
genes
G C A T

T A C G

G C A T

Article

Genome-Wide Identification and Characterization
of Long Non-Coding RNAs from Mulberry
(Morus notabilis) RNA-seq Data

Xiaobo Song 1,2,†, Liang Sun 3,†, Haitao Luo 3, Qingguo Ma 2, Yi Zhao 3,4 and Dong Pei 2,*
1 College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;

songxiaoboo@126.com
2 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy

of Forestry, Beijing 100091, China; maqgme@163.com
3 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy

of Sciences, Beijing 100190, China; luohaitao@ict.ac.cn (H.L.); biozy@ict.ac.cn (Y.Z.)
4 Precision Medicine Center, Research Institute of Information Industry for LuoYang (LuoYang Branch of

Institute of Computing Technology, Chinese Academy of sciences), Luoyang 471000, China
* Correspondence: peigu@caf.ac.cn; Tel.: +86-10-6288-9624; Fax: +86-10-6287-2015
† These authors contributed equally to this work.

Academic Editor: Paolo Cinelli
Received: 2 December 2015; Accepted: 22 February 2016; Published: 29 February 2016

Abstract: Numerous sources of evidence suggest that most of the eukaryotic genome is transcribed
into protein-coding mRNAs and also into a large number of non-coding RNAs (ncRNAs). Long
ncRNAs (lncRNAs), a group consisting of ncRNAs longer than 200 nucleotides, have been found
to play critical roles in transcriptional, post-transcriptional, and epigenetic gene regulation across
all kingdoms of life. However, lncRNAs and their regulatory roles remain poorly characterized in
plants, especially in woody plants. In this paper, we used a computational approach to identify
novel lncRNAs from a published RNA-seq data set and analyzed their sequences and expression
patterns. In total, 1133 novel lncRNAs were identified in mulberry, and 106 of these lncRNAs
displayed a predominant tissue-specific expression in the five major tissues investigated. Additionally,
functional predictions revealed that tissue-specific lncRNAs adjacent to protein-coding genes might
play important regulatory roles in the development of floral organ and root in mulberry. The pipeline
used in this study would be useful for the identification of lncRNAs obtained from other deep
sequencing data. Furthermore, the predicted lncRNAs would be beneficial towards an understanding
of the variations in gene expression in plants.
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1. Introduction

Mulberry (Morus notabilis) belongs to the genus Morus, which comprises 10–13 species and over
1000 cultivars distributed throughout Asia, Africa, Europe, and North America [1,2], and are well
known for their important economic and medicinal values [3]. In China, mulberry leaves have been
used to feed silkworms for silk production [4], and its fruit is either eaten fresh or widely used
in the production of juice, wine, jam and canned food [5]. In addition, the root, bark, branch, leaf,
and fruit of mulberry have been used for protecting liver, improving eyesight, treating fever, facilitating
urination, and lowering blood pressure due to their high levels of isoprenylated flavonoids, such as
sanggenon-type flavanones, Diels-Alder adducts, and flavones [6–8]. Previous studies have suggested
that secondary metabolism products and some small molecule modulators might play critical roles
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in plant-herbivore interactions, and mulberry is an ideal research model organism used to study
plant-herbivore interaction [9,10]. The genome sequencing of Morus notabilis was completed in 2013,
with approximately 29,338 protein-coding genes identified, however, a lot of important information
has not been exploited completely [10,11]. Therefore, it is necessary and urgent to identify novel
lncRNAs and understand the functions of lncRNAs in Morus notabilis.

Recent advances in DNA sequencing technology and transcriptome analysis have challenged
the central dogma of biology. Emerging evidence shows that more than 90% of eukaryotic genomes
are transcribed, but only 1%–2% have a protein-coding capacity, and the majority of sequences
are transcribed as noncoding RNAs (ncRNAs) [12,13], which play critical roles in regulating gene
expression at the transcriptional, post-transcriptional, and epigenetic levels during several biological
processes [14–16]. Based on their distinct characteristics compared to housekeeping ncRNAs, including
rRNAs, tRNAs, and small nucleolar RNAs, ncRNAs can be classified as (1) small RNAs, including
microRNAs (miRNAs) and small interfering RNAs (siRNAs); (2) natural antisense transcripts (NATs);
and (3) long non-coding RNAs (lncRNAs) [17]. LncRNAs have been defined as non-protein coding
RNAs of more than 200 bp in length, distinguishing them from short ncRNAs [18,19].

