed a complete degradation, and the remaining residue was 10% of hydrogel and 40%
of grafted hydrogel. Thus, the grafted hydrogel showed a higher thermal stability than
the hydrogel.
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Figure 2. TGA of hydrogel and grafted hydrogel (a,b), respectively.

2.1.2. SEM and TEM Analysis

Scanning and transition electron microscope (SEM and TEM) analyses are presented
in Figure 3. SEM pictures showed that the presence of 3-chloroaniline in the structure of
hydrogel leads to the filling the pores of the hydrogel and minimizes the heterogeneous
surface. In addition, the particles are compacted and smooth. SEM pictures of the hydrogel
and graft indicated the difference between them, where the hydrogel particles have the
same shape while the graft seems to have different shapes which range from spherical
to tubes. In addition, TEM pictures revealed that the grafted hydrogel particle sizes are
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smaller than the hydrogel. The size of hydrogel particles ranged from 113 to 195 nm; while
for the graft, the particle sizes ranged from 15.28 to 24.6 nm. This difference in surface for
both compounds confirmed the successful grafting process.
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Figure 3. SEM images: (a) PAC-PAM hydrogel; (b) grafted PAC-PAM hydrogel. TEM: (c) PAC-PAM
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2.2. Optimized Geometries

The optimized geometry for hydrogel with the natural charge density and graft is
shown in Figure 4; hydrogel (a), charge density (b) and grafted hydrogel (c), using the
B3LYP/6-311G(d,p) level of theory.

In fact, many arrangements of the monomers together were computed using the DFT
method. The most stable (least steric hindrance arrangement) structure [27] was used
for all calculations. Figure 4 shows the optimized structure of the copolymer with the
dipole moment direction, the charge density (b) and the optimized structure of the graft
(c) calculated at the B3LYP/6-311G(d,p) level of theory. As mentioned in our previous
article [27], the grafting process happened in a radical cation mechanism; thus, the most
positive (least negative) nitrogen atom in the copolymer attacked the para position of
the chloroaniline. As shown in Figure 4, the nitrogen atom of the amino group has a
−0.513 charge density; thus, it is the best place for attacking the para position of chloroani-
line. The optimized structure showed the two strings of the copolymer connected by the
linker. The grafting occurred on the nitrogen of the amino group on one of the strings.
The aim of that article is the use of our hydrogel in water treatment, in other words, the
extraction of the metal cations by the grafted copolymer. Thus, in the first place, we should
find the most preferable position on the hydrogel for complexing with the positive cations.
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Figure 4. The optimized structure, of the hydrogel showing the dipole moment vector (a), the
calculated charge density using NBO (b) and the optimized structure of the grafted hydrogel (c) at
the B3LYP/6-311G(d,p) level of theory.

2.3. Removal of Cations
2.3.1. Removal of Ammonia

The effect of the grafted hydrogel dose on enhancing the removal percentage of
ammonia is presented in Figure 5b,c. This effect was investigated using different quantities
(0.025, 0.05 and 0.075 g) of the adsorbent in 100 mL of raw groundwater for 50 min. The
residual ammonia concentrations were determined using YSI 9300 and 9500 photometers
at room temperature. Figure 5b,c show that 0.075 g of grafted hydrogel is enough for the
complete removal of ammonia at 75 min.
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2.3.2. Removal of Iron

By increasing the dose of the grafted hydrogel, the percentage of iron elimination
increased. this has been studied for 150 minutes using various adsorbent masses (0.2, 0.25,
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0.3, 0.35, and 0.4 g) in 100 mL of raw (untreated) groundwater as shown in Figure 5a,d.
The residual iron concentrations were determined using YSI 9300 and 9500 photometers at
room temperature. Figure 5a,d shows that 0.4 g of hydrogel was enough for the removal of
98.3% iron at a contact time of 150 min.

