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Abstract: Osteoporosis and degenerative endocrine diseases are some of the major causes of disability
in the elderly. The feedback loop in the endocrine system works to control the release of hormones
and maintain the homeostasis of metabolism, thereby regulating the function of target organs. The
breakdown of this feedback loop results in various endocrine and metabolic disorders, such as
osteoporosis, type II diabetes, hyperlipidemia, etc. The direct regulation of redox homeostasis is
one of the most attractive strategies to redress the imbalance of the feedback loop. The biophysical
regulation of redox homeostasis can be achieved through engineered dynamic hydrogel niches, with
which cellular mechanics and redox homeostasis are intrinsically connected. Mechanotransduction-
dependent redox signaling is initiated by cell surface protein assemblies, cadherins for cell–cell
junctions, and integrins for cell–ECM interactions. In this review, we focused on the biophysical
regulation of redox homeostasis via the tunable cell–ECM interactions in the engineered dynamic
hydrogel niches. We elucidate processes from the rational design of the hydrogel matrix to the
mechano-signaling initiation and then to the redox response of the encapsulated cells. We also
gave a comprehensive summary of the current biomedical applications of this strategy in several
degenerative endocrine disease models.

Keywords: osteoporosis; degenerative endocrine disease; engineered hydrogel niches; redox homeostasis

1. Introduction

Endocrine diseases, encompassing a broad spectrum of conditions affecting hormonal
regulation, pose significant challenges to human health and quality of life. These diseases,
especially their degenerative subtypes like diabetes, thyroid disorders, and osteoporosis,
have become increasingly prevalent and complex in aging populations worldwide [1,2].
Such conditions not only lead to a decline in life quality but also place a substantial bur-
den on healthcare systems. In the realm of tissue engineering and regenerative medicine,
scaffolds derived from biomaterials have emerged as a beacon of hope [3–6]. Treatments
like bisphosphonates, calcitonin, hormone replacement for osteoporosis, insulin therapy
and oral hypoglycemics for diabetes, and hormone replacement for thyroid disorders,
while effective, have drawbacks such as side effects, the need for careful dose manage-
ment, and concerns about long-term efficacy. These challenges underscore the need for
innovative approaches like dynamic hydrogels, offering more tailored and potentially less
invasive options.
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Hydrogels, in particular, stand out as ideal mediums for both drug and stem cell-based
therapies. These are extensively hydrated polymer constructs, and their design and characteris-
tics can be customized to meet specific requirements [7–11]. Prior research indicates that various
hydrogels, such as polysaccharides [12–14], polyacids [15,16], polymethacrylates [17,18], fibrous
hydrogels [19–21], and other self-assembled hydrogels [22–24], can be designed to mimic the
structure of the absent extracellular matrix (ECM) in tissue injuries, thereby promoting internal
cell growth and differentiation. Dynamic network hydrogels represent an advanced subset
of these materials. They are characterized by their ability to adapt and change in response to
environmental stimuli, making them particularly effective for regenerative applications. These
hydrogels offer enhanced support for the growth and differentiation as well as the attraction
of immunoregulatory cells compared to those containing only stem cells. As such, these show
promise as tools for early detection and treatment of degenerative endocrine diseases, potentially
reducing the onset and severity of symptoms and complications. Dynamic hydrogels thus
show great promise as tools for the early detection and treatment of these diseases, potentially
reducing the onset and severity of symptoms and complications. While there have been signifi-
cant advancements in the creation of dynamic hydrogels over the years, there is still much to
uncover regarding their optimal design and their medical applications, especially in the context
of maintaining redox balance in degenerative endocrine diseases.

Herein, we introduce and illustrate in detail the design principles of dynamic hy-
drogels with respect to how they can be finely tailored towards the regulation of redox
homeostasis through biophysical cell–material interactions and the biomedical applications
of dynamic hydrogels in degenerative endocrine diseases. We hope this review can benefit
both biomaterial researchers and endocrinologists in further studying the mechanisms of
disease and expanding their work’s effectiveness.

