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Abstract: Removal of contaminants from discharge water is vital and demands urgent assistance
with the goal to keep clean water. Adsorption is one of the most common, efficient, and low-priced
methods used in water treatment. Various polysaccharide-based gels have been used as efficient dye
adsorbents from wastewater. This review summarizes cutting-edge research of the last decade of
different hydrogels based on natural polysaccharides (chitin, chitosan, cellulose, starch, pullulan,
and dextran) concerning their dye adsorption efficiency. Beyond their natural abundance, attributes
of polysaccharides such as biocompatibility, biodegradability, and low cost make them not only
efficient, but also environmentally sustainable candidates for water purification. The synthesis and
dye removal performance together with the effect of diverse factors on gels retaining ability, kinetic,
and isotherm models encountered in adsorption studies, are introduced. Thermodynamic parameters,
sorbent recycling capacity along with conclusions and future prospects are also presented.

Keywords: hydrogels; natural polysaccharides; dye removal

1. Introduction

Water constitutes the primary element of the Earth and is essential for the survival of
all living organisms, including plants, animals, and humans. Various hazardous chemical
compounds, originating from diverse industries such as paper, textile, and plastics, are
released into water, resulting in a significant volume of contaminated wastewater. Conse-
quently, the imperative task of eliminating dangerous contaminants from water arises to
uphold the integrity of pure water resources.

Among the various types of wastewater, dyeing wastewater holds a notable proportion
because of the expansion of dye manufacturing. Dyes, substances imparting color to textiles,
leather, paper, plastics, and rubber, contribute significantly to this type of wastewater [1–5].
Presently, the Colour Index records the usage of over 10,000 different dyes and pigments
in industries. The substantial presence of these dyes in wastewater can impede sunlight
transmission in rivers, adversely affecting the photosynthetic activities of aquatic species
and leading to a decline in O2 levels in water. Additionally, dyes contain poisonous
products, including traces of heavy metals (Cu, Pb, Co, Cd), aromatics, and amines. Of
grave concern is the fact that dyes exhibit mutagenic, teratogenic, and carcinogenic effects,
causing dysfunction in various human organs. Moreover, exposure to dyes can result in
dermatitis, rhinitis, skin rash, asthma, or various tissue modifications. Regrettably, these
synthetic products pose significant challenges in terms of degradation, displaying a strong
chemical stability under conditions of light, heat, or exposure to oxidizing agents, with
many of them having a half-life extending over several years [6].

Categorized by their origin, dyes can be classified into two main types: natural and
synthetic dyes.

Natural dyes are sourced from natural elements such as plants, invertebrates, or
minerals. Most natural dyes are made from plant components such as roots, berries, bark,
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leaves, and wood, as well as from other biological microorganisms such as fungi. Synthetic
dyes were developed and supplanted natural dyes, particularly in the textile industry.
Based on their electrical charge, synthetic dyes can be ionic or nonionic. Anionic dyes
(reactive, direct, and acid type) and cationic dyes (disperse type) exhibit good solubility
in water, whereas nonionic dyes (basic, azoic, and vat dyes) do not have this feature
(Figure 1) [7].
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Figure 1. Classification of synthetic dyes according to their electrical charge.

Due to the unfavorable results and prolonged persistence in water, it is imperative to
use treatment methods and technologies for the elimination of dyes from sewage. Treating
methods encompass physical separation techniques such as filtration, sedimentation, distil-
lation, and adsorption, as well as chemical processes such as chlorination, flocculation, and
coagulation, oxidation, ion-exchange, ozonation, the use of electromagnetic radiation (UV
light), and biological processes, such as slow sand filters or biologically active carbon [8,9].

Among these methods, the adsorption process stands out as the optimal alternative.
It is a straightforward and cost-effective way with a brief analysis time and the genera-
tion of harmless secondary compounds. Because of its great efficacy and the potential
for regenerating the adsorbent for multiple reuses, adsorption is widely recognized as
one of the most popular and utilized treatment methods for dye removal [10,11]. Dye
sorption can be physical or chemical (Figure 2). Physisorption is the process whereby dye
molecules are adsorbed to a sorbent surface by weak forces (hydrogen bonds, dipole-dipole
bonds, van der Waals, or π-π bonds). Chemisorption is the sorption achieved by chemical
bonding (covalent or electrostatic). While physisorption can be reversed by the variation of
different factors (heat, pH, pressure, etc.), chemisorption cannot be. Dyes are adsorbed at
an active site on the surface of the adsorbent through electrostatic interaction, ion exchange,
complexation, and/or chelation. Solution pH, initial dye concentration, functional groups,
and adsorbent dosage in particular are external factors that mainly affect dye adsorption
processes. The profitability of the adsorption process is given by the price of the sorbent
and its efficiency. Thus, activated carbon, widely employed in water purification, is an
excellent adsorbent, but its main drawback lies in its high cost [12]. It is used in pretreat-
ment processes for the elimination of free chlorine and chloramines, and also serves to
eliminate trace organic impurities from purified water. Instead, other sorbents, used in
elimination of dyes in water, have a low price. These include unconventional materials
such as clay products (bentonite, kaolinite, smectite, montmorillonite), zeolites, siliceous
materials (alunite, perlite, sepiolite, attapulgite, silica beads), agricultural wastes such as
peels, leaves, and seeds (bagasse pith, wheat straw, rice husk, sawdust, bark, sugarcane
bagasse, cotton fiber), industrial waste items (waste carbon slurries, fly ash, red mud), and
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biomass (algae, fungi, bacteria). Hydrogels are polymeric materials most often used in dye
adsorption, due to their structural characteristics.
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2. Hydrogels

Hydrogels are hydrophilic cross-linked polymers having a 3D network which remains
insoluble in any solvent. These structures can absorb water or biological fluids and un-
dergo a swelling process through their pores [13–18]. This places gels in a state that lies
between that of a solid and a liquid. The cross-links impart distinctive characteristics to
hydrogels, allowing them to exhibit reversible changes such as swelling and deswelling.
In the dehydrated state, hydrogels undergo contraction and revert to their initial volume.
Typically, these polymers preserve a substantial portion of water within their 3D network.
However, there are gels known as superabsorbents that have the capacity to absorb water
ranging from 1000 to 100,000%. Hydrogels can be categorized based on various criteria.
Nevertheless, given that hydrogels are fundamentally formed through cross-linking net-
works, their classification based on the cross-linking mechanism leads to two categories:
physically cross-linked and chemically cross-linked hydrogels (Figure 3).
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Physically cross-linked hydrogels can be obtained through methods such as freeze–
thawing [19], stereocomplex formation [20], ionic interaction [21,22], H-bonding [23,24],
and maturation (heat-induced aggregation) [25]. Chemically cross-linked hydrogels can
be achieved through various methods such as chemical cross-linking [26], chemical or
radiation grafting [27], radical polymerization [28], condensation reaction [29,30], enzy-
matic reaction [31], and high-energy radiation [32,33]. Depending on their physical state,
hydrogels are classified into solids, semisolids, and liquids. Considering polymeric compo-
sition, hydrogels can be classified as homo-polymeric, co-polymeric, and interpenetrating
polymeric hydrogel-IPN (semi or full). In terms of network electrical charge, hydrogels
are categorized as nonionic, ionic (cationic or anionic), amphoteric electrolyte (possess-
ing both acidic and basic groups), and zwitterion with anionic and cationic groups in
every polymeric unit. Based on starting materials, hydrogels are classified into natural,
synthetic, or hybrid, which combine both natural and synthetic gel components. Pure
gels exhibit limited mechanical and thermal stability. The incorporation of nanofillers,
such as graphene oxide (GO), carbon clay, bentonite (BNTN), hydroxyapatite (HAp), or
montmorillonite (MMT), into the gel matrix results in the creation of novel products known
as nanocomposites, endowed with enhanced properties.

