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Abstract: The interest in human space journeys to distant planets and moons has been re-ignited
in recent times and there are ongoing plans for sending the first manned missions to Mars in the
near future. In addition to generating oxygen, fixing carbon, and recycling waste and water, plants
could play a critical role in producing food and biomass feedstock for the microbial manufacture of
materials, chemicals, and medicines in long-term interplanetary outposts. However, because life on
Earth evolved under the conditions of the terrestrial biosphere, plants will not perform optimally
in different planetary habitats. The construction or transportation of plant growth facilities and the
availability of resources, such as sunlight and liquid water, may also be limiting factors, and would
thus impose additional challenges to efficient farming in an extraterrestrial destination. Using the
framework of the forthcoming human missions to Mars, here we discuss a series of bioengineering
endeavors that will enable us to take full advantage of plants in the context of a Martian greenhouse.
We also propose a roadmap for research on adapting life to Mars and outline our opinion that
synthetic biology efforts towards this goal will contribute to solving some of the main agricultural
and industrial challenges here on Earth.

Keywords: Synthetic biology; multiplanetary life; habitability of extraterrestrial environments;
plants; Mars

1. Taking Full Advantage of Plants on Extraterrestrial Human Outposts

The exploration of space is one of the most inspiring areas of scientific research and a major
driver of technological innovation. Achieving sustainable human presence on alien planetary bodies
will expand our understanding of the cosmos, our capacity to investigate fundamental questions,
such as the potential for life beyond our home planet, and will enable continued growth of the
global economy. Space agencies such as NASA (National Aeronautics and Space Administration) and
ESA (European Space Agency) as well as companies from the private sector like SpaceX share the
common interest of moving forward the human exploration of deep space and launching the first
manned missions to Mars in the near future [1–3]. A major factor limiting the expansion of human
space exploration is the enormous logistical costs of launching and resupplying resources from Earth.
Therefore, developing robust technologies to enable sustainable long-duration human operations in
space will be of paramount importance in the coming years.

Human and plant life is intimately linked on planet Earth and so might be true on future
extraterrestrial outposts. By supplying oxygen (O2), fixing carbon dioxide (CO2), and recycling waste
and water (H2O), plants could contribute to sustaining bioregenerative life support systems [4,5], whilst
also providing food and precursors for manufacturing medicines and materials on distant locations
such as the Moon or Mars. Making the most of plants on-site would increase self-sufficiency during
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long-stay residence periods, hence minimizing risks and reducing the transportation of cargo and the
deployment of resupply missions. However, because plants have evolved under the conditions of the
terrestrial biosphere, substantial resources would need to be allocated if we aim to achieve efficient
farming by mimicking Earth’s conditions in other planetary environments. Simple inputs like sunlight
and liquid water could potentially be limited, beneficial microorganisms and nutrients might need to be
implanted, and well-conditioned greenhouses capable of shielding plants from harmful ultraviolet (UV)
and cosmic radiation would need to be built or transported. Considerable energy would also need to be
allocated for maintaining additional controlled greenhouse conditions such as temperature, humidity,
and pressure. In this context, despite continuous advances in space agriculture [6,7], bioengineering
approaches aimed at reducing the burden of sustaining extraterrestrial greenhouses and improving
plant performance under different planetary environments remain to be explored. In this article, we
extend the existing body of work on the use of microbes [8–11] and argue that synthetic biology will
provide the means for outpacing terrestrial evolution to take full advantage of plants beyond Earth.
We use the forthcoming human missions to Mars as a scenario to discuss a series of bioengineering
undertakings that will enable plants to thrive in Martian growth facilities.

2. Refactoring Plants for Enhanced Performance on Mars

Mars is the most Earth-like of our neighboring planets and the next step for human planetary
exploration. It is anticipated that in order to achieve long-duration habitation of the Martian surface,
missions to the red planet will need to depart from complete reliance on shipped cargo and achieve
a high level of self-sufficiency [8,11–13]. As described above, one way to move towards this goal
would be to deploy special facilities designed to allow plants to survive the harsh environment of
Mars [14,15]. A complementary approach would be to engineer plants for enhanced performance
under Martian conditions, an endeavor that will require substantial modifications at multiple levels
but will ultimately bring benefits in energy, water, and habitat-space use. In this section, we focus on
potential plant synthetic biology solutions to a series of Martian challenges (Figure 1). Because recent
studies indicate that the reduced gravity level on Mars of 0.38 g (compared to 1 g on Earth) may not be
a major problem for plant growth and development [16], we will not discuss gravity in this article.
For a description of the Martian environmental conditions, such as temperature and atmospheric and
soil (i.e., regolith) composition, we refer the reader to two recent articles [8,9].