2. The Design of Dynamic Hydrogels
2.1. Degradation-Reliant Dynamic Hydrogels

Degradation-reliant dynamic hydrogels, known for their robust yet selectively degrad-
able crosslinks, represent a significant advancement in biomaterial science. These hydro-
gels are engineered to maintain structural integrity while allowing controlled degradation
through specific mechanisms like hydrolytic breakdown, enzymatic degradation, and light-
responsive degradation [25–36]. This selective degradability is crucial for applications in
tissue engineering and drug delivery, where the temporal and spatial control of material
properties is essential.

For hydrolytically degradable dynamic hydrogels, the breakdown typically involves
the hydrolysis of covalent interactions. The rate and extent of this degradation can be finely
tuned by altering the crosslinking density, as demonstrated by Burdick and colleagues in
their development of hydroxyethyl methacrylate (HEMA)-modified polysaccharide-based
hydrogels. These hydrogels showcased the ability to adjust degradation rates, offering
the potential to customize the release of therapeutic agents or the gradual exposure of
embedded cells to the surrounding environment [37] (Figure 1(Ai)). Ding et al. further
expanded on this concept by creating a hydrogel system where the hydrolytic degrada-
tion rate could be precisely controlled [38] (Figure 1(Aii)). This adjustability is especially
beneficial in regenerative medicine, as it allows for the fine-tuning of the hydrogel environ-
ment to optimize cell behavior, such as enhancing the proliferation and differentiation of
encapsulated MSCs.
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Figure 1. (A) (i) Creation of HeMA-HA hydrolytically degradable hydrogels [37]. #, +, $, *: signifi-
cant difference, p < 0.05. (ii) Formation and hydrolytic breakdown diagram of PEG-oriented hydro-
lytically degradable hydrogels [38]. (B) (i) Development and cell-induced enzymatic breakdown of 
HA hydrogels [39]. (ii) Composition of PEG hydrogels with MMP-sensitive ELP-RGD peptide links. 
(C) (i) Illustration of light-induced degradation in PEG-based dynamic hydrogels responsive to light 
[23]. (ii) Chemical make-up and light-triggered mechanism in crosslinkers based on photo-degrada-
ble nitrobenzyl [39,40]. 

Figure 1. (A) (i) Creation of HeMA-HA hydrolytically degradable hydrogels [37]. #, +, $, *: significant
difference, p < 0.05. (ii) Formation and hydrolytic breakdown diagram of PEG-oriented hydrolytically
degradable hydrogels [38]. (B) (i) Development and cell-induced enzymatic breakdown of HA
hydrogels [39]. (ii) Composition of PEG hydrogels with MMP-sensitive ELP-RGD peptide links.
(C) (i) Illustration of light-induced degradation in PEG-based dynamic hydrogels responsive to
light [23]. (ii) Chemical make-up and light-triggered mechanism in crosslinkers based on photo-
degradable nitrobenzyl [39,40].
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Enzymatically degradable hydrogel designs draw inspiration from natural biomacro-
molecules. These hydrogels are designed to include enzyme-cleavable peptide sequences,
enabling cells to actively participate in remodeling their microenvironment. This feature
is particularly useful in replicating natural tissue dynamics, where cellular activities are
closely intertwined with the surrounding ECM. Burdick’s group formulated an MMP-
sensitive peptide-crosslinked HA hydrogel to study how cell-mediated enzymatic degrada-
tion impacts encapsulated cell behavior [39] (Figure 1(Bi)). Heilshorn et al. introduced an
enzyme-responsive platform using a composite protein structure integrated with a non-
active domain and an active domain with cell-adhesive moieties [23] (Figure 1(Bii)). This
design not only supports cell adhesion and proliferation but also allows for the controlled
release of bioactive molecules, enhancing tissue regeneration and repair.

Additionally, there is growing interest in light-responsive degradation hydrogels
because of their controlled degradation. These hydrogels are designed to degrade upon
exposure to specific light wavelengths, providing an unprecedented level of control over the
degradation process. Anseth and colleagues designed nitrobenzyl-crosslinked hydrogels
that break down when exposed to visible light [39,40] (Figure 1C). When exposed to
visible light, these hydrogels degrade in a controlled manner, allowing for the spatially
and temporally precise release of encapsulated drugs or growth factors. This capability is
particularly advantageous in wound healing and tissue engineering applications, where
localized and timed therapeutic interventions are crucial.