The effects of contact time on the adsorption capacity of the studied materials for
studied cations (ammonia and iron) were investigated. In this study we have used 0.025,
0.05 and 0.075 g for the removal of ammonia and 0.2, 0.25, 0.3, 0.35 and 0.4 g for the
removal of iron by the grafted hydrogel. The adsorbents were suspended in 0.8 mg/L of
ammonia and 1.2 mg/L of iron polluted solutions for different time intervals separately.
After each time interval, the residual ammonia and iron concentrations were determined
using YSI 9300 and 9500 photometers. All of the experiments were performed at room
temperature. Figure 5c,d show that 0.075 g grafted hydrogel was enough for the complete
removal of ammonia at 75 min. It was shown that 0.05 g achieved 96% at 90 min and
0.025 g achieved 93% at 90 min. Figure 5 shows that the maximum removal was achieved
for all investigated quantities at a contact time of 150 min. The most effective amount of the
grafted hydrogel for a high iron removal of ~98.3% was 0.4 g; however, upon reducing the
adsorbent quantities, the removal percentage of iron decreased, and this can be attributed
to the lowering of the graft hydrogel surface area. The removal of iron using 0.35 g is 95.8%,
0.3 g is 94%, 0.25 g is 90% and 0.2 g is 83%.

2.3.3. Static Studies

Standard deviation (SD) was calculated for the removal of both iron and ammonia at
optimum conditions using the following equation,

SD =
√

(∑(Xi − µ)2/N) (1)

where Xi is the removal percentage of samples, N is number of samples and µ represents
the mean of the removal. The number of groundwater samples used to check the efficiency
of the graft on the removal of both iron and ammonia is 5 samples (S1, S2, S3, S4 and
S5). The presented sample in the figure is S1. The statics of both iron and ammonia for
5 samples are compiled in Table 1.

Table 1. Standard deviation.

Pollutants
Samples Removal Average

SD
S1 S2 S3 S4 S5

Iron 98.3 100 96 97 95.7 97.4 1.77341479
Ammonia 100 99.4 98.5 96.8 97.2 98.38 1.37549991

2.4. Effect of Temperature and Thermodynamics

The temperature effects on the removal of cations using grafted hydrogel were stud-
ied by adding 0.025, 0.05 and 0.075 g for ammonia removal and 0.2, 0.25, 0.3, 0.35 and
0.4 g for iron removal to raw groundwater at a range of temperatures (10, 20, 30, 40 and
50 ◦C) for 50 and 150 min for ammonia and iron, respectively. The residual ammonia and
iron concentrations were determined using YSI 9300 and 9500 photometers. The removal
(%) is plotted against temperature (Figure S1, Supplementary Material). The obtained
results revealed that the effect of temperature on the removal efficiency is considered poor.
Moreover, higher temperatures have a detrimental effect on the removal process, and this
could be attributed to the broken physical adsorbed cations on the polymeric surface. In
addition, the removal efficiency increased again at 323 K, and this was not due to adsorp-
tion but may be referred to the escaping of ammonia from the medium. While in case of
iron, the increasing iron removal at 323 K may be attributed to the incorporation of iron
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in a phenyl ring moiety of the graft by a sandwich formation structure via π-Skelton. The
thermodynamic parameters are deduced from the relations [46]:

∆G0 = −RTlnKc (2)

∆G0 = ∆H0 − T∆S0 (3)

ln KC =
∆S0

R
− ∆H0

RT
(4)

where R is the gas constant, T is the absolute temperature, KC, is the Langmuir constant,
∆H◦ is the standard enthalpy and ∆S◦ is the entropy of adsorption. ∆H◦ and ∆S◦ could
be estimated from the straight-line relationship between ln KC vs. 1/T [47] (Figure S1,
Supplementary Material). The calculated data are summarized in Table S3 (Supplementary
Material). The thermodynamic parameters revealed that the adsorption of cations on the
surface of the grafted hydrogel is exothermic and spontaneous.