Polymeric hydrogels have diverse applications across multiple fields, including medicine,
cosmetics, agriculture, and materials science. In the medical sector, they play a crucial role
in drug delivery systems [34], wound dressings [35], tissue engineering [36], or as agents
with antibacterial properties [37]. Within cosmetics, polymeric hydrogels are employed
into products such as gels, creams, and lotions to enhance texture and stability [38,39].
Moreover, in agriculture, these hydrogels may be utilized for the controlled delivery of
fertilizers or pesticides [40].

2.1. Hydrogels Based on Natural Polysaccharides Used in Dye Adsorption

Polysaccharides are a significant class of biopolymeric materials which are stable,
abundant, nontoxic, and biodegradable. Polysaccharide-based materials, displayed in a
variety of forms such as hydrogels, membranes, beads/resins, or films, find widespread
applications in wastewater treatment. The presence of numerous hydrophilic functional
groups in their chemical structure enables the effective adsorption of dyes [41], biosorption
being, in that case, a competitive, effective, and cheap approach.

Chemical structure and characteristics of different natural polysaccharides, used in
the obtaining of various hydrogels utilized for dye elimination, are listed in Table 1.

Table 1. Polysaccharides used in the synthesis of hydrogels utilized for dye removal.

Polysaccharide Chemical Structure Characteristics Ref.

chitin
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Table 1. Cont.

Polysaccharide Chemical Structure Characteristics Ref.

cellulose
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[47]

Cross-linking and grafting of native polysaccharides are great alternatives for con-
structing adsorption systems with enhanced mechanical and thermal properties. Further,
the incorporation of nanofillers (BNTN, GO, HAp, MMT, etc.) or magnetic nanoparticles in
a gel’s structure enhanced dye sorption properties.

This review summarizes the studies appearing in the last decade on the application
of different natural polysaccharide-based hydrogels in dye removal. Thus, synthesis and
dye elimination performance of various gels based on the polysaccharides listed in Table 1
are described. Other topics covered in this paper include the impact of various factors on
the gel’s ability to retain dyes, kinetic and isotherm models, as well as thermodynamic
parameters met in adsorption research. This review also presents sorbent’s recycling
capacity together with conclusions and suggestions for future research directions. In the
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last decade, the number of publications for environmentally friendly adsorption process
has increased due to the increased interest shown by researchers (Figure 4).
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Figure 4. The number of papers concerning dye removal by natural polysaccharide-based hydrogels
(2014–2023) (source Web of Science).

2.1.1. Chitosan and Chitin-Based Hydrogels

Chitosan (CS) (Table 1), a linear polysaccharide, is composed of D-glucosamine and
N-acetyl-D-glucosamine units randomly distributed within its chemical structure, linked
together by β-(1→4) bonds [48]. CS is obtained through the N-deacetylation of chitin. The
inherent characteristics of CS and its derivatives, such as hydrophilicity, biocompatibility,
biodegradability, and bioadhesivity, make them suitable for various applications. These
include drug delivery, biomedical research, biotechnology, catalysis, the cosmetic industry,
textiles, the paper industry, and enology.

Polymers based on CS are usually used in wastewater management because of their
exceptional capability to adsorb dyes, cost efficiency, and adaptability in manufacturing,
and also due to their mechanical and thermal stability [49] (Table 2). CS’s ability to eliminate
dyes is restricted by its crystalline structure. To improve polysaccharidic selectivity and
effectiveness, functional groups were attached to CS via its amino groups (C-2), as well
as primary (C-6) and secondary (C-3) hydroxyl groups (Table 1). Thus, grafting and
cross-linking reactions with different reagents (acrylamide, acrylic acid, N-vinylimidazole,
polyvinylamine, polyacrylate triethylenetetramine, 2-acrylamido-propanesulphonic acid)
presented in different papers of the last decade concerning dye sorption by hydrogels based
on CS enhance the adsorption and mechanical properties, as well as chemical stability, of
the native polysaccharide. The same literature showed that the addition of various fillers
(GO, MMT, phytic acid) or magnetic nanoparticles (Fe3O4) in the chemical structure of
above-mentioned CS-based hydrogels augmented their dye sorption properties [50–64].

A sorbent based on CS was obtained using free radical cross-link copolymerization
of the polysaccharide with acrylamide (AM) and acrylic acid (AA) [50]. This process
was conducted in the presence of ceric ammonium nitrate/ascorbic acid as initiator and
N, N-methylene bisacrylamide (MBA) as cross-linking agent. The resulting sorbent was
employed for the removal of Methyl Orange (MO). Additionally, the cross-linked copolymer
exhibited notable antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and
Staphylococcus aureus, demonstrating a high decrease in growth compared to the pristine CS.

It is known that magnetic CS microspheres demonstrated rapid separation under a
magnetic field and efficient regeneration under acidic conditions. Thus, magnetic hydrogels
containing CS grafted with poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)
was utilized for the adsorption of cationic Methylene Blue (MB) [51]. The synthesis of
magnetic microspheres involved the incorporation of magnetic Fe3O4 and SiO2 nanopar-
ticles into the polysaccharide matrix, followed by the grafting of PAMPS by free radical
polymerization. The interaction between the magnetic grafted CS and MB dye involved
both electrostatic and hydrophobic forces. Composite hydrogels based on CS have been
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assiduously studied in different applications. The predominant features of these com-
posites, such as their expansive surface area and numerous functional groups, contribute
favorably to an increased affinity for dye molecules, which determined their substantial
adsorption efficiency.

MMT, a soft phyllosilicate group of minerals with nanolayered structure, was often
employed as a dye adsorbent due to its high swelling and cation exchange capacity. Thus,
an intercalated composite of CS and MMT, acquired by transferring the polysaccharide
solution to MMT suspension and heating the mixture at 70 ◦C, was employed to remove
Reactive red 136 (RR 136) [52]. The composite’s reactive functional groups (hydroxyl, amide,
amino, siloxane) played an important role in the sorption process, which was accomplished
both by surface adsorption and intercalation. CS-based composite displayed excellent
adsorption results even after undergoing 15 adsorption–desorption cycles.

A composite hydrogel, Fe3O4@CS/p(AAM/NVIm), created by the incorporation
of magnetic nanoparticles Fe3O4 in CS grafted with AM and N-vinylimidazole (NVIm)
was tested as adsorbent for MB dye (Figure 5) [53]. The composite hydrogel proved to
be a promising recyclable, durable, robust, and efficient adsorbent for MB adsorption
from wastewater.
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Different amounts of phytic acid, also known as inositol hexaphosphate (IP6), were
used to obtain a series of carboxymethyl CS (CMCS)/IP6 composite hydrogels, aimed to
remove MO and Congo Red (CR) dyes from water [54]. CMCS/IP6 composite hydrogel,
having a 3:1 molar ratio of the components, exhibited the highest adsorption capacity for
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MO and CR dyes at pH 7 and r.t. Furthermore, the composite demonstrated excellent
reusability, stability, and swelling capacity.

A dual-network composite hydrogel with exceptional mechanical characteristics, high
reusability, and significant adsorption capacity, created by incorporating CS-cross-linked
polyvinyl amine (PVAm) into a cross-linked polyacrylic acid (PAA) network, was used for
MB removal from aqueous solution [60]. The adsorption mechanisms were determined to
be based on hydrogen bonds and electrostatic interactions between the functional groups
of the hydrogel and dye molecules, from the Langmuir equation and pseudo-second-order
kinetic model fitted with experimental data. The hydrogel demonstrated good reusability,
with an adsorption efficiency higher than 85% for five consecutive cycles.

A composite hydrogel having spherical structures, obtained by CS encapsulation in
an organic-inorganic iron and terephthalate ligands, was used to adsorb CR dye [61]. The
main mechanism of adsorption was through ionic interactions and hydrogen bonding. The
adsorption followed a pseudo-first-order kinetic model and Liu isotherm model. The best
performance was observed at neutral pH and r.t., the adsorption capacity being 99.97% at
equilibrium. After three adsorption cycles, the recovery rate was approximately 85%.