All these hydrogel examples exhibit how specific cellular behaviors, such as adhesion,
migration, and differentiation, can be directed by adjusting hydrogel monomer struc-
tures and scaffold degradation properties. This capability is particularly advantageous in
wound healing and tissue engineering applications, where localized and timed therapeutic
interventions are crucial.

2.2. Degradation-Independent Dynamic Hydrogels

Degradation-independent dynamic hydrogels, while robust, often encounter limita-
tions in supporting prolonged 3D cell cultures, a vital component in numerous applications
in tissue engineering and regenerative medicine [41]. The irreversible nature of their degra-
dation can lead to inconsistencies in the network structure over time and across different
spatial regions. This variability poses challenges in studies exploring the relationship
between the local microenvironment and the behavior of encapsulated cells, as it can result
in uneven cell growth and unpredictable tissue development [42].

To emulate the dynamic characteristics of the natural ECM more accurately, researchers
have developed dynamic hydrogels with reversible crosslinks that are not reliant on degra-
dation. Generally, these reversible crosslinks in hydrogels can be categorized into two
main types: reversible covalent bonds [43–54] (Figure 2A) and supramolecular physical
connections [55–66]. The former encompasses a range of chemical interactions that can be
reversed under certain conditions, providing a level of control and adaptability previously
unattainable with traditional hydrogel systems. The latter encompasses metal–ligand
coordination, host–guest complexation, and hydrogen bonding to create dynamic networks
that respond to external stimuli and environmental changes (Figure 2B).
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Figure 2. (A) Utilizing reversible covalent bonds to create degradation-independent dynamic hy-
drogels [67]. (B) Employing supramolecular recognition patterns in the design of degradation-inde-
pendent dynamic hydrogels [68]. 
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reversibility under physiological conditions. The introduction of catalysts in these reac-
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ties of hydrogels and interactions with embedded cells [69], which was demonstrated 
through the creation of a hydrogel platform based on hyaluronic acid (HA), incorporating 
catalysts, and anchored together by reversible covalent hydrazone bonds [70] (Figure 3A). 
The catalysts could be biocompatible, benzimidazole-based organocatalysts. These cata-
lysts are specifically employed to enhance the formation and exchange of hydrazone 
bonds in hyaluronic acid-based hydrogels, thereby improving the injectability of hydro-
gels while maintaining their long-term stability. This innovation allows for more sophis-
ticated control over the hydrogel properties and their interactions with embedded cells, 
addressing the challenge of balancing ease of injection with stability in cell transplantation 
and tissue engineering applications (Figure 3B). 

Figure 2. (A) Utilizing reversible covalent bonds to create degradation-independent dynamic hy-
drogels [67]. (B) Employing supramolecular recognition patterns in the design of degradation-
independent dynamic hydrogels [68].

The primary reversible reactions encompass Schiff base, boronate, and Diels–Alder
reactions. Of these, Schiff base reactions, involving aldehyde and amine, hydrazide, or
hydrazine groups, are particularly suited for biomedical applications due to their effective
reversibility under physiological conditions. The introduction of catalysts in these reactions
has expanded their potential, enabling more sophisticated control over the properties of
hydrogels and interactions with embedded cells [69], which was demonstrated through
the creation of a hydrogel platform based on hyaluronic acid (HA), incorporating catalysts,
and anchored together by reversible covalent hydrazone bonds [70] (Figure 3A). The
catalysts could be biocompatible, benzimidazole-based organocatalysts. These catalysts
are specifically employed to enhance the formation and exchange of hydrazone bonds in
hyaluronic acid-based hydrogels, thereby improving the injectability of hydrogels while
maintaining their long-term stability. This innovation allows for more sophisticated control
over the hydrogel properties and their interactions with embedded cells, addressing the
challenge of balancing ease of injection with stability in cell transplantation and tissue
engineering applications (Figure 3B).
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hydrogel can diminish inflammation in situ and enhance tissue regeneration. Beyond nat-
ural CDs, synthetic cucurbit[n]urils (CBs) have recently been employed for dynamic hy-
drogel creation. Scherman’s team produced a resilient and adhesive dynamic hydrogel, 
showcasing strong adhesion to various substrates [57] (Figure 4(Bii)). Hydrogen bonding 
represents another potent form of supramolecular interaction utilized in dynamic hydro-
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Figure 3. (A) Depiction of the architectures of the natural ECM dynamic HA-collagen. (B) Devel-
opment of a dynamic hydrogel through reversible covalent hydrazone chemistry. (C) Molecular
compositions of the modified HA [70].