2.5. Adsorption Isotherms
2.5.1. Langmuir Isotherm

The Langmuir adsorption form [48] is checked as a model according to the equation,

Ce

qe
=

Ce

Qm
+

1
Qm b

(5)

for the adsorption of cations on polymeric surfaces. The results are represented in Figure 6.
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2.5.2. Freundlich Isotherm

The Freundlich isotherm [49] is used in the study of the adsorption of various sub-
stances. It is utilized to examine the cations’ adsorption on the grafted hydrogel. The
equilibrium results are fitted with a logarithmic form of the Freundlich model:

ln qe = ln K f +
1
n

ln Ce (6)

where Kf represents the adsorption capacity, n represents the heterogeneity factor and Ce
(mg/L) represents the adsorbate concentration.

2.5.3. Temkin Isotherms

The adsorption of the studied cations on grafted hydrogel was also investigated by
the Temkin isotherm. According to this isotherm, the energy of adsorption reduced linearly
with surface coverage due to adsorbent/adsorbate interactions. The Temkin isotherm
equation [50] is

qe = BTlnKT + BTlnCe (7)

where qe is the total amount of cations adsorbed by the polymeric sample at equilibrium
(mg/g) and Ce (mg/L) is the adsorbate concentration at equilibrium. Freundlich constants
depend on the capacity and strength of adsorption, respectively. Qm is the monolayer
adsorption capacity (mg/g). B is a constant linked to the adsorption heat and it is given by
B = RT/b, where b is the Temkin constant (J/mol), T is the absolute temperature (K) and R
is the gas constant (8.314 Jmol−1K−1). Linear relationships are obtained upon plotting Ce/qe
vs. Ce, lnqe vs. lnCe and qe vs. lnCe, and these are presented in Figure S2 (Supplementary
Material). Table 2 summarizes all data. The data confirmed that the removal of cations was
governed by a Langmuir model.

Table 2. Parameters for the adsorption of ammonia and iron using different isotherms.

Model Parameter
Parameter Value

Ammonia Iron

Langmuir
Qm (mg g−1) 3.52 0.55

B 15.439 35.1
R2 0.9494 0.9877

Freundlich
N 3.4 4.25
Kf 2.06 24
R2 0.8997 0.9592

Temkin
BT (J/mol) 0.5739 0.0904
KT (L/g) 2.76 85.39

R2 0.8502 0.9354

2.5.4. Adsorption Kinetics

The adsorption mechanism of cations on the grafted hydrogel from groundwater was
studied using two kinetic models, the pseudo-first-order kinetic model [51]:

ln
(
qe − qt

)
= lnqe − k1t (8)

and the Lagergren pseudo-second order model [52]:

t
qt

=
1

k2q0
2 +

t
q e

(9)

where qt represents the quantity of adsorbed ions at time t (mg/g), k1 and k2 represent the
first- and second-order adsorption rate constants (g/mg min), respectively. The parameters
of first- and second-order kinetics were calculated from plotting of ln (qe − qt) vs. t and
(t/qt) vs. t, respectively: see Figure S3 (Supplementary Material). Table S4 (Supplemen-
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tary Material) summarizes the obtained information. The R2 values confirmed that the
Lagergren pseudo-second-order kinetic was the acceptable kinetic model, and this explains
the chemical adsorption type which occurs through sharing between the used adsorbent
materials and the dissolved ions in addition to the physical one [53]. The experimental
adsorption capacity qe (mg/g) was 1.06 mg/g for the removal of ammonia and 0.295 mg/g
for the removal of iron, while the calculated values were 1.469 mg/g and is 0.36 mg/g for
ammonia and iron removal, respectively.

2.6. Binding (Complexation) Energy of Grafted Hydrogel with Cations

In fact, we have tested three positions, specifically the places with the richest charge
density. Our result for this step is presented in Figure S4 (Supplementary Material). Our
calculations confirmed that Structure 3 is the most stable structure. Structure 3 is more
stable than Structure 1 by 18.71 kcal/mol and Structure 2 by 10.19 kcal/mol. Structures
1 and 2 showed one hydrogen bond between the oxygen atom of the grafted hydrogel
and one hydrogen of the ammonium ion, while Structure 3 showed three hydrogen bonds
between the grafted hydrogel and the ammonium ion. This strong hydrogen bonding
awards an extra stability of structure 3 over structures 1 and 2. Iron (II) and Iron (III) are
optimized by locating them in the same position of ammonium cation as in structure 3.