GO is a unique compound composed of a single layer of graphite with different
oxygen-comprising capabilities [62]. GO possesses excellent properties including an in-
creased specific surface area, strong mechanical hardiness, and good electrical and thermal
conductivity. It is also resistant to corrosion. When combined with natural or synthetic
hydrogels, multilayered GO sheets form composites with improved adsorption properties
due to electrostatic and hydrogen bonding interactions with sorbates. The presence of
epoxide and hydroxyl groups on the GO basal planes, as well as carboxyl and carbonyl
groups at the edges, allows for easy diffusion of water molecules between the nanosheets’
layers, which clarifies their great dye sorbing capability.

A hybrid sorbent consisting of CS and GO, previously treated with triethylenete-
tramine (TETA), was utilized for the removal of C.I. Reactive Blue 221 (RB 221) dye [63].
The occurrence of TETA-GO in the hybrid polymer equally enabled π-π bonds and ionic
attraction with the reactive dyes, and also maintained a great endurance of the sorbent to
acidic and alkaline media.

A hydrogel composite made of CS, polyacrylate (PA), and GO was evaluated for its
effectiveness in removing Food yellow 3 (FY 3) and MB dyes [64]. The process involved
mixing PA, CS, and deionized water in a reactor to create a partially soluble slurry. GO was
then introduced into the mixture, and the entire mixture was transformed into a composite
hydrogel using sol-gel conversion with the help of acetic acid vapor. The addition of PA
and GO significantly enhanced the swelling and mechanical properties of the composite
hydrogel. Dyes were retained onto the CS-based composite by hydrogen bonding, ionic
bonding, and covalent bonding.

Chitin, the second most abundant natural biopolymer, is derived from the exoskeleton
of crustaceans (such as crabs and shrimps), mollusk cartilages, and fungal cell walls
(Table 1). It consists of N-acetyl-D-glucosamine units linked together with β-(1→4) bonds.
Chitin possesses properties such as biocompatibility, biodegradability, affordability, and
reusability. Grafting and cross-linking of pristine chitin afforded the obtaining of hydrogels
with enhanced adsorption properties compared to the starting polysaccharide. Literature
from the last decade showed that the introduction of different fillers (GO, r-GO tannic acid)
in chitin-based gels have been utilized successfully in dye removal processes due to the
enhanced adsorption properties of obtained composites [65,66] (Table 2).

Chitin/GO hybrid gels, having different molar ratios of the components, were used
as biosorbents of Neutral Red (NR) [67]. Both dyes showed an optimum adsorption at a
chitin/GO molar ration of 3/1, and at an adsorption pH of 5.0 for the first dye and 4.0 for
the last one, while desorption pH values were 8.0 and 9.0, respectively.

A composite hydrogel (chitin-TRGO), made from chitin, tannic acid (TA), and modi-
fied with reduced graphene oxide (rGO) through a freezing–thawing process, was used
to remove CR dye (Figure 6) [68]. TA served as both a reducing agent and a surface
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modifier for rGO. The hydroxyl groups of chitin and the phenolic hydroxyl groups of TA
interacted with rGO surface through π–π interactions, resulting in a cross-linking reac-
tion with epichlorohydrin (ECH). The resulting composite showed improved mechanical
strength and enhanced sorption properties in the formation of novel materials known as
nanocomposites, endowed with enhanced properties.
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Table 2. Dye removal performances of some CS and chitin-based hydrogels.

Adsorbent Dye Dye Retention/Elimination
Capacity Reference

CS-g-P(AM-co-AA) MO 90% removal efficacy [50]

Fe3O4, SiO2/CS–g-PAMPS MB 1000 mg/L [51]

CS-g-EDA/CS-g-MA CR 1607 (mg/g)
1143 (mg/g) [55]

CS-g-P(AM-co-NaMA) Fuchsin 97.2% removal efficacy [56]

CS/MMT RR 136 473 mg/g [52]

Fe3O4@CS/P(AAM/NVIm) MB 860 mg/g [53]

CS/Ag-HAp RhB 127.61 mg/g [57]

CMC/IP6
MO 13.62 mg/g

[54]
CR 8.49 mg/g

CS-gelatin/ZnO CR 90.8% photocatalytic activity [58]

CS/PVA/PAA MB 596.14 mg/g [60]

CS/iron and terephthalate ligands CR 590.8 mg/g [61]

CS/nano-ZnO RB 5 189.44 mg/g [59]

CS/PA/GO
FY 3 296.5 ± 31.7(mg/g)

[64]
MB 280.3 ± 23.9 (mg/g)

CS/TETA-GO RB 221 54.2 mg/g (pH = 1)
34.8 mg/g (pH = 11) [63]

chitin/GO NR 57 × 10−2 mmol/g [67]

chitin-TRGO CR 230.5 mg/g [68]



Gels 2024, 10, 243 10 of 31

2.1.2. Cellulose-Based Hydrogels

Cellulose, with the chemical formula (C6H10O5)n, is the most predominant biomaterial
worldwide (Table 1). It consists of glucose units connected through β-1,4 linkages, and its
polymerization degree ranges from several hundreds to tens of thousands.

Typically, plants are responsible for synthesizing cellulose, but certain bacteria can
also produce it. The chains of cellulose are compressed into microfibrils, which are held
together by intramolecular hydrogen bonds formed between the three hydroxyl reactive
groups of each polysaccharide unit. This biocompatible and biodegradable polysaccha-
ride has an irregular and fibred structure and is not soluble in water. Compared to other
polysaccharides, cellulose has high mechanical properties. Suitable solvents for cellulose
include alkali/urea (thiourea), LiCl/dimethylacetamide, and N-methyl morpholine-N-
oxide. The hydroxyl reactive groups present in each polymeric unit allow the formation
of a stable three-dimensional network of cellulose-based derivatives by physical or chem-
ical cross-linking. Physical cross-linking methods for cellulose-based materials include
freeze–thaw [69], self-assembling [70], instantaneous gelation [71], reconstitution [72], in-
verse emulsion technique [73], and ionotropic gelation [74]. Chemical cross-linking can
be achieved through chemical reactions [75], polymerization [76], or radiation (gamma,
microwave, ultraviolet) [77]. Some derivatives of cellulose that are used for the synthesis
of cellulose-based hydrogels include esters, ethers, and composites (IPN or polymeric
blendings). Gels derived from cellulose derivatives have been shown to be effective ad-
sorbents for various contaminants [78–81], some of them being dyes (Table 3). Updated
literature from the last decade indicated that CS and its derivatives (carboxymethylcellu-
lose, hydroxypropylcellulose) grafted and cross-linked with various reagents (acrylic acid,
2-acrylamido-propanesulphonic acid, itaconic acid, polyacrylic acid) afforded the obtaining
of new polymers having good dye adsorption properties. The addition of various fillers
(MMT, graphitic carbon nitride, MoS2, sepiolite, BNTN, carboxylated graphene oxide)
or magnetic nanoparticles (Fe3O4, graphene quantum dots) in the chemical structure of
cellulose-based hydrogels increased their dye sorption capability [82–101].

Quaternized cellulose, modified with PAA by free radical polymerization, was utilized
as an adsorbent for the removal of MB dye [82]. The adsorption of dye occurred through
electrostatic interaction between the ammonium groups of the cellulose-based gel and the
carboxylic groups of PAA.

Cellulose nanofibrillated (CNF) grafted with poly([2-(acryloyloxy) ethyl] trimethy-
lammonium chloride) (PClAETA)) was obtained by free radical polymerization [83]. MBA
acted as cross-linking agent, while ammonium persulfate (APS) initiated the free radical
reaction. Increasing the CNF concentration led to greater hydrogel swelling due to the
increased number of carboxyl groups in the hydrogel. Adsorption studies with MO dye
showed that dye removal efficiency reached approximately 96%. Additionally, optimizing
pH value to neutral (pH = 7.64) enhanced the absorption capacity of MO dye.