The category of supramolecular physical crosslinks offers a different avenue for creat-
ing dynamic hydrogels. Metal–ligand coordination bonds, formed by the pairing of elec-
trons between two linked atoms, are particularly interesting due to their unique response to
external stimuli, making them ideal for creating stimuli-responsive hydrogels [71]. Ossipov
and team introduced an injectable hydrogel that self-assembles from bisphosphonates
and Ca2+ ions [72]. This hydrogel displays notable injectability during 3D bio-printing,
with most encapsulated cells maintaining viability post-injection (Figure 4(Ai)). Sohn
et al. outlined a hydrogel with phase adaptability, interconnected through reversible physi-
cal interactions, showing a pronounced phase transition in response to pH changes [73].
Host–guest complexation, another form of supramolecular interaction, involves the for-
mation of complexes between two molecules, such as cyclodextrins (CDs) and synthetic
cucurbit[n]urils (CBs) (Figure 4(Aii)) [74]. Burdick et al. designed a dynamic hydrogel
anchored on “host-guest” interactions [75] (Figure 4(Bi)). Further studies indicated that
this hydrogel can diminish inflammation in situ and enhance tissue regeneration. Beyond
natural CDs, synthetic cucurbit[n]urils (CBs) have recently been employed for dynamic
hydrogel creation. Scherman’s team produced a resilient and adhesive dynamic hydrogel,
showcasing strong adhesion to various substrates [57] (Figure 4(Bii)). Hydrogen bonding
represents another potent form of supramolecular interaction utilized in dynamic hydro-
gels. Wong’s group introduced a durable hydrogel anchored by hydrogen interactions.
This hydrogel excels in dispersing the applied force [76] (Figure 4(Ci)). Additionally, Hu’s



Gels 2024, 10, 31 7 of 19

team presented a novel hydrogel composed of star-shaped PEG-based crosslinkers. This
hydrogel can gradually release loaded drugs and direct behaviors of encapsulated cells [77]
(Figure 4(Cii)). Together, these advancements in dynamic hydrogel technology represent
a significant leap forward in the field of biomaterials. By offering a range of reversible
crosslinking mechanisms, these hydrogels provide unparalleled versatility and adaptability,
opening new horizons in tissue engineering, regenerative medicine, and drug delivery
systems. Their ability to mimic the dynamics of natural ECM, respond to environmental
stimuli, and support complex cellular interactions positions them as key materials in the
development of next-generation biomedical solutions.
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Figure 4. Hydrogels formulated through metal–ligand coordination for degradation-independent
dynamics. (A) (i) A visual representation of a hydrogel structure created by HA-BP macromolecules,
binding with Ca2+ ions [72]. (ii) A step-by-step depiction of HA-CA gel development across the pH
spectrum, highlighting color transition [73]. (B) Hydrogels derived from metal–ligand coordination,
ensuring degradation resistance. (i) A portrayal of the interaction between adamantane (Ad, guest)
and β-cyclodextrin (CD, host) resulting in the formation of a reversible guest–host (GH) crosslink
alongside the associated synthesis [75]. (ii) Sequential construction of a 2:1 ternary host–guest complex
involving CB [8] and accompanying guest molecules [57]. (C) Hydrogels anchored by hydrogen bonds
for persistent dynamic features. (i) A detailed diagram showcasing the formation of a completely
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physically crosslinked PVA/CP DN hydrogel [76]. (ii) An illustrative guide to the biological assembly
of a four-arm PEG hydrogel lattice through hydrogen bonding of Watson–Crick base pair interactions
between thymine and adenine structures [77].

We summarize the different types of dynamic hydrogels, their unique properties
(Table 1), and their specific applications in the field of biomedical engineering, offering a
concise overview of the section.