The molecular electrostatic potential is exhibited in Figure 7. The red color represents
a negative area, the blue expresses a positive area, and the green color is an area between
them. The MSEP demonstrated the positivity of the nitrogen of the amide group that
attacks the para position of the substituted aniline. Also, the MESP confirmed the best
position for the metal cation complexation. This position is showed in the red color and
characterized by the three oxygen atoms that are arranged in the manner of a hole that
allows the metal cation to reside on it.
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The corrected and uncorrected binding energies of the hydrogel–metal cation com-
plexes in the gas phase were also calculated, at the same level of theory of the calculation
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used in that article, using the basis set superposition error (BSSE), which uses the counter-
poise correction approach [54] and is summarized in Table 3. The binding energy Ebind for
each hydrogel–metal cation complex is obtained according to the following equation:

∆Ebind = Ecomplex − (Eion + Ehydrogel) (10)

Table 3. The binding energies (∆Ebind and ∆Ebind with (BSSE) correction, in kcal/mol).

Ion Complexation Energy kcal/mol

Method (Raw) (Corrected) BSSE

Iron (II) −410.49 −401.65
Iron (III) −990.86 −920.7

Ammonium −74.6 −71.1

The optimized structures for the hydrogel–metal cation NH4
+, Fe2+ and Fe3+ com-

plexes are validated in Figure 8. The hydrogens of the ammonium cation showed a strong
hydrogen bonding between them and the three oxygens of the hydrogel. The complexes
with Iron (II) and (III) expressed very strong bonds between the metal cations and the oxy-
gens of the grafted copolymer. It is confirmed from the values of the bond lengths between
the iron and the hydrogel that the metal ion occupies the center of the triangle arranged by
the three oxygens. This is clear from the nearly identical values of the distances between the
cation and the oxygen atoms. In the case of Iron (III), the bond lengths are larger than in the
case of Fe3+, since it has a smaller atomic radius than Fe2+. The uncorrected and corrected
complexing energy between the two monomers (hydrogel and metal cations) are presented
in Table 3. It is clear that the complexation energy was strongly affected from the results
of the BSSE correction. Thus, these corrections should be considered. The data in Table 3
show the stronger interaction between the hydrogel with iron cations than an ammonium
cation. This due to the fitting of the size of the iron to the cavity of the three oxygens in the
grafted copolymer. The complexation energy of Iron (III) is more than double that of Iron
(II) due the strong interaction between Fe3+ because of the higher charge.
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2.7. Regeneration Study

Reusing adsorbent materials has drawn a lot of interest as a tactic to limit waste
production and cut costs associated with processing. Four successive recycling tests were
carried out employing the graft to evaluate their potential for numerous applications,
making use of the ideal conditions created in this work. To reduce pollution, the adsorbents



Gels 2023, 9, 781 11 of 16

underwent a washing process using only distilled water after each adsorption cycle. They
were then dried at room temperature and used for the next adsorption cycle. The data are
summarized in Figure 9. The removal of iron and ammonia decreased in Runs 2, 3 and 4.
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2.8. Swelling Studies

A total of 1 g of the graft was chosen for the swelling studies. Over time, the weight of
the graft increased because of the swelling process (Table 4).

Table 4. Swelling percentage of the graft with water at different time periods.