Hydrogels based on CS and carboxymethyl cellulose (CMC) were synthesized by
chemically cross-linking with ECH and by using polyethylene glycol (PEG) as a pore-
forming agent (Figure 7) [84]. The effectiveness of the CS/CMC hydrogels in removing CR
and MB from water was assessed by considering factors such as pH, mass of the adsorbent,
concentration of PEG additives, and initial dye concentrations. The adsorption process for
CR followed the pseudo-second-order kinetics model, while MB followed the pseudo-first-
order kinetics model. The adsorption isotherm for CR adsorption fitted to both Freundlich
and Langmuir models, whilst the Langmuir model fitted better for the MB adsorption
isotherm. The thermodynamic analysis demonstrated that adsorption of both dyes was
spontaneous, with CR adsorption being endothermic and MB sorption being exothermic.
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Table 3. Dye removal results of some recent cellulose-based hydrogels.

Adsorbent Dye Dye Retaining/Elimination Ability Reference

cellulose-g-PAM MB 734.816 mg/g [82]

CMC-g-PAA

MO 82.0% elimination capacity

[90]DB BLN 77.4% elimination capacity

MG 95.3% elimination capacity

acryloyl cellulose-g-PAA MB 3003 mg/g [91]

cellulose-g-P(AA-co-AM)
AB 93

82% elimination for both dyes [92]
MB

cellulose-g-CDNMA MB 15 mg/g
[93]

MO 12 mg/g

CNF-g-PClAETA MO 1379.0 mg/g [83]

CS/CMC-PEG
CR 1053.88 mg/g

[84]
MB 331.72 mg/g

HPC-based MoS2 MB 6153 mg/g [85]

CMC/g-C3H4/ZnO MV 96.43 mg/g [94]

HPMC-g-PAM/NaMMT CV 76% removal efficiency
(five cycles) [95]

lignocellulose-g-PAA/MMT MB 1994.38 mg/g [96]

CMC/PAA/Fe3+, Fe2+ CV 200 mg/L [86]

CdS/QDs RhB 137 mg/g [87]

g-C3N4@SBC/CMC MB 362.3 mg/g [88]

CMC-g-P(AA-co-IA)
Safranin-O

185,185 mg/g
[89]

CMC-g-P(AA-co-IA)/MMT 191,205 mg/g

cellulose/Sep MG 314.47 mg/g [99]

CMC/AM/GO AB 133 185.45 mg/g [100]

PVA/CMC/GO/BNTN MB 172.14 mg/g (30 ◦C) [97]

CMC/c-GO MB 180.32 mg/g [98]

rGO/cellulose/Fe2+, Fe3+/PEG DMA MB 119 mg/g [101]
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A new environmentally friendly dye adsorbent, tested for the removal of MB, was
developed by combining hydroxypropyl cellulose (HPC) with molybdenum disulfide
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(MoS2) [85]. To achieve a more uniform dispersion of MoS2 nanosheets in HPC, esteri-
fication was used to attach MoS2 to polysaccharide chains. HPC-MoS2/HPC hydrogels
exhibited superior adsorption performance for MB compared to HPC alone. Furthermore,
the unique photo-catalytic properties of MoS2 allowed the recyclability and reusability of
the sorbent through illumination, HPC-MoS2/HPC gel being easily activated with minimal
loss of dye adsorbing capacity.

New magnetic superabsorbent hydrogel nanocomposites were synthesized by incor-
porating magnetic iron oxide nanoparticles into CMC grafted with poly(acrylic acid) (PAA)
in a single-step reaction [86]. The resulting nanocomposites were capable of removing
Crystal violet (CV) from aqueous solutions. The adsorption data fitted well with the
Redlich–Peterson isotherm model.

Quantum dots (QPs), having CdS in their structure, were integrated into a CMC-g-
P(AA-g-AMPS) hydrogel matrix and employed for the removal of Rhodamine B (RhB)
from aqueous solutions [87]. QPs are semiconductor nanoparticles with unique optical
and electronic properties. The inclusion of CdS-QPs improved the thermal stability of the
polymeric network. Desorption studies showed effective regeneration capability at various
temperatures. After five cycles of adsorption–desorption, dye removal ranged from 95
to 75%.

Graphitic carbon nitride (g-C3N4) reinforced an eco-friendly adsorbent made of sugar-
cane cellulose (SBC), and sodium carboxymethylcellulose (NaCMC), g-C3N4@SBC/CMC,
was successfully prepared using a simple sol-gel technique [88]. The adsorption process
of MB was accurately described by the pseudo-second-order kinetic model and Langmuir
sorption model. Furthermore, the stability and reusability of the adsorbent were excellent,
with almost no decline in adsorption capacity observed even after seven cycles.

Sodium CMC-based hydrogel grafted with the copolymer of acrylic acid (AA) and
itaconic acid (IA), coded as CMC-g-poly (AA-co-IA), was successfully synthesized for the
removal of safranin-O from wastewater [89]. The swelling and removal efficiencies of
CMC-g-poly (AA-co-IA) were improved by incorporating MMT clay nanosheets (CMC-g-
poly (AA-co-IA)/MMT). The adsorption study indicated that both CMC-g-poly (AA-co-IA)
and CMC-g-poly (AA-co-IA)/MMT followed a pseudo-second-order model for kinetic
behavior, and the equilibrium data were well-fitted to the Langmuir isotherm model.
Thermodynamic parameters indicated that the safranin-O adsorption by CMC-g-poly
(AA-co-IA)/MMT is a spontaneous, exothermic, and entropy-decreasing process.

An organic-inorganic hybrid adsorbent based on cellulose and sepiolite (Sep), a fibrous
magnesium hydrosilicate, was synthesized and used for the elimination of Malachite green
(MG) dye (Figure 8) [99]. The hybrid was formed by adding pretreated Sep to cellulose
dispersed in a NaOH/urea aqueous solution, followed by the dropping of the mixture into
a diluted HCl-CaCl2 solution. The resulting hydrogel beads demonstrated great thermal
strength because of the thermal isolation effect of Sep molecules.

Hydrogels, made of CMC-AM-GO and prepared using free radical polymerization by
using different CMC percents, were employed for the removal of Acid Blue 133 (AB 133)
from aqueous solutions [100]. The swelling kinetic data suggested that the gels exhibited a
super Case II diffusion transport mechanism. The elimination capability varied depending
on the percentage of GO in the hydrogels.

Magnetic hydrogels were synthesized by incorporating rGO and cellulose modi-
fied with magnetic nanoparticles into poly(ethylene glycol) dimethacrylate (PEG DMA)-
based hydrogels by photo-polymerization (Figure 9) [101]. Cellulose, containing mag-
netic nanoparticles, was prepared by coprecipitation reaction of Fe2+ and Fe3+ in alkaline
medium, followed by postcoating with the polysaccharide and rGO. The formed com-
posites demonstrated high effectiveness in removing MB dye. The magnetic rGO-loaded
hydrogel exhibited a high thermal stability, and could be regenerated without any reduction
in its adsorption ability.
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Remarkable results concerning dye sorption by cellulose-based hydrogels (Table 3)
can be observed for polymers having hydrophilic (co)polymers containing AA grafted
onto soluble derivatives of the polysaccharide such as CMC [99], HPC [86], or acryloyl-
cellulose [90] due to rapid swelling and exceptional adsorption capacity, which justifies their
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appellation as superabsorbents. Incorporation in these polymeric structures of MMT [99]
or MoS2 [86] improved their dye absorptivity due to the occurrence of specific inorganic
stack atomic layers of the filler.

2.1.3. Starch-Based Hydrogels

Starch (ST) is a plentiful and inexpensive biopolymer that is biocompatible and
biodegradable. It is found in plants such as wheat, maize, and rice, serving as a reserve
carbohydrate. Granules of ST are composed of a combination of semicrystalline and soluble
amylose (20–30%) and highly crystalline and insoluble amylopectin (70–80%). Amylose
(Table 1) is made up of linear α-D-glucose units connected by α(1→4) glycosidic bonds,
while amylopectin (Table 1) is composed of heavily branched α-D-glucose units linked by
α(1→4) or α(1→6) glycosidic bonds [102].