Table 1. Summary of degradation-reliant and degradation-independent dynamic hydrogels.

Type Sub-Type Key Features Mechanism of
Action

Specific Examples
and References

Biomedical
Applications

Degradation-
reliant dynamic

hydrogels
Hydrolytic

Maintain integrity,
allow controlled

degradation

Hydrolysis of
covalent

interactions,
tunable

degradation rate

HEMA-modified
polysaccharide
hydrogels [37],
PEG-oriented
hydrogels [38]

Drug delivery,
controlled

exposure of
embedded cells

Enzymatic
Feature

enzyme-cleavable
peptide sequences

Remodeling via
cell-mediated

enzymatic
degradation

MMP-sensitive HA
hydrogels [39],

enzyme-
responsive protein

structures [23]

Replicating natural
tissue dynamics,
supporting cell
adhesion and
proliferation

Light responsive
Degrade upon
specific light

exposure

Light-induced
breakdown,

spatial/temporal
control

Nitrobenzyl-
crosslinked

hydrogels [39,40]

Wound healing,
localized

therapeutic
interventions

Degradation-
independent

dynamic hydrogels

Reversible
covalent

Reversible bonds
under certain

conditions

Schiff base,
boronate,

Diels–Alder
reactions

Hydrazone-
bonded HA

hydrogels [70]

Injectable
platforms, cell

therapy

Supramolecular
physical

Formed by
non-covalent
interactions

Metal–ligand
coordination,

host–guest
complexation,

hydrogen bonding

Metal–ligand
coordinated

hydrogels [72],
guest–host
interaction

hydrogels [75]

Stimuli-responsive
hydrogels, phase

adaptability in
response to

environmental
changes

2.3. The Advance of Engineered Dynamic Hydrogels

The advent of engineered dynamic hydrogels heralds a transformative era in the fields
of biomedical engineering and regenerative medicine, especially in the context of treating
degenerative endocrine diseases. These hydrogels, characterized by their responsive
and adaptable nature, open up a myriad of possibilities for personalized medicine and
advanced therapeutic strategies. This extended essay delves deeper into the facets of
dynamic hydrogel technology, exploring its implications, challenges, and future prospects
in greater detail.

2.3.1. Revolutionizing Disease Management with Dynamic Hydrogels

Dynamic hydrogels have emerged as a beacon of hope in managing degenerative
endocrine diseases, which are notoriously difficult to treat due to their complex nature and
the need for precise and sustained intervention. These diseases, such as osteoporosis and
diabetes, not only have a profound impact on individual health but also place a significant
burden on healthcare systems globally. Dynamic hydrogels address these challenges
by offering platforms for targeted drug delivery, hormone replacement therapies, and
regenerative approaches that are finely tuned to the specific needs of each disease.
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2.3.2. Biophysical Regulation of Redox Homeostasis

At the heart of dynamic hydrogel technology is the ability to regulate redox homeosta-
sis at the cellular level. Redox processes, involving the delicate balance between oxidation
and reduction reactions in the body, are fundamental to maintaining cellular health. Dis-
ruptions in this balance are implicated in a range of pathological conditions, including
degenerative endocrine diseases. Dynamic hydrogels, through their cell–material inter-
actions, can modulate the redox environment, providing a therapeutic strategy that goes
beyond symptom management to address the root causes of disease.

2.3.3. Tailoring Hydrogels to Disease Specificities

The customization of dynamic hydrogels is a key aspect of their appeal. Depending
on the disease, hydrogels can be engineered with specific properties, for instance, porosity,
degradation rate, and mechanical strength, to match the requirements of the target tissue. In
osteoporosis, hydrogels can be designed to enhance bone regeneration and mineralization,
while in diabetes, they can be used for the controlled release of insulin and aid in wound
healing. This level of customization ensures that the treatment is not only effective but also
minimizes potential side effects.

2.3.4. The Role in Stem Cell Therapy and Regenerative Medicine

Dynamic hydrogels are particularly promising in the realms of stem cell therapy
and tissue engineering. Their ability to mimic the natural extracellular matrix creates
an ideal environment for stem cells to proliferate and differentiate. By manipulating the
mechanical and chemical properties of the hydrogel, it is possible to guide stem cells
towards specific lineages, enhancing the efficacy of regenerative treatments. This aspect is
crucial in developing therapies for diseases where tissue regeneration is a primary goal,
such as in the restoration of pancreatic beta cells in diabetes or bone tissue in osteoporosis.