Since the first report of lncRNAs in humans [20], thousands of lncRNAs have been identified in a
number of species. However, genome-wide identifications of lncRNAs have been performed in only
a few plant species [17,21]. For instance, vernalization in Arabidopsis is influenced by the lncRNAs
COOLAIR and COLDAIR [22,23] and induced by phosphate starvation1 (IPS1), which is a member of
the TPS1/Mt4 gene family that acts as a miR399 target mimic in fine tuning of PHO2 (encoding an
E2 ubiquitin conjugase-related enzyme) expression and phosphate uptake in Arabidopsis, tomato
and Medicago truncatula [24,25]. A large set of Populus RNA-seq data was examined and a total of
504 lncRNAs were found to be drought responsive [26]. A network of interactions among the lncRNAs,
miRNAs and mRNAs was constructed with the RNA-seq data of Populu stomentosa, revealing that
lncRNAs were involved in the regulation of wood formation [27]. Each of the lncRNA surveys in
plants uncovered a substantial number of lncRNAs, which were often expressed at low levels in a
tissue-specific manner, as in humans and other mammals, and acted as natural miRNA target mimics,
chromatin modifiers, or molecular cargo for protein re-localization [18].

In this study, 1133 lncRNAs were identified for the first time on a genome-wide scale, using a set
of published next-generation RNA-seq data from five tissues of mulberry. Furthermore, the structural
characteristics and tissue specificity of the predicted lncRNAs were analyzed and compared with
the mRNAs. Additionally, the functions of the novel lncRNAs were predicted based on genomic
positioning information, which was important for further clarifying the roles of the lncRNAs in the
growth and development of woody plants.

2. Experimental Section

2.1. The Pipeline to Identify lncRNAs from RNA-seq Data

A set of Morus notabilis clean RNA-seq data with a length of 90bp and taken from five different
tissues was obtained from a published study [28] and downloaded from the NCBI SRA website with
the project number SRX504906. The protein-coding genes of RefSeq [29], Ensembl [30], UCSC [31],
and Vega [32] were downloaded from the UCSC genome browser and all known noncoding genes from
the NONCODE4.0 database [33]. The mulberry reference genome and gene model annotation files
were downloaded from the genome website [28], and a pipeline was developed to identify putative
lncRNAs (Figure 1).
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After filtering out low-quality reads, the spliced read aligner TopHat version 2.0.9 [34] was used
to map all clean reads to the mulberry genome. We used two rounds of TopHat mapping to maximize
the usage of the splice junction information from all RNA-seq data. In the first round, all reads were
mapped with TopHat (parameters: min-anchor = 5, min-isoform-fraction = 0, and other parameters
with default values); in the second round of TopHat remapping, all splice junctions produced by
the initial mapping were fed into TopHat to map reads (parameters: raw-juncs, no-novel-juncs,
and min-anchor = 5, and min-isoform-fraction = 0).

Mapped reads from TopHat for each tissue were assembled for each sample separately by
Cufflinks [35]. The cufflinks employed spliced read information to determine exon connectivity.
Specifically, it used a probabilistic model approach to assemble and quantify the expression level of a
minimal set of isoforms and provided the maximum level of annotation on the expression data for given
loci. Cufflinks version 2.1.1 was run with default parameters (except “min-frags-per-transfrag = 0”).
The multiple assembled transcript files for different tissues were then merged together to produce a
unique transcriptome set using Cuffmerge.

We then used an analysis process to minimize false positives and maximize the number of
lncRNAs from the merged transcripts, which included the following steps: (1) compare the merged
transcripts with known protein-coding genes and lncRNAs in the public databases; (2) select transcripts
that are longer than 200 nt; and (3) filter the putative lncRNA transcripts by coding potential using
CNCI software [36], which can be categorized as noncoding (CNCI is a powerful signature tool
that profiles adjoining nucleotide triplets to effectively distinguish protein-coding and non-coding
sequences independent of known annotations) [37].

2.2. Calculation of lncRNA Conservation

To further demonstrate the reliability of lncRNAs predicted from the RNA-seq data and calculate
the conservation of the novel lncRNAs, a set of lncRNAs collected by TAIR [38] and PlncDB [39]
was downloaded and then aligned with the sequences of novel mulberry lncRNAs using BLASTN
software [40].