Time (h) 1 h 6 h 12 h 24 h 48 h 72 h

Swelled weight of graft 1.05 g 1.33 g 1.55 g 1.98 g 2.31 g 2.62 g

Swelling % 5% 33% 55% 98% 131% 162%

3. Conclusions

Groundwater is a one of the major sources for drinking water throughout the world.
It is known that water is necessary for life, and that some countries, even where there
are rivers, need to use groundwater. The researchers’ mission is to check this water
to make it suitable for use. Research has shown the presence of ammonia and iron in
groundwater. Therefore, researchers must find the fastest and least expensive way to
remove ammonia and iron from water. The polymeric compounds used in this research
fitted the two criteria of being easy to prepare and quite inexpensive. And the obtained
results showed their efficiencies for removing ammonia (100%) and iron (98.3%) from water.
DFT methods have been used to obtain the stationary states of the hydrogel and grafted
hydrogel and calculate the binding energies of the grafted hydrogel with the studied
cations. The calculated complexation energy was corrected using the BSSE method. Our
grafted hydrogel revealed a strong selectivity towards the studied cations. The calculated
complexation energy by the DFT method decreased in the following order: Fe3+, Fe2+ and
NH4

+. It has been confirmed by the calculated binding energy that the grafted hydrogel is
an excellent extractor for different cations from polluted water. Thus, our hydrogel shows
an environmental application as a water treatment.
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4. Materials and Methods
4.1. Materials

The 3-chloroaniline 99%, acrylic acid 99%, N, N/-methylenebisacrylamide (cross-
linker) 99.5%, potassium persulphate (PPS) 99% and dimethyl formamide (DMF) 99.9%
were products of Sigma Aldrich. Acrylamide 98% was procured from the Oxford Com-
pany. Hydrochloric acid 33% and sodium hydroxide pellets 98% were products of the
Prolabo Chemical Company. Acetone 99.5% and methanol 99.5% were provided by El-Nasr
Pharmaceutical, Chemical Company.

4.2. Preparation of Polyacrylate–Polyacrylamide Hydrogel Grafted with 3-Chloroaniline

The polyacrylate–polyacrylamide hydrogel was prepared by the method used in our
previous article [27]. The solution of 3-chloroaniline was prepared by dissolving 1 mL of
miscible 3-chloroaniline in 25 mL acidified water with 0.5 mol/L HCl. After that, 1 g of
the polyacrylate–polyacrylamide hydrogel was added separately to the 3-chloroaniline
solution, and then the mixture was left overnight to complete swelling. A K2S2O8 solu-
tion (1 g: 25 mL water) was added to the mixture in an ice bath (0–10 ◦C). The grafting
was started, and the product was left overnight. The grafted hydrogel was separated,
washed with methanol several times, washed with distilled water and dried under vacuum
at 70 ◦C.

4.3. Instrumental Techniques
4.3.1. FTIR

The functional groups in grafted hydrogels and hydrogel are identified using infrared
by FT-IR spectroscopy (Vertex 70 Bruker) in the range of 400–4000 cm−1 with the mode of
reflection at a 4 cm−1 resolution at room temperature.

4.3.2. Morphological Studies

The Pananlytical Empryan X-ray diffractometer 202,964 was used to examine the XRD
patterns of the grafted hydrogel. The scanning area was 5–80◦. The scanning electron
microscopic (SEM) images were captured using JEOL JSM-6510LA (SEM), beam energy:
20–30 kV, working distance: 11.1–12.2 mm.

4.3.3. Transmission Electron Microscope (TEM)

The measurements were carried out using a carbon-coated copper grid as a photo-
graphic plate of the transmission electron microscope.

4.3.4. Thermogravimetric Analysis (TGA)

TGA analysis was obtained by using the Shimadzu TGA-50H detector with a platinum
cell, a nitrogen atmosphere and a 20 ◦C/min flow rate in the range of 38 ◦C to 725 ◦C.

4.4. Sampling of Groundwater

The groundwater in this investigation was collected from Al Garnos and Shoulqam
(Al-Minya, Egypt). The samples were collected in polypropylene containers after being
washed with diluted HNO3 and rinsed with distilled water. On various dates, we collected
10 samples from Shoulqam (from 2 wells) and 15 samples from Al Garnos (from 3 wells).
The parameters of the groundwater samples are shown in Table 5 before and after treat-
ments, and they demonstrate a slight reduction in turbidity, chloride content and overall
hardness and a significant decrease in TDS.
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Table 5. Groundwater properties.