3. The Metabolism Regulation of Dynamic Hydrogels
3.1. Osteoporosis

Osteoporosis is a typical hormone-level-related degenerative disease. A proper level
of hormones, such as estrogen and testosterone, is essential for the maintenance of bone
mineral density (BMD) [78]. The disease is notably prevalent among postmenopausal
women, where a significant reduction in estrogen levels leads to a decrease in BMD, el-
evating the risk of fractures [79,80]. This condition underscores a critical aspect of bone
health, where hormonal balance plays a pivotal role in maintaining bone strength and in-
tegrity. To combat the onset and progression of osteoporosis, hormone replacement therapy
(HRT) was traditionally employed, aiming to replenish the declining hormone levels and
thereby reduce bone density loss [81–83]. However, while effective in preserving bone
mass, HRT has been associated with increased risks of cardiovascular events, such as heart
attacks and strokes, posing a dilemma for patients with existing heart and brain health
concerns [83]. Recently, bisphosphonates have been widely used to treat osteoporosis
in postmenopausal women with high heart and brain disease risks [84]. Bisphospho-
nates, known for their bone-preserving properties, act by inhibiting osteoclast-mediated
bone resorption, thereby slowing down the process of bone loss. Their incorporation
into dynamic hydrogel systems represents an innovative approach, combining the ther-
apeutic efficacy of bisphosphonates with the versatile delivery capabilities of hydrogels.
Zhang and coworkers reported a novel bisphosphonate-functionalized hyaluronate-based
system [85–88]. This hydrogel has demonstrated significant potential in enhancing osteo-
genesis in mesenchymal stem cells (MSCs) and facilitating effective bone regeneration. It
achieves this through the redox regulation of alkaline phosphatase (ALP)-mediated biomin-
eralization, a process crucial for bone formation [86] (Figure 5A). Nafee et al. developed an
alendronate-loaded and biodegradable smart hydrogel [89]. The reported hydrogel shows
excellent biocompatibility and biodegradation in vivo. Moreover, it has a high affinity for
the hard tissues and promotes their regeneration via the redox regulation of bone homeosta-
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sis. Li et al. reported a tetra-PEG hydrogel to achieve long-term alendronate delivery [90].
The design of the on-demand release of alendronate provides a smart platform to optimize
the bone regeneration of rabbits with osteoporosis (Figure 5B). Dynamic hydrogels loaded
with hormones or hormone replacements are also attractive candidates for osteoporosis
therapy. Kuang et al. designed an injectable hydrogel capable of near-infrared (NIR) light-
controlled pulsatile parathyroid hormone (PTH) release [91] (Figure 5(Ci)). The pulsatile
PTH release can be further manipulated to finely tune the redox balance of osteoblasts and
osteoclasts, thereby altering bone homeostasis to promote bone regeneration in the osteo-
porosis model (Figure 5(Cii)). Amani et al. [92] and Chen et al. [93] reported two hydrogels
loaded with teriparatide, an anabolic drug for osteoporosis treatment. These hydrogels
offer a new paradigm in drug delivery, potentially enhancing the drug’s therapeutic impact
while simultaneously reducing the side effects associated with its systemic administration.
The integration of dynamic hydrogels in osteoporosis treatment heralds a new era in per-
sonalized medicine. By offering controlled, targeted, and sustained delivery of therapeutic
agents, these hydrogels not only improve treatment efficacy but also significantly reduce
the potential risks associated with traditional osteoporosis therapies.
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3.2. Type II Diabetes