2.3. Expression Profiles of Tissue Specific lncRNAs and Functional Predictions

To evaluate the tissue specificity of a transcript, we devised an entropy-based method to
quantify the similarity between a transcript’s expression pattern and another predefined pattern,
which represented an extreme case where a transcript was expressed in only one tissue [41]. After
obtaining the lncRNA dataset with tissue-specific expression, we further searched the genomic location
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information from the genome comparison results by running a script with Perl, and retrieved the
information of coding genes within the scope of its ˘10 Kb.

2.4. qRT-PCR Analysis of lncRNAs

Three individuals of mulberry were used as biological replicates. Tissues from bark, root and
winter bud were isolated with a sharp chisel and frozen immediately in liquid nitrogen. Total RNA was
extracted with Universal Total RNA Kit (BioTeke, Beijing, China). First-strand cDNA synthesis was
carried out with approximately 1.0 µg RNA using the Prime Script™ RT Master Mix (Takara, Dalian,
China). All primers used in this study are listed in Supplementary Materials Table S1. Real-time
qRT-PCR was performed in quadruplicate using the SYBR Premix Ex Taq™ II Kit (Takara, Dalian,
China) on a Roche light Cycler 480 (Roche Applied Science, Penzberg, Upper Bavaria, Germany)
according to the manufacturer’s instructions. Sample cycle threshold (Ct) values were determined and
standardized relative to the endogenous control genes ACTIN3, and the 2–∆∆CT method was used to
calculate the relative changes in gene expression based on the qRT-PCR data [42].

3. Results

3.1. Transcripts Reconstruction and Identification of Novel lncRNAs

The RNA-seq data used in this study were downloaded from the NCBI SRA website. These reads
were paired and both lengths were 90 nt. Starting from a total of 1.2 billion reads, we performed short
read gapped alignment using TopHat [34] and recovered 1.01 billion (84%) mapped reads (Table 1).

Table 1. RNA-seq data production and alignment results for reads of different tissues.

Sample Total Reads Left Mapped Reads Right Mapped Reads Total Mapped Reads

Bark 25,992,683 22,547,116 86.74% 22,221,501 85.49% 23,847,766 91.75%
Leaf 24,809,215 22,686,967 91.45% 22,244,419 89.66% 24,123,695 97.24%
Root 21,483,404 16,972,204 79.00% 16,637,319 77.44% 18,039,734 83.97%

Male flower 26,629,083 24,015,382 90.18% 23,545,895 88.42% 25,681,360 96.44%
Winter bud 18,138,525 14,706,155 81.08% 14,392,578 79.35% 15,841,259 87.33%

We then used Cufflinks [35] to de novo reconstruct one set of transcripts for each tissue based
on the read-mapping results. Transcripts reconstructed were separately merged into combined sets
of transcripts using the Cuffcompare utility provided by Cufflinks. After filtering for exon number,
transcript length, and coverage, we obtained 41,042 reliably expressed transcripts (Table 2).

Table 2. Exon numbers of reconstructed transcripts.

Sample Junctions Transcripts Multi Exon Multi Exon/Transcripts

Bark 108814 30009 21907 73.00%
Leaf 105808 32664 23354 71.50%
Root 86084 28632 20163 70.42%

Male flower 108894 35616 24368 68.42%
Winter bud 75878 35553 21654 60.91%

Merge 41042 30429 74.14%

To assess the robustness of these ab initio assemblers, we analyzed their performance on
protein-coding genes. The transcripts we reconstructed using Cufflinks covered 70.79% of known
mulberry coding genes (Figure 2). These results strongly supported the fact that these assembly
approaches could robustly and reliably reconstruct both coding and noncoding transcripts at a
global level.
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Figure 2. (A) Different classes of assembled transcripts according to their relative positions with known
coding genes; (B) Ratio of the reconstructed transcripts to known coding genes.