Chemical modification of the polysaccharide can resolve the lack of adsorption ability
of native ST. The literature from the last ten years indicated that grafting and cross-linking
of ST and its derivatives (carboxymethylstarch, hydroxypropyl sulfate starch) with various
reagents (acrylamide, 2-acrylamido-propanesulphonic acid, polyvinylimidazole) afforded
the obtaining of hydrogels based on ST having dye adsorption properties. Furthermore, the
integration of different fillers (GO, hydroxyapatite) or magnetic nanoparticles (Fe3O4) in
chemical structure of hydrogels based on ST allowed the improving of the gel’s adsorption
capacity (Table 4) [103–105].

Instantaneous gelation in boric acid of carboxymethyl starch-g-polyvinyl imidazole
(CMST-PVIm), along with a combination containing PVA and Fe3O4, followed by cross-
linking with glutaraldehyde (GA), resulted in the formation of magnetic nanocomposite
hydrogel beads [106]. These hydrogel beads were utilized in adsorption studies for CV
and CR dyes. Thermodynamic investigations indicated that the chemisorption process was
spontaneous and endothermic.

Through the inverse suspension cross-linking method utilizing ECH as cross-linker, hy-
drogel beads composed of ST and humic acid (HA) were successfully fabricated
(Figure 10) [107]. These composite beads were then utilized in studies focusing on the adsorp-
tion of MB dye, which was effectively retained on the composite gel through a combination
of π–π interactions and ion exchange mechanisms. The composite demonstrated a robust
regeneration capacity, reaching 92% after undergoing five cycles of adsorption–desorption.
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Hydroxypropyl sulfate starch (HPSST), obtained from 2-hydroxy-3-chloropropyl sul-
fate and ST in NaOH with ECH employed as cross-linking agent, exhibited effectiveness
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as adsorbent for the removal of MB dye. Its efficacy was attributed to favorable sorption
outcomes and its notable capacity for full regeneration [108].

A porous nanocomposite hydrogel, based on ST, was created through the free radical
copolymerization of AM and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto
the polysaccharide. This process was conducted in the presence of CaCO3 and GO [109].
The resulting gel found application in the removal of MB from aqueous solutions. CaCO3
particles served as porogen agents, and after synthesis, these inorganic solid nanoparticles
were eliminated by solving the gel in an HCl solution. The adsorption ability for MB was
enhanced due to the increased hydrogel porosity. Even after undergoing five cycles of
adsorption–desorption, the removal efficiency for MB remained high at 95.4%.

Table 4. Dye elimination results of hydrogels based on ST.

Adsorbent Dye Dye Retaining/Removal Capability Reference

(CMST-g-PVIm/PVA/Fe3O4)
CV 91.58 mg/g

[106]
CR 83.66 mg/g

Fe3O4/ST-g-PAA MV 31.847 mg/g [110]

ST phosphate CV 99% dye removal [111]

Succinylated ST
MO 20% dye removal

[112]
MB 83% dye removal

ST@PAA
MB 133.65 mg/g

[113]
CR 64.73 mg/g

ST/HA MB 111.10 mg/g [107]

ST-g-P(AA-co-AM)/PDA MB 2276 mg/g (pH 9) [114]

ST-based sulfonic ion exchange resin MB+RhB+MG 84.04% decolorization [115]

ST-g-P(AMPS-co-DMAEMA)/benzyl chloride BV 7 600 mg/g [116]

MST

MB

70 mg/g

[117]GST 75 mg/g

VST 81 mg/g

succinylated ST MB 84 mg/g [118]

ST-g-P(AA-co-AMPS)/GO MB 769.23 mg/g [109]

ST-g-PAM/GO/HAp MG 297 mg/g [119]

The nanocomposite consisting of ST-g-PAM/GO/HAp was used for the removal of
MG dye [119]. The nanocomposite was synthesized by free radical copolymerization in
the presence of GO nanosheets and varying amounts of HAp. Thermogravimetric analysis
indicated that HAp nanoparticles acted as thermal barriers, resulting in higher initial
decomposition temperatures when incorporated into the nanocomposite structure. The
efficiency of desorption increased as the amount of HAp decreased within the gel structure.
The addition of HAp to the sorbent matrix reduced the free spaces and porosity of the
network. Consequently, after five cycles of adsorption–desorption, 25%, 17%, and 13% of
MG were delivered from hydrogel nanocomposites with porosity levels of 11%, 25%, and
30%, respectively.

Table 4 shows that the greatest results regarding dye absorption by starch-based hy-
drogels can be seen for superabsorbent polymers that included hydrophilic (co)polymers
containing AA grafted onto the polysaccharide, followed by either coating [114] or incorpo-
rating [119] into the polymeric structure of universal surface modifiers such as PDA and
GO nanolayers, respectively.
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2.1.4. Pullulan-Based Hydrogels

Pullulan (PUL), a biocompatible and nontoxic polysaccharide, is composed of mal-
totriose units joined by α(1–4) glycosidic bonds, while consecutive maltotriose moieties
are connected by α(1–6) glycosidic bonds (Table 1). This polysaccharide and its derivatives
have various uses in biomedicine, pharmaceuticals, food industry, and electronics. Litera-
ture that has been published over the past ten years showed that certain PUL derivatives
have been utilized as adsorbents for various dyes in the treatment of wastewater, after
the grafting and cross-linking of native polysaccharide with different reagents (polyacry-
lamide, poly(acrylic acid). The addition of various fillers (GO, activated carbon, MMT,
polydopamine) in the obtained gel’s structure increased their dye sorption properties
(Table 5).

A semi-IPN polysaccharide hydrogel (PUL/PDA/HDE, also called sPDA), comprising
PUL, polydopamine (PDA), and 1–6-hexanediol diglycidyl ether (HDE) as cross-linker,
were used for the elimination of CV dye (Figure 11) [120]. PUL/PDA/HDE hydrogels
exhibited improved thermostability, adjustable pore diameter, and enhanced swelling
ability compared to pure PUL hydrogel (PPH) obtained by the cross-linking of the polysac-
charide with HDE. Langmuir and pseudo-second-order models fitted well to sorption
process of sPDA. After four cycles of adsorption experiments, the adsorption capacities
still maintained 94%.
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The composite hydrogel (PUL/PAM/GO), composed of PAM as carrier, grafted on
PUL and modified with GO, was used for the elimination of MB dye [121]. The removal
rate of MB by PUL/PAM/GO was 83.2% of dye in 140 min. Pseudo-second-order reaction,
and the Langmuir model best described the adsorption process. Thermodynamic studies
revealed that the adsorption was exothermic and spontaneous.

PUL/PAA/Activated Carbon (PUL/PAM/AC) hydrogel was utilized as sorbent for
MB dye adsorption [122]. The hydrogel comprised potassium persulfate (KPS) as initiator,
MBA as cross-linking agent, and sodium hydroxide as activator. The optimal ratio of PUL
to AC was obtained as 6:1. The adsorption of MB obeyed pseudo-first-order kinetic and
Langmuir isotherm models.
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A composite hydrogel (PUL/PDA/MMT), obtained by incorporation of PDA and
MMT into PUL structure, was employed for CV adsorption [123]. By adjusting the mass
ratio of PDA/MMT, the adsorbent’s properties can be improved. The adsorption data were
best described by a Langmuir isotherm and pseudo-second-order kinetic model.

The chemical cross-linking of PUL with diglycerols, such as ECH,
1,2-bis(2,3-epoxypropoxy)-ethane (BEPE) and tetramethylene glycol diglycidyl ether (TGDE),
was the first step in the obtaining of PUL-based nanocomposite employed for the removal
of CV dye [124]. TGDE (longest chain length)-derived gel, having the best performance
(acceptable porous structure, good swelling ability, and strong rigidity), was the polysac-
charide matrix chosen for the incorporation of MMT, which afforded the acquirement of
nanocomposites with improved characteristics. Adsorption behavior was well represented
by pseudo-second-order kinetic and Langmuir isotherm models.