Type II diabetes is a chronic condition predominantly caused by pancreatic β-cell
dysfunction and insulin resistance. It is characterized by an imbalance in redox home-
ostasis, leading to elevated blood glucose levels [94]. Early intervention and management
of blood glucose are crucial in preventing the progression of the disease and averting a
myriad of complications, including cardiovascular diseases, neuropathy, nephropathy, and
retinopathy [95–97]. In past studies, great advances have been made in using dynamic
hydrogels to treat type II diabetes through insulin delivery, wound healing, and stem cell
therapy [98]. Wang et al. designed a core-shell microneedle patch based on dynamic PVA
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hydrogel [99]. This bioinspired system, coated with hydrogen peroxide (H2O2)-scavenging
enzymes, mimics the function of peroxisomes, enabling site-specific insulin delivery. This
method significantly minimizes off-target effects and toxicities associated with conventional
insulin therapies, offering a more precise and controlled treatment modality (Figure 6A).
Fan et al. reported a photo-responsive insulin delivery to realize on-demand control
of blood glucose concentration [100] (Figure 6B). This innovation enables on-demand
control of blood glucose concentration through light-triggered release mechanisms, pro-
viding patients with a more flexible and responsive way to manage their diabetes. Wang
et al. reported an injectable dynamic polymeric complex for glucose-responsive insulin
delivery [101]. The binding affinity between the polymeric complex and insulin can be
changed in response to the blood glucose level (Figure 6C). In hyperglycemia, the insulin
release is smartly triggered to achieve real-time and effective blood glucose regulation.
Xiao et al. reported a metal–organic framework (MOF) for enhanced skin protection and
regeneration in diabetes [102]. The developed hydrogel system, through redox antioxidant
regulation, significantly promotes angiogenesis in wound healing, addressing one of the
common complications of diabetes. Zhu et al. designed an antioxidant dynamic hydro-
gel loaded with stromal cell-derived factor-1 (SDF-1) (Figure 6D). The sustained release
of SDF-1 from this hydrogel enhances angiogenesis and re-epithelialization in diabetic
wounds, aiding in faster and more effective healing. This process is facilitated by the redox
regulation of keratinocyte differentiation, which is crucial for skin repair [103]. Wei et al.
reported a dynamic hydrogel based on Schiff’s base reaction capable of the delivery of
antimicrobial peptides for wound healing [104]. The developed hydrogels can expedite
wound healing through the redox regulation of the inflammatory response and collagen
deposition. Dynamic hydrogels are also excellent vehicles for the delivery of therapeutic
stem cells for the reconstruction of pancreatic function. An et al. reported a cell encapsula-
tion device for the replacement of pancreatic β-cells with dysfunctionality [105] (Figure 6E).
The developed device can be further modified and used for other endocrine disorders and
hormone-deficient diseases. The application of dynamic hydrogels in managing type II
diabetes represents a significant leap in diabetes care. The integration of dynamic hydrogels
in diabetes treatment is a testament to the advancements in biomedical engineering and
material science. These hydrogels not only offer more effective and patient-friendly options
for managing diabetes but also hold the promise of addressing the underlying causes of
the disease.