Based on the robust transcript reconstruction and broad availability of deep sequencing datasets,
we used an analysis process to minimize the false positives and maximize the number of lncRNA
transcripts, compared the merged transcripts with known protein-coding genes and lncRNAs in the
public databases, and classified the combined transcripts into several different subsets. The majority of
the transcripts (53.44%) corresponding to the annotated protein-coding genes, while the rest of the
transcripts were undefinable (23.64%), and potentially novel (22.92%). The potentially novel transcripts
were then filtered for coding potential based on CNCI software [43], resulting in the identification of
1133 reliably expressed lncRNAs with length >200 nt (Figure 3).
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The identified lncRNAs were classified as intergenic, intronic and antisense lncRNAs based on
spatial relationships of their gene loci with protein-coding genes (Figure 4B). The identified lncRNAs
were mostly intergenic lncRNAs, with 1092 in total, accounting for 96.4% of the identified lncRNA.
There were 38 intronic lncRNAs, accounting for 3.4%, and 3 antisense lncRNAs, accounting for 0.26%
(Figure 4A).
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Figure 4. Classification of the predicted lncRNAs. (A) lncRNAs were classified as intergenic, intronic
or antisense lncRNAs based on the spatial relationships of their gene loci with protein-coding genes;
(B) Schematic illustration of the classification of lncRNA genes based on their spatial relationship with
protein-coding genes.

3.2. Characterization of the Novel lncRNAs

The length distribution results showed that the novel identified 1133 lncRNAs contained
1755 transcripts mainly in the range of 200–1200 bp. The lengths of 25,902 transcripts from known
coding genes were greater than that of the lncRNAs, mostly above 800 bp. The distribution results of
exon numbers revealed that there were 982 single exons (3.79%) and 24,920 multi-exons (96.21%) in the
25,902 transcripts from known coding genes. There were 75 single exons (4.27%) and 1680 multi-exons
(95.73%) in the lncRNA 1755 transcripts, revealing a similar proportion of multi-exons to the known
coding genes (Figure 5).
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In combination with all known lncRNAs, we established a comprehensive catalog of 1133
transcribed lncRNA genes. Based on the Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) of each transcript, calculated by “Cufflinks” “abundance estimation mode” across the
five tissues, we compared the expression differences between lncRNAs and protein-coding genes.
The average expression levels of lncRNAs were lower than those for protein coding genes, but lncRNAs
showed a wider range of abundance, with a subset of them equally abundant to mRNAs (Figure 6).
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Through conservation analysis we found that 112 lncRNAs from the 1133 newly identified genes
had homologies in the Arabidopsis database, while only 9 lncRNAs had homologies in the poplar
database (Supplementary Table S2). The homology comparison results of the novel lncRNAs of
mulberry with the mapped poplar lncRNAs confirmed the high level of homology between two
sequences as 41.31% (Figure 7).
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3.3. Expression Profiles of Tissue Specific lncRNAs and Functional Predictions

To assess the tissue specificity of mulberry lncRNA expression, we calculated the Jensen-Shannon
tissue specificity score (JS score) [40] for each transcript using the established procedure. Using a JS
score = 0.9 as a cutoff, we demonstrated that only 9.35% of the lncRNAs were tissue-specific (Figure 8).
Thus, some of the lncRNA expressions of mulberry were clearly subject to tissue dependent regulation,
either at the level of transcription or degradation.
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Comparing their genomic locations with those of known mulberry coding genes, we found
that among the 1133 lncRNAs, 106 (9.35%) were tissue-specific, including 82 lncRNAs adjacent
(˘10 kb) to protein-coding genes (Supplementary Materials Table S3–S7). The functions annotated
to the protein-coding genes mainly involved hormone signal recognition and transduction, plant
secondary metabolite synthesis, energy metabolism, etc. The lncRNAs Mn_lnc_0132, Mn_lnc_0521,
and Mn_lnc_0782 were specifically expressed in male flower: Mn_lnc_0132 was located near the
protein-coding gene EXB28594.1 (Protein PROLIFERA). Protein PROLIFERA, a highly conserved
protein, was found in all eukaryotes, and specifically expressed in populations of dividing cells in
sporophytic tissues of the plant body, such as the palisade layer of the leaf and founder cells of
initiating flower primordia [44]. Mn_lnc_0521 was located near EXB81017.1 (Serine/threonine-protein
phosphatase PP). The PP1s were shown to play key roles in many aspects of plant growth and
development, such as pollination and pollen tube development [45–47]. It was found that Mn_lnc_0782
was located near EXC20310.1 (Phosphoenolpyruvate/phosphate translocator PPT). Located in the
plastid, PPT played a pivotal role in the regulation of leaf color, florescence, and female and male
gametophyte formation [48–51]. A sulfate transporter, Mn_lnc_0714, was specifically expressed in root
and located near EXC06697.1 (Sulfate transporter 1.3). It was tissue-specifically expressed and was
crucial for root development and symbiotic nitrogen fixation in root nodules [52–54].