Pullulan-graft-polyacrylamide (PUL-g-PAM) hydrogel, prepared by radical polymer-
ization with MBA as cross-linking agent, was utilized as sorbent for removal of MB and
Reactive blue 2 (RB 2) dyes [125]. Langmuir and Freundlich isotherms and pseudo-second-
order models fitted well with the experimental data, whilst thermodynamic studies showed
that adsorption of both dyes was an endothermic and spontaneous process.

2.1.5. Dextran-Based Hydrogels

Dextran (Dex) is a biocompatible and nontoxic polysaccharide. Its main chain is
composed of α-D-glucopyranose units which are linked by linear α-1,6 glycosidic bonds,
with a reduced degree of α-1,3-linked side chains (Table 1). Literature in the past decade
indicated that dye adsorbing systems based on Dex hydrogels were obtained after the
amination of cross-linked polysaccharide with a mixture of epichlorohydrin and a tertiary
amine, or by treating glycidyl methacrylate substituted Dex with acrylic acid (Table 5).
Other applications of Dex-based hydrogels include biomedical, pharmaceutical, food, and
chemical industries.

Cationic hydrophobically modified Dex-based hydrogels (Dex-Q1) (Figure 12), hav-
ing as side-chains quaternary ammonium chloride groups with different polarities and
synthesized with different molar ratios between hydrophilic (R2 = C2) and hydrophobic
groups (R1 = C12/C16), total content in amino groups (50–68 mol%) and water retention
capacity (3–15 g water/g dry hydrogel), were tested as sorbents of MO and Rose Bengal
(RB) dyes [126]. Examined in their dry state, the polymeric microparticles exhibited a
perfectly spherical shape with the diameters ranging from 100 to 220 µm [127,128]. When
observed at a magnification of up to 1000 (Figure 13a,b), their surface appeared flattened. At
a magnification of 10,000 (Figure 13e), the surface exhibited creases, a feature resulting from
the gradual dehydration which determined the contraction of the surface layer during the
drying process. Both the surface and cross-section of the microspheres were free of pores
(Figure 13a–e). These findings confirm the absence of porosity in the dry state of Dex-based
hydrogels, a characteristic previously established for other dextran-based microparticles
obtained without using porogen agents. The rate of adsorption was mostly influenced by
the porosity of the gel and dye’s molecular weight, and the affinity between the polymer
and dye was improved by higher levels of hydrophobic groups. MO adsorption was
a little affected by increased lipophilicity, while the amount of adsorbed RB decreased
considerably with enhanced hydrophobicity. By analyzing adsorption data obtained from
kinetic and thermodynamic analysis, it was determined that dye sorption was spontaneous
and thermodynamically advantageous, the process being influenced by both diffusion
and ion exchange. RB retention ability by Dex-Q1 was very high, comparable with that
of a superabsorbent polymer, due to polymeric hydrophilicity and high swelling porosity
(Table 5).
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Figure 13. SEM images of dextran microspheres, magnified 100 times (a) and 1000 times (b); dextran
microparticles in cross-section, increased 1000 times (c) and 5000 times (d); dextran gel surface,
magnified 10,000 times (e). Reproduced with permission from [127].
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An amphiphilic cationic Dex-based hydrogel (Dex-Q2), with two types of quaternary
ammonium pendant groups with different polarities and having the same molar ratio
between hydrophilic and hydrophobic side-chains, was synthesized and examined as
adsorbent for various dyes (MO, Indigo Carmin (IC), Orange II, RB) [129]. The Langmuir
model best described the adsorption equilibrium, whilst the Freundlich model was suitable
when 40–70% of the cationic sites of the gel were occupied by dye molecules. A pseudo-
second-order kinetic model fitted well with sorption data, and thermodynamic studies
indicated that adsorption process consisted of diffusion for RB, chemisorption for IC, and a
combination of physical and chemical interactions for MO and Orange II. The adsorption
ability of Dex-based hydrogel was greater, for the same dyes, in comparison with inorganic–
polymer hybrids. A quick and complete regeneration of the cross-linked polymer was
acquired by employing a successive addition of water, NaCl 0.5 M, and methanol.

A biocompatible superabsorbent hydrogel, Dex-GMA/PAA, was prepared via copoly-
merization of glycidyl methacrylate substituted dextran (Dex-GMA) with hydrophilic AA,
and was tested as sorbent for the removal of MB and CV dyes with the best results between
dextran-based hydrogels (Table 4) [130]. Dex-MA/PAA hydrogel showed a fast adsorption
rate and the elimination efficacy of MB and CV reached 93.9% and 86.4%, respectively,
within 1 min at an initial concentration of 50 mg/L. The adsorption equilibrium data fitted
the Sips isotherm model, with dye adsorption occurring efficiently over a large pH range
(3–10) and in a wide temperature interval (20–60 ◦C). The removal efficiencies for both dyes
were higher than 95%, even after five adsorption–desorption cycles.

Table 5. Dye removal ability of pullulan and dextran-based hydrogels.

Adsorbent Dye Dye Retention/Removal Capacity Reference

PUL/PDA/HDE CV 108 mg/g [120]

PUL/PAM/GO MB 438.7 mg/g [121]

PUL/PAM/AC MB 591.4 mg/g [122]

PUL/PDA/MMT CV 112.45 mg/g [123]

PUL/MMT CV 80 mg/g [124]

PUL-g-PAM
MB 386.81 mg/g

[125]
RB 2 273.24 mg/g

PUL-g-PAPTAC Azocarmine B 113.63 mg/g [131]

Dex-Q2

MO 705 mg/g

[129]
IC 732 mg/g

Orange II 652 mg/g

RB 654 mg/g

Dex-Q1
MO 893 mg/g

[126]
RB 1718 mg/g

Dex-GMA/PAA
MB 1994 mg/g

[130]
CV 2390 mg/g

2.2. The Effect of Various Factors on Adsorption Capacity

Dye adsorption depends on different parameters such as initial dye concentration,
sorbent amount, contact time, dye type, and pH value. In what follows, the influence of
each factor on dye adsorption is analyzed.

2.2.1. Initial Dye Concentration

The increase in adsorption quantity of dyes with the augmentation of their initial
concentration can be attributed to a high presence of dye molecules near the surface adsor-
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bent and a stronger force driving mass transfer, prior to reaching the equilibrium between
adsorption and desorption. At the same time, the percent of dye removal decreased, which
may be caused by the saturation of adsorption sites of the adsorbent. The described be-
havior can be observed for PUL-g-PAM gel in the adsorption process of MB and RB dyes
(Figure 14a) [125].
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2.2.2. Adsorbent Amount

The adsorption efficiency increases with the augmentation of sorbent amount due to
the increasing of the sorption sites on the sorbent surface. The explained behavior can be
observed for MB and RB dyes adsorption by PUL-g-PAM hydrogel (Figure 14b) [125].

2.2.3. Contact Time

The removal of dye from aqueous solution displayed a rapid initial increase in ad-
sorption, succeeded by a slowdown of the process until it reached an equilibrium state. In
the beginning, dye molecules quickly adhered to the surface of the gel via mass transfer.
However, the sorption process was subsequently delayed due to a decrease in available
external sites of the hydrogel and the reduced diffusion of dye molecules to the internal
sites of the polymeric matrix. When the number of sorption sites significantly decreased,
the equilibrium state was achieved. The explicated behavior can be seen for PUL-g-PAM
gel, used for removal of MB and RB dyes (Figure 14c) [125].

2.2.4. Dye Type

The nature of dye affected adsorption efficiency. Dyes with high molar masses showed
a limited adsorption by the hydrogel. Between dyes tested (MB, RB), RB had the lowest
adsorption amount on PUL-g-PAM (Figure 14a–c) [125]. This was attributed to bulky
structure and high molar mass of RB compared with MB [125]. Furthermore, when a
sorbent has multiple functional groups within its chemical structure, it determined the
binding of a greater number of its active sites with dye molecules, which diminished
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the amount of sorbed dye. RB dye serves as an example in this sense, as it contains two
sulphonate groups within its chemical composition [129].