Parameter Before
Treatment

After Treatment
Average SD Standard

ValuesS1 S2 S3 S4 S5

Turbidity 1.3 1 0.9 1.1 0.8 0.8 0.92 0.13038405 1.0 NTU
Chlorides 140 130 133 128 131 129 130.2 1.92353841 250 mg/L
Alkalinity 320 320 318 319 317 316 318 1.58113883 500 mg/L

TDS 710 650 654 653 660 658 655 4 1000 mg/L
Total hardness 280 250 240 260 244 264 251.6 10.2371871 500 mg/L
Ca hardness 130 120 124 116 128 118 121.2 4.81663783 350 mg/L
Mg hardness 150 130 124 132 136 122 128.8 5.76194412 150 mg/L

Ammonia 0.8 0 0.001 0.002 0.003 0.0015 0.0015 0.00111803 0.5 mg/L
Iron 1.2 0.02 0.01 0.015 0.013 0.014 0.0144 0.00364692 0.3 mg/L

4.4.1. Measurement of Ammonia Concentration

The indophenol technique was used in the YSI ammonia test. In the presence of
chlorine, ammonia interacts with alkaline salicylate to generate a green-blue indophenol
complex. Catalysts were used to ensure full and rapid color growth. The reagents were
delivered in the form of two tablets for maximum convenience. The test was carried out by
placing one of each pill in a sample of water. A YSI photometer was used to calculate the
color intensity produced which is proportional to the concentration of ammonia.

4.4.2. Measurement of Iron Concentration

The YSI iron LR approach employed a single tablet reagent comprising 3-(2-pyridyl)-
5,6-bis (4-phenyl-sulphonic acid)-1,2,4-triazine (PPST) combined with a decomplexing/
reducing agent in an acid buffer. The study was carried out by placing a tablet in the
tested sample. The decomplexing/reducing agent breaks down the iron weak complex
and converts it to ferrous ion. In other words, the iron weak complexes were reduced to
iron (II) cations by the aid of the reducing agent. These Ferrous ions were identified by
formation of a pink color with PPST. A YSI photometer was used to determine the color
intensity which is proportional to the concentration of iron.

4.4.3. Computational Details

The ground states of the studied compounds have been investigated using Gaus-
sian 03 [55]. Full optimization was performed using density functional theory using the
B3LYP/6-311G(d,p) level of the theory [56–59]. Moreover, the graft iron complexes were
calculated using the LANL2DZ [60,61] basis set for the iron atom and 6-311G(d,p) basis
set for the remaining atoms using the same function. The frequency calculations were
computed at the same level of theory for ensuring the minima structure and no imagi-
nary frequencies have been observed. The molecular electrostatic (MEP) potential and
electron density for the ligand in 3D plots were calculated using the same level of theory.
The computational calculations were performed in the following order. 1- Optimization
followed by frequency calculations for the copolymer. 2- Investigation of the natural bond
orbitals (NBO) for the copolymer to locate the grafting position. 3- Optimization followed
by frequency calculations for the hydrogel (grafted copolymer). 4- Calculating the molec-
ular electrostatic potential to find the best place for the cations on the grafted copolymer.
5- Finally, the complexing (binding) energy of different cations with the grafted copolymer
has been obtained.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels9100781/s1, Figure S1: Effect of temperature on the
removal of iron (a) and ammonia (b) efficiency at different doses of grafted hydrogel. Van’t Hoff plot
for the adsorption of iron (c) and ammonia (d) on grafted hydrogel. Figure S2: Temkin isotherm for
iron (a) and ammonia (b) removal by grafted hydrogel. Figure S3: Pseudo-first-order kinetic model
of iron (a) and ammonia (b) removal. Pseudo-second-order kinetic model of iron (c) and ammonia

https://www.mdpi.com/article/10.3390/gels9100781/s1
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(d) removal. Figure S4: The optimized structures of complexes of the grafted hydrogel with the
NH4

+ ion in different positions at the B3LYP/6-311G(d,p) level of theory. Table S1: IR bands and
their assignments for hydrogel and grafted hydrogel. Table S2: TGA data of the fabricated samples
(hydrogel and grafted hydrogel). Table S3: Thermodynamic parameters. Table S4: Kinetic models’
parameters data.