2.1. Enhancing Photosynthesis and Photoprotection

Light energy is essential for the photosynthesis process that allows plants to produce oxygen
and new biomass from carbon dioxide and water. Plant light energy conversion efficiency is far from
being optimal because photosynthetic organisms in the wild have been evolutionarily selected for
reproductive success and not for high biomass production [17]. On Mars, where sunlight intensity is
significantly lower than on Earth (~43% at comparable latitude and time of day [9]), and where the
need of growing plants inside greenhouses will further reduce sunlight levels even if built with the best
transparent materials, improved photosynthesis will likely constitute a major advance. Maximizing the
use of natural sunlight would save considerable power resources that would have to be otherwise
diverted to support artificial lighting [14]. Improving photosynthetic efficiency will, therefore, not only
increase plant biomass production but will also translate into energy savings (Figure 1).

Plants harvest energy from a small proportion of the light spectrum, mainly in the wavelength
range of 400–700 nm, and thus access only about 50% of the incident solar energy [17]. One promising
target for improving plant use efficiency of sunlight would be to expand the region of the light
spectrum used by photosynthesis via reengineering the light-harvesting antenna and reaction center
complexes [17–20]. Expanding the spectral coverage of light harvesting towards the UV and/or the
infrared regions will mean that photons from currently inaccessible wavelengths would be available
for energizing plant growth. Since the absence of a significant ozone layer and low atmospheric
pressure of Mars result in a higher surface flux of UV radiation [21], enabling the photosynthetic
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use of the UV region of the solar spectrum could prove particularly effective. Such a strategy,
however, would require the use of UV-transparent greenhouses and also the realization of superior
UV-protection mechanisms to minimize cell damage, conceivably by engineering highly efficient
synthetic UV-dependent responses. Additionally, since UV is potentially damaging to DNA, RNA,
proteins, and cellular metabolism, enhancing UV-tolerance would likely result in a better plant
performance in general [22]. Along the same lines, as photooxidative stress occurs when the absorbed
light energy exceeds that used in photosynthesis, engineering improved photoprotection mechanisms
could further enhance the performance of the light-harvesting machinery [23], as recently demonstrated
in tobacco (Nicotiana tabacum) plants [24].
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Figure 1. Synthetic biology applied for enhancing plant performance. Different traits that can be
engineered simultaneously to take full advantage of plants on Mars (and Earth).

One other ambitious approach for improving plant biomass production involves increasing
the yield of photosynthetic carbon assimilation. There are numerous strategies that are currently
being pursued towards this goal, from improving the catalytic activity of Rubisco (i.e., ribulose-1,
5-bisphosphate carboxylase/oxygenase, the CO2-fixing enzyme in photosynthesis) and implementing
CO2-concentrating mechanisms to engineering photorespiration bypasses and installing synthetic
carbon fixation pathways [20,25–28]. Among these strategies, building new-to-nature CO2-fixing
pathways holds the most promise to improve photosynthetic light energy conversion, since
it is arguably the approach that would be less likely limited by serendipitous evolutionary
constraints [29,30]. Also, given that CO2 and O2 compete at the active site of Rubisco and that
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the atmospheric CO2/O2 ratio on Mars is enormously higher than on Earth [8], it is possible that
carbon fixation by Rubisco on Mars could be highly effective.

2.2. Improving Drought and Cold Tolerance

Water will be a crucial resource for plants but also for many other applications in a Martian
outpost [31]. Because water on Mars is mostly available in the form of ice [32], part of the energy
budget of the outpost will need to be allocated for its extraction and recycling [31]. Also, if energetically
expensive systems (e.g., hydroponics) were required to sustain plant growth, additional energy will
need to be diverted for this purpose [6,15,33]. Developing plants that require less water per unit mass
of production will, therefore, contribute to better water and energy management on Mars (Figure 1).