2.2.5. pH

pH level plays a significant role in dye absorption, especially when the principal
forces of sorbent–adsorbate are electrostatic in nature. Studies concerning MB and RB
adsorption by PUL-g-PAM hydrogel [125] showed that at pH < 6, the hydrogel adsorbed
RB more than MB, and at pH > 6, the amount of MB was higher than that of RB, the
explanation for the modification of trend sorption efficiency for both dyes being pHZPC
value of 6.12 determined for PUL-g-PAM (Figure 14d). At a pH < 6.12, the adsorbent
surface becomes positively charged, which affords the electrostatic attraction between
polymeric sites and sulphonate groups of the RB dye while in the same pH range; MB
dye is neutral. Hence, the higher adsorption of RB compared to MB, for this pH range,
is rational. At pH > 6.12, the negatively charged sites on PUL-g-PAM surface afforded a
strong electrostatic attraction with cationic MB, which leads to an increase in the adsorption
capacity of MB compared to RB.

2.3. Adsorption Kinetics

Adsorption kinetics describe the rate at which solute is adsorbed and the resident
time of the adsorbates on the solid–liquid interface. There are four stages in the adsorption
process [132,133]. In the first stage, dye molecules move from the bulk liquid phase to
the boundary layer. The second stage involves the diffusion of the adsorbate from the
boundary layer to the external surface of the adsorbent (external diffusion). The third
stage consists of transportation of dye molecules into the pores of the adsorbent (internal
diffusion). The final stage involves interactions between dye molecules and the active sites
of sorbent. Several kinetic models, including pseudo-first-order, pseudo-second-order, and
intraparticle diffusion, are used to study adsorption process.

2.3.1. Pseudo-First-Order Model (PFOM)

The Lagergren model, also known as the PFOM, considers that the predominant mech-
anism in the adsorption process is the mass transfer between solution and solid phase [134].
The degree of adsorption is directly related with the difference between the amount of dye
adsorbed on the gel at equilibrium time and a specific time. Equations (1) and (2) represent
linear and nonlinear forms of the PFOM.

log
(
qexp − qt

)
= logqexp −

k1t
2.303

(1)

qt = qexp

(
1 − e−k1t

)
(2)

where t is the contact time (min); k1 (min−1) is PFOM rate constant; qexp (mmol/g) is dye
adsorbed amount at equilibrium; and qt (mmol/g) is dye sorbed quantity at moment t.

2.3.2. Pseudo-Second-Order Model (PSOM)

PSOM, also known as the Ho and McKayrate equation model, is frequently associ-
ated with the chemisorption process in which there is a sharing or exchange of electrons
between adsorbent and sorbate [134]. Linear and nonlinear forms of PSOM are displayed
in Equations (3) and (4).

t
qt

=
1

k2q2
exp

+
t

qexp
(3)

qt =
k2q2

expt
1 + k2 qexpt

(4)

where t (min), qexp (mmol/g), and qt (mmol/g) have the same meaning as described before;
k2 (g/mmol min) is PSOM rate constant.
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2.3.3. Intraparticle Diffusion Model (IDM)

The equation of IDM, developed by Weber and Morris, is shown in Equation (5) [129].
This model is frequently utilized to assess the sorption diffusion mechanism.

qt = kid
√

t + C (5)

where kid (mmol/g min0.5) is the rate constant for the IDM, while C (mmol/g) is a parameter
directly proportional with the boundary layer thickness; t (min) and qt (mmol/g) have the
same significance as discussed previously.

2.4. Adsorption Isotherms

The adsorption isotherms offer the relationships between sorbate concentration held
on the solid phase and its concentration in solution at equilibrium. These isotherms
also show potential interactions between sorbate and adsorbent. Two-parameter model
isotherms such as Langmuir, Freundlich, Dubinin–Raduskevich, and three-parameter
models such as Sips and Hill are often used to evaluate and compare the adsorption
efficiency of different adsorbents.

2.4.1. Langmuir Model (LM)

The LM assumes that there is a homogeneous monolayer sorption on adsorbent
binding sites that are all equivalent to each other [127]. The linear and nonlinear forms of
the LM are described in Equations (6) and (7).

Ceq

qexp
=

Ceq

QL
+

1
KLQL

(6)

qexp =
QLKLCeq

1 + KLCeq
(7)

where qexp (mmol/g) has the same meaning as shown above; Ceq (mM) is adsorbate con-
centration at equilibrium; QL is maximum sorbent capacity (mmol/g); and KL (L/mmol)
is Langmuir equilibrium constant. RL, a nondimensional separation factor, is another
parameter of the Langmuir equation (Equation (8)).

RL =
1

1 + KLCi
(8)

where Ci (mM) is the initial concentration of sorbate. RL values states the adsorption
efficiency. So, sorption can be unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1), or
irreversible (RL = 0).

2.4.2. Freundlich Model (FM)

FM takes into account a reversible, nonideal, and multilayer adsorption that occurs on
heterogeneous surfaces. FM linear and nonlinear forms are illustrated in Equations (9) and
(10) [127].

lnqexp = lnKF +
1

nF
lnCeq (9)

qexp = KFC1/nF
eq (10)

where qexp (mmol/g) and Ceq (mM) have the same meaning as discussed before; KF
(mmol/g) is Freundlich equilibrium constant. nF, the heterogeneity factor, indicates ad-
sorption type and sorbate sites heterogeneity. If 0 < 1/nF < 1, the adsorption is favorable.
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2.4.3. Dubinin–Radushkevich Model (D-RM)

D-RM considers that the adsorption energy has a Gaussian distribution on the heteroge-
neous surfaces [127]. Linear and nonlinear forms of D-RM are revealed in Equations (11) and (12).

lnqexp = lnQRD − βε2 (11)

qexp = QRDexp
{−β[RTln(1+ 1

Cexp )]
2}

(12)

where qexp (mmol/g) has the same meaning as described previously; QDR is maximum
adsorbent capacity (mmol/g). β (mol2/J2) is a constant connected with the mean free
energy per molecule of adsorbate for shifting from its place in the solution to infinity, and ε
is Polanyi potential (Equation (13)).

ε = RTln
(

1 +
1

Ceq

)
(13)

where R is the universal gas constant (8.314 J/mol K) and T is the solution temperature
expressed in Kelvin scale (K).

D-RM allows one to determine the mean free energy of sorption for ligand molecules,
E (kJ/mol) (Equation (14)). This factor is indispensable for knowing the chief forces of
adsorption (physical or chemical ones). When E < 8 kJ/mol, physical forces control the
sorption; when 8 < E < 16 kJ/mol, the adsorption mechanism relies on ion exchange, and if
E > 16 kJ/mol, the adsorption is handled by chemisorption.

E =
1√
2β

(14)

2.4.4. Sips Model (SM)

SM, employed for adsorption onto heterogeneous surfaces, is a combined form of LM
and FM [127]. This three-parameter model avoids the limitation of adsorbate concentration
associated with FM. When Ceq gets close to a low value, SM reduces to FM, while at high Ceq,
it approaches LM. Linear and nonlinear forms of SM are shown in Equations (15) and (16).

ln
(

qexp

QS − qexp

)
= nS

(
lnCeq + lnKS

)
(15)

qexp =
QS

(
KSCeq

)nS

1 +
(
KSCeq

)nS
(16)

where qexp (mmol/g) and Ceq (mM) have the same meaning as shown before; KS (L/mmol)
is Sips equilibrium constant; nS is the heterogeneity Sips factor, while QS is the maximum
adsorbent capacity (mmol/g).

2.4.5. Hill Model (HM)

HM considers that adsorption onto homogeneous surfaces is a cooperative process
where ligands can bind at one site of absorbent and thus, this initial binding can potentially
affect other binding sites on the same macromolecule [127]. Linear and nonlinear forms of
HM are revealed in Equations (17) and (18).

log
qexp

Qmax,H − qexp
= nH log

(
CnH

eq
)
− log(KH) (17)

qexp =
Qmax, HCnH

eq

KH + CnH
eq

(18)
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where qexp (mmol/g) and Ceq (mM) have the same meaning as discussed previously; Qmax,H
(mmol/g) is the maximum adsorbent capacity; KH (mmol/L) is Hill equilibrium constant,
while Hill coefficient, nH, is the measure of binding cooperativity. Binding can be positive
cooperative (nH > 1), noncooperative (nH = 1), or negative cooperative (nH < 1).