Author Contributions: Methodology, H.M.A.E.-S., A.M.E.S. and M.K.A.-L.; software, M.K.A.-L.;
validation, H.M.A.E.-S., A.M.E.S. and M.K.A.-L.; formal analysis, A.M.E.S.; writing—original draft,
A.M.E.S.; writing—review and editing, H.M.A.E.-S., A.S. and M.K.A.-L.; Visualization, A.M.E.S.,
A.S. and M.K.A.-L.; supervision, H.M.A.E.-S. and M.K.A.-L.; project administration, H.M.A.E.-S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the datasets that support the findings and underlie the conclusion
in this paper should be available to all readers upon request from the authors.

Acknowledgments: M.K.A.-L would like to thank the Chemistry Department, College of Science,
United Arab Emirates University (UAEU), Al-Ain, UAE. The authors H.M.A.E.-S., A.M.E.S. and
M.K.A.-L. would like to thank the Chemistry Department, Faculty of Science, Beni-Suef University,
Egypt, on continued incorporeal supporting. Abdelouahid Samadi thanks the UAEU for the financial
grant Strategic Research Program—Zayed Center for Health Sciences (Grant G00003680).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gouzinis, A.; Kosmidis, N.; Vayenas, D.V.; Lyberatos, G. Removal of Mn and simultaneous removal of NH3, Fe and Mn from

potable water using a trickling filter. Water Res. 1998, 32, 2442–2450. [CrossRef]
2. Tekerlekopoulou, A.G.; Pavlou, S.; Vayenas, D.V. Removal of ammonium, iron and manganese from potable water in biofiltration

units: A review. J. Chem. Technol. Biotechnol. 2013, 88, 751–773. [CrossRef]
3. Piper, R.G.; Smith, C.E. Use of clinoptilolite for ammonia removal in fish culture systems. In Zeo-Agriculture, Use of Natural Zeolites

in Agriculture and Aquaculture; Pond, W.G., Mumpton, F.A., Eds.; Western Press: Tustin, CA, USA, 1984; pp. 224–234.
4. Lindenbaum, J. Identification of Sources of Ammonium in Groundwater Using Stable Nitrogen and Boron Isotopes in Nam Du,

Hanoi. Master’s Thesis, Lund University, Lund, Sweden, 2012; 45p.
5. Shaban, M.; Abukhadra, M.R.; Shahien, M.G.; Khan, A.A.P. Upgraded modified forms of bituminous coal for the removal of

safranin-T dye from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 18135–18151. [CrossRef] [PubMed]
6. WHO. Guidelines for drinking-water quality. In Recommendations, 3rd ed.; WHO: Geneva, Switzerland, 2008; Volume 1.
7. Chen, Q. Competitive mechanisms of ammonia, iron and manganese for dissolved oxygen using pilot-scale bio filter at different

dissolved oxygen concentrations. Water Sci. Technol. Water Supply 2016, 16, 766–774. [CrossRef]
8. Alshameri, A.; Ibrahim, A.; Assabri, A.M.; Lei, X.; Wang, H.; Yan, C. The investigation into the ammonium removal performance

of Yemeni natural zeolite: Modification, ion exchange mechanism, and thermodynamics. Powder Technol. 2014, 258, 20–31.
[CrossRef]

9. Taneva, N. Removal of ammonium and phosphates from aqueous solutions by activated and modified Bulgarian clinoptilolite. J.
Chem. Eng. Mater. Sci. 2012, 3, 79–85.