3.3. Other Degenerative Endocrine Diseases

Dynamic hydrogels are proving to be a transformative tool in the treatment of a range
of degenerative endocrine diseases, offering innovative methods for hormone delivery,
drug release, and the regulation of endocrine functions. These hydrogels provide a platform
for sustained, controlled, and targeted therapy, essential in managing diseases characterized
by hormonal imbalances and metabolic dysregulation. There are many pilot studies giving
the proof-of-concept results of these platforms for various endocrine and redox disorders,
including hyperlipidemia, ovary dysfunction, obesity, and hypoparathyroidism. Sirc et al.
reported a poly (2-hydroxyethyl methacrylate) (PHEMA) and poly (N-vinylpyrrolidone)
(PVP) copolymer-based hydrogel for the delivery of niacin to reduce the blood fat in hy-
perlipidemia [106]. The sustained release mechanism of hydrogels ensures that niacin
is delivered over an extended period, maintaining blood lipid levels within a healthy
range and potentially reducing the risk of cardiovascular complications associated with
hyperlipidemia. Yoon et al. designed a vascularized hydrogel for the delivery of ovary
spheroids [107]. By delivering ovary spheroids, this hydrogel system supports hormone
autocrine functions, which could be pivotal in restoring ovarian health and hormonal bal-
ance, offering hope for those suffering from conditions such as polycystic ovary syndrome
(PCOS) and early menopause. (Figure 7A). Hsiao et al. developed an adipose-derived stem
cell (ADSC) fiber-based hydrogel for the 3D encapsulation of unilocular adipocytes [108].
Adipose tissue is an important organ with the ability to regulate various endocrine and
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redox processes. This microfiber hydrogel can be used to fabricate the device for the early
diagnosis and treatment of obesity-related diseases (Figure 7B). Zou et al. reported a
hydrogel for the delivery of parathyroid hormone (PTH) [109]. By regulating the redox
balance between osteoblasts and osteoclasts, this hydrogel promotes bone regeneration,
addressing the key issue of bone loss in degenerative bone diseases (Figure 7C). Park et al.
reported a gelatin hydrogel for the sustained release of PTH to rescue the therapeutic po-
tential of tonsil-derived mesenchymal stem cells (TDMSCs) for hypoparathyroidism [110].
Hypoparathyroidism, a condition marked by the insufficient production of parathyroid
hormone, can lead to a range of complications, and this innovative approach offers a new
avenue for treatment. The use of dynamic hydrogels in managing degenerative endocrine
diseases represents a significant advancement in medical science. These hydrogels offer cus-
tomized treatment options that can be tailored to the specific needs of individual patients,
providing sustained and controlled delivery of therapeutic agents.
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(B) The design of responsive hydrogel microcarrier-integrated microneedles. (C) The schematic
illustration of electrostatic interaction-driven insulin release. (D) The schematic illustration of dy-
namic hydrogels for wound healing in diabetes. (E) The design of cell encapsulation device for the
reconstruction of pancreatic function.
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4. Summary and Perspective

Engineered dynamic hydrogels are excellent platforms to employ cell–material inter-
actions to biophysically regulate redox homeostasis, thereby rescuing many degenerative
endocrine diseases. Moreover, they can be finely tailored for the delivery of hormones,
hormone replacements, and therapeutic drugs according to the unique characteristics of
degenerative endocrine diseases. In this review, we summarize the recent state-of-the-
art developments of dynamic hydrogels and review the biophysical manipulation of cell
fates through the rationally designed hydrogel network. Finally, we also summarize the
biomedical applications of dynamic hydrogels in degenerative endocrine diseases. By
shedding light on the engineered dynamic hydrogel niches, we would like to enhance the
tools for the manipulation of cell behaviors and to guide biomaterials’ design and their
biomedical applications.

However, the journey of dynamic hydrogels from laboratory research to clinical appli-
cation in the fields of regenerative medicine and biomedical engineering is a path laden
with potential yet fraught with challenges. These hydrogels, promising in treating degen-
erative endocrine diseases, face a multi-faceted challenge in their transition to practical,
clinical use.

The complexity of moving from controlled laboratory experiments to unpredictable
clinical environments is substantial. Laboratory conditions are ideal and precisely con-
trolled, but clinical settings present variables such as differing patient responses, complex
disease states, and practical limitations in medical settings. Ensuring that dynamic hydro-
gels perform as expected in real-world scenarios is a significant hurdle.
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The scalability of producing dynamic hydrogels is another critical issue. While produc-
ing these hydrogels in small quantities for research purposes is feasible, mass-producing
them for widespread clinical use is a different challenge. It involves not only manufactur-
ing challenges but also logistical, regulatory, and cost considerations. Ensuring consistent
quality and performance at a larger scale is essential.

The safety and efficacy of dynamic hydrogels in humans are paramount. Long-
term studies and rigorous clinical trials are required to establish their safety profile and
effectiveness in treating specific diseases. This process is time-consuming and costly but
essential to gain regulatory approval and medical acceptance.

The integration of dynamic hydrogels with cutting-edge technologies like nanotech-
nology and 3D bioprinting presents both opportunities and challenges. These integrations
could enhance the capabilities of hydrogels, offering more precise and personalized treat-
ment options. However, this also adds layers of complexity in terms of design, production,
and testing. Ensuring compatibility and optimizing these integrated systems for clinical
use are crucial steps.
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18. Hejčl, A.; Růžička, J.; Proks, V.; Macková, H.; Kubinová, Š.; Tukmachev, D.; Cihlář, J.; Horák, D.; Jendelová, P. Dynamics of tissue
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