To validate RNA-seq results, qRT-PCR were performed for 10 randomly selected tissue-specific
lncRNAs in bark. As a result, all 10 reactions generated sequence products. Remarkable higher relative
quantitative expressions of the 10 lncRNA were observed in bark. However, only 2 and 4 of the
10 lncRNAs expressed in winter bud and root, respectively, but their expression levels were quite low,
ranging from 1.4% to 15.4% of the expression level in bark (Figure 9).
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4. Discussion

An avalanche of RNA-seq data emerged as powerful high-throughput sequencing technologies
became more pervasive and user-friendly. However, systematic identification of lncRNAs was
limited to only a few plant species [21,26,27,55,56], leaving most plant transcriptome sequencing
data not fully explored, even though these novel molecules play important roles in a wide range of
biological processes [15]. Because lncRNAs are generated by the same transcriptional machinery as
mRNAs [57], no defining biochemical features could be exclusively ascribed to lncRNAs, such as a
51 cap, 31 polyadenylated tail, and splicing [58]. Defining lncRNAs simply on the basis of size and
lack of protein-coding capability was intellectually far from satisfying. In this paper, we designed a
strict computational pipeline and identified 1133 novel lncRNAs from the entire genome using a set
of published mulberry next-generation RNA-seq data. The pipeline used in this study can be easily
adapted to other organisms, especially for species that have not been well studied to date.

The expression levels of the novel mulberry lncRNAs in root, leaf, bark, bud, and male
flower were below the expression levels of mRNAs, which was consistent with findings in other
species [59–61]. Conservation analysis found that among the 1133 lncRNAs, 112 (9.4%) had homology
in the Arabidopsis database, and 9 (0.8%) had homology in the poplar lncRNA database. The low
levels of conservation might be caused by the incomplete lncRNA databases of plants. The results also
reflected the less restrictive factors on the evolution of lncRNAs, and thus the low conservation levels
of lncRNA sequences among species, factors that reduce the possibility of forming a large family with
homologous genes. Moreover, qRT-PCR was performed, and the RNA-seq results were consistent with
the qRT-PCR data, providing further proof that the prediction accuracy was sufficient.

Numerous studies have shown that lncRNAs with tissue-specific expression usually had special
functions [62], and the lncRNAs of higher species primarily played the biological role of cis-regulation
of the adjacent genes [63–65]. In the analysis of tissue-specific expression, we found that 106 lncRNAs
from our 1133 newly identified genes were expressed specifically in five separate tissues, among which
82 had known protein-coding genes in the range of ˘10 Kb. We therefore predicted the functions of
these lncRNAs by analysis of the tissue-specific expressions and the functions of adjacent coding genes.
Further analysis showed that three male flower-specific lncRNAs were located adjacent to coding genes,
which are related to development of floral organs. One root-specific lncRNA was located adjacent to
a coding gene, which is crucial for root development and symbiotic nitrogen fixation. These results
suggest that these novel lncRNAs might play important regulatory roles in the development of floral
organs and root in mulberry.
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Regarding the important functions of lncRNAs in plant growth and development,
their identification within plant-wide genomes is rapidly developing. By contrast, the functional
characterization of lncRNAs for plants is far behind that of other species. So far, the commonly
used methods for lncRNA functional prediction are based on co-expression networks [57], miRNA
regulation [66], protein binding [67], epigenetic modification [68], and adjacent gene functions. In this
study, due to the influence of sequencing data (insufficient sample size) we cannot make functional
predictions through the methods of co-expression networks and others. These methods are only based
on the functional predictions of bioinformatics, so the accurate assignment of functions of lncRNAs still
requires verification through biological experiments. However, with the development of biotechnology
and more information becoming known about lncRNAs, their important functions in plant growth
and development will be uncovered gradually.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/7/3/11/s1.
Supplementary Table S1–S7.
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