10. Xiong, W.H.; Peng, J. Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Res.
2008, 42, 4869–4877. [CrossRef]

11. Cai, Y.A.; Li, D.; Liang, Y.; Luo, Y.; Zeng, H.; Zhang, J. Effective start-up bio filtration method for Fe, Mn, and ammonia removal
and bacterial community analysis. Bioresour. Technol. 2015, 176, 149–155. [CrossRef]

12. WHO. Guidelines for Drinking Water Quality. In Health Criteria and Other Supporting Information, 2nd ed.; WHO: Geneva,
Switzerland, 1993; Volume 2.

13. Franklin, O.-N. Geochemical modelling for predicting the long-term performance of zeolite-PRB to trea lead contaminated
groundwater. J. Contam. Hydrol. 2015, 177–178, 76–84.

14. Dvorak, B.I.; Skipton, S.O. Drinking water: Iron and manganese. In Neb Guide Published by University of Nebraska-Lincoln Extension;
Institute of Agriculture and Natural Resources: Lincoln, NE, USA, 2007.

15. Casey, T.J. Iron and manganese in water: Occurrence, drinking water standards, treatment options. In Aquavarra Research
Publications Water Engineering Papers Aquavarra Research Limited; Blackroc: Dublin, Ireland, 2009.

16. Keyser, S.L. Iron and Manganese in Drinking Water; UCD EXTOXNET FAQ Team: Davis, CA, USA, 1997.

https://doi.org/10.1016/S0043-1354(97)00471-5
https://doi.org/10.1002/jctb.4031
https://doi.org/10.1007/s11356-017-9424-4
https://www.ncbi.nlm.nih.gov/pubmed/28631125
https://doi.org/10.2166/ws.2015.190
https://doi.org/10.1016/j.powtec.2014.02.063
https://doi.org/10.1016/j.watres.2008.09.030
https://doi.org/10.1016/j.biortech.2014.11.025


Gels 2023, 9, 781 15 of 16

17. Barloková, D.; Ilavský, J. Removal of Iron and Manganese from Water Using Filtration by Natural Materials. Pol. J. Environ. Stud.
2010, 19, 1117–1122.

18. Okoniewska, E.; Lach, J.; Kacprzak, M.; Neczaj, E. The Removal of Manganese, Iron and Ammonium Nitrogen on Impregnated
Activated Carbon. Desalination 2007, 206, 251–258. [CrossRef]

19. Kontari, N. Groundwater, Iron and Manganese: An Unwelcome Trio. Water Eng. Manag. 1988, 135, 25–26.
20. Gage, B.; O’Dowd, D.; Williams, P. Biological Iron and Manganese Removal, Pilot Plant and Full Scale Application. In Proceedings

of the Ontario Water Works Association Conference, Niagara Falls, ON, Canada, 3 May 2001.
21. WHO. Health Criteria and Other Supporting Information. In Guidelines for Drinking Water Quality, 2nd ed.; WHO: Geneva,

Switzerland, 1996.
22. Anonymous. Water: A Millennial Priority; Acme Agrovat Beverage Ltd.: Dhaka, Bangladesh, 2004.
23. Kneeper, W.A. Iron. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley Interscience: New York, NY, USA, 1987; Volume 13,

pp. 735–753.
24. Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia- nitrogen and phosphates sorption from simulated reclaimed

waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229, 292–297. [CrossRef] [PubMed]
25. Shaban, M.; AbuKhadra, M.R.; Nasief, F.M.; Abd El-Salam, H.M. Removal of Ammonia from Aqueous Solutions, Ground Water,

and waste water Using Mechanically Activated Clinoptilolite and Synthetic Zeolite-A: Kinetic and Equilibrium Studies. Water Air
Soil Pollut. 2017, 228, 450. [CrossRef]

26. Abd El-Salam, H.M.; Zaki, T. Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frome-
works. Inorg. Chim. 2018, 471, 203–210. [CrossRef]

27. El Shafey, A.M.; Abdel-Latif, M.K.; Abd El-Salam, H.M. The facile synthesis of poly (Acrylate/Acrylamide) Titanium Dioxide
Nano composite for Ground water Ammonia Removal. Desalination Water Treat. 2020, 212, 61–70. [CrossRef]
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