2.5. Thermodynamic Parameters

Enthalpy change (∆H◦), Gibbs free energy change (∆G◦), and entropy change (∆S◦)
are the thermodynamic parameters that offer crucial information about the spontaneity
and endo/exothermic nature of sorption processes [129]. ∆G◦ value is determined by
Equation (19).

∆G◦ = −RT lnKc (19)

where Kc is the distribution constant, R is the universal gas constant (8.314 J/mol_K), and
T is the absolute temperature (K). Negative ∆G◦ values indicate that dye adsorption is
favorable and spontaneous. Van’t Hoff equation (Equation (20)) provides the relationship
between ∆S◦ and ∆H◦.

ln Kc = ∆S◦/R − ∆H◦/RT (20)

where Kc, R, and T have the same meaning as above.
Negative ∆H◦ values indicate an exothermic sorption, while positive ∆H◦ values

reveal an endothermic adsorption. ∆S◦ is proportional to the degree of disorder at the
interface of solid–liquid during dye adsorption. The higher the degree of disorder, the
higher the entropy.

2.6. Reusing of Adsorbents Based on Natural Polysaccharide Hydrogels

The regeneration of sorbents is crucial, as it aids in decreasing the overall cost of
treating wastewater and the amount of waste produced. An added advantage of studying
the recycling of gels is the improved understanding of the sorption mechanism. Exploring
desorption is the foundation for researching the reusability of gels. Consequently, numerous
cycles of adsorption–desorption are conducted, with a fresh dye solution used each time,
and the sorbent being washed and dried after each sorption process. The sorbent’s recycling
ability is determined by the number of cycles after which the hydrogel’s adsorption capacity
remains close to its original value. This is typically measured by the regeneration efficiency
(RE, %), which is the ratio of the sorption performance in the n-th cycle (qn, mg/g) to the
sorption capacity in the first cycle (q1, mg/g) (Equation (21)).

RE (%) =
qn

q1
× 100 (21)

RE% is related to the working life cycle of hydrogels and is important when aiming to
translate the sorbent to pilot scale or industrial level use.

3. Conclusions and Future Prospectives

Water pollution is a significant problem worldwide, with the treatment of industrial
and urban wastewater being a top priority. Therefore, finding an effective method to remove
dyes from wastewater is a major challenge. Adsorption techniques has proven successful
in removing dyes, being a simple, effective and cheap method. Natural polysaccharide-
based hydrogels have gained attention in the last decades because their ability to eliminate
pollutants from wastewater and the capacity to be eco-friendly due to their biodegradable
and nontoxic nature. This review provides a summary of the progress made in the last
decade, in the field of natural polysaccharide gels for the management of dye-contaminated
wastewater. These hydrogels based on chitin, chitosan, cellulose, starch, pullulan, and
dextran demonstrate the ability to adsorb and selectively remove dyes, the influence of
their different surface functionalities also being presented in this review. The incorporation
of additives (fillers, magnets) in hydrogel structures afforded the enhancement of their
properties in dye removal. Thus, the addition of nanofillers such as GO, BNTN, HAp, or
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MMT, which create compact cross-linked structures, allowed the increase of hydrogel’s
mechanical durability and sorption ability. Additionally, magnetic biobased gels offer
the advantage of being able to separate and restore the sorbents using magnets. Certain
hydrogels show remarkable dye adsorption properties without the addition of additives.
These cross-linked polymers are called superabsorbent gels and the adding of nanofillers
and/or magnets in their structure greatly improved the sorption results. This review also
discussed the impact of various factors (initial dye concentration, sorbent amount, contact
time, dye type, and pH value) on the ability of hydrogels to retain dyes. Additionally, it
presented commonly used kinetic (PFOM, PSOM, IDM) and isotherm models (LM, FM,
D-RM, SM, HM), as well as thermodynamic parameters (∆H◦, ∆G◦, ∆S◦) that are used in
the study of dye adsorption processes.

Some problems, always encountered in dye elimination, are mentioned below, along
with possible solutions.

➢ Following several treatment cycles, the adsorbents undergo a decline in their active
sites and transform into waste, thereby causing additional pollution. Hence, it is
crucial to address this problem in an environmentally-friendly manner. One potential
solution is to utilize the used adsorbent for various purposes, such as catalysis,
antimicrobial applications, or energy generation, in order to minimize or eliminate
waste production.

➢ Most adsorption studies, performed with polysaccharide-based hydrogels as adsor-
bents, are conducted at certain pH values, initial adsorbate amounts, adsorption rates,
and isotherms. To overcome these limitations, scientists have achieved spectral and
computational studies aiming to clarify the detailed adsorption mechanism on atomic
or molecular scale.

Numerous hydrogels based on natural polysaccharides have been efficiently synthe-
sized and utilized to eliminate dyes. There are undoubtedly more to be developed in the
coming future by taking into account the huge number of unexploited natural polysaccha-
rides which, besides their biodegradability and nontoxic nature, are stable, abundant, and,
most often, inexpensive.
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Abbreviations

AA acrylamide IP6 phytic acid (inositol hexaphosphate)
AAM acrylamidomethylated KPS potassium persulfate
AB 93 Acid Blue 93 MA methyl acrylate
AB 113 Acid blue 133 MAM methacrylamide
AMPS 2-acrylamido-propanesulphonic acid MB Methylene Blue
AO7 Acid Orange 7 MBA N, N-methylene bisacrylamide

APS ammonium persulfate METAC
2-(methacryloyloxyethyl)trimethylammonium
chloride

APTAC (3-acrylamidopropyl)trimethyl ammonium chloride MG Malachite green
BEPE 1,2-bis(2,3-epoxypropoxy)-ethane MMT montmorillonite
BNTN bentonite MO Methyl Orange
BV 7 Basic Violet 7 MST malonate starch
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c-GO carboxylated graphene oxide MV Methyl violet
CDNMA acrylamidomethylated cyclodextrin NaCMC sodium carboxymethyl cellulose
CMC carboxymethyl cellulose NaMA sodium methacrylate
CMST carboxymethyl starch NaMMT sodium montmorillonite
CN cellulose nanofibrillated NR Neutral Red
CS chitosan NVIm N-vinylimidazole
CR Congo Red PA polyacrylate
CV Crystal violet PAA poly(acrylic acid)
β-CD β-cyclodextrin PAM polyacrylamide
DMAEMA dimethylaminoethyl methacrylate PAMPS poly-2-acrylamido-2-methylpropansulfonic acid

DMAM dimethyl acrylamide PClAETA
poly[2-(acryloyloxy)ethyl]trimethylammonium
chloride

DB 38 Direct Black 38 PDA polydopamine
DB BlN Disperse Blue BLN PEG DMA poly(ethylene glycol) dimethacrylate
DR 81 Direct Red 81 PNVIm poly N-vinylimidazole
ECH epichlorohydrin PVA polyvinyl amine
EDA ethylenediamine QDs quantum dots
FY 3 Food yellow 3 RB Rose Bengal
g-C3H4 graphitic carbon nitride RB 2 Reactive Blue 2
GA glutaraldehyde RB 5 Reactive Black 5
GMA glycidyl methacrylate RB 221 Reactive Blue 221
GO graphene oxide rGO reduced graphene oxide
GST glutarate starch RhB Rhodamine B
HA humic acid RR 136 Reactive red 136
HAp hydroxyapatite SBC sugarcane cellulose
HDE 1–6-hexanediol diglycidyl ether Sep sepiolite
HEST hydroxyethyl starch ST starch
HPC hydroxypropyl cellulose TA tannic acid
HPMC hydroxypropylmethyl cellulose TETA triethylenetetramine
HPSST hydroxypropyl sulfate starch TGDE tetramethylene glycol diglycidyl ether
IA itaconic acid VST valerate starch
IC Indigo Carmin r.t. room temperature
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