One way to improve drought tolerance would be to manipulate the opening and closure of
stomatal pores, from which water is lost via transpiration. This approach has already been shown to
reduce plant water loss [34] and could potentially be even more effective if the signaling pathways that
adjust stomatal behavior in response to drought were rewired to achieve programmable functional
insulation, hence minimizing growth penalties often derived from crosstalk between stress responses
and developmental networks [35–37]. Other promising approaches would be to engineer plants of
interest with crassulacean acid metabolism, which increases water-use efficiency and enables plants to
inhabit water-limited environments such as semi-arid deserts [38]. More progressive synthetic biology
approaches could even enable the engineering of drought-tolerance mechanisms analogous to those
found in resurrection plants, extremophytes that can withstand severe drought conditions [39,40],
or even more evolutionary distant organisms that can undergo anhydrobiosis and survive extreme
desiccation [41,42].

Mitigating the low average temperature of Mars and its huge diurnal thermal variation [43] will
be another key aspect that will require substantial energy allocation [14]. Engineering cold-hardy
plants could help reduce the amount of energy allotted to meet the thermal requirements of Martian
greenhouses (Figure 1). As with the case of improving drought tolerance, engineering plants of interest
to exploit the protection mechanisms used by other organisms adapted to withstand low temperatures
is a promising strategy. There are clear examples that cold tolerance can be enhanced by the expression
of ice-binding proteins capable of inhibiting the growth of damaging ice crystals [44]. Increased levels
of membrane unsaturated fatty acids and certain osmoprotectants (e.g., fructans) also lead to cold
tolerance; hence manipulating their metabolism is also a particularly attractive target [45,46]. A more
sophisticated strategy would be to design a dynamic multilevel cryoprotective response regulated,
perhaps through the circadian clock [47], in such a way to anticipate the large temperature drop of
the Martian night. Synthetic circadian regulation could enable optimal use of energy by timing the
cryoprotective response with the diurnal solar oscillation [48]. Because the length of Mars day (~24.5 h)
is similar to that of Earth (~24 h) [3] just minor adjustments of the plant circadian timing system might
be required for optimal functioning.

2.3. Engineering High Yield and Functional Food

The limited size of the Martian greenhouses and the availability of indispensable plant nutrients
like phosphorus and nitrogen will represent additional challenges for an agricultural system on Mars.
Ideal plants should have high biomass productivity, high harvest indices, minimum horticultural
requirements, and provide food for a functional diet [13,49] (Figure 1).

A possible solution to boost biomass productivity would be to achieve cultivation at very high
plant density [50,51] by manipulation of the shade avoidance response [52], which can be detrimental
to yield because carbon resources are redirected to stem or petiole elongation at the expense of
biomass production [53]. Redesigning the plant development and architecture at different levels
could also lead to crop variants with extraordinary harvest indices. This idea has recently been
demonstrated in tomato (Solanum lycopersicum) plants engineered in a number of architectural traits
resulting in improved productivity [54–56]. Moreover, engineering the root system architecture for
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optimal nutrient acquisition and increased fertilizer use efficiency could further translate to higher
yields [57,58] (Figure 1). Changing the root system architecture to improve phosphorus uptake [59]
could be particularly relevant on Mars, as it is unclear if phosphorus is readily available to sustain
plant growth [8,60,61], in which case, it should be supplemented as a fertilizer.

Nitrogen, which is also an essential plant nutrient, is present on the surface of Mars in the form
of nitrate [62] that could potentially be biochemically accessible to plants. Alternatively, nitrogen gas
(N2) could be directly assimilated from the Martian atmosphere [8]. However, because the capacity to
fix gaseous N2 is restricted to a specialized group of prokaryotes and does not occur in plants, one
ambitious goal would be to endow plants with the capacity to directly assimilate atmospheric nitrogen
(Figure 1). To this end, all the required microbial machinery for fixing nitrogen could be transferred into
plants, a strategy that is currently being pursued by different laboratories and, although technically
challenging, it is certainly within the capacity of modern synthetic biology [63–68]. However, given
the huge difference in the atmospheric nitrogen content of Earth (~78%) and Mars (~2.7%) [9], such
a transplanted microbial pathway might not work efficiently on Mars. Possible solutions to this
challenge would be to exploit indigenous Martian nitrogen [62] to enrich greenhouse N2 concentration
or to employ protein-engineering techniques to increase nitrogenase affinity and develop a N2-fixation
pathway of high performance under low nitrogen concentration. Alternatives to endowing plants
with the capacity to assimilate atmospheric nitrogen would be to engineer nitrogen fixation in
root-associated microbes or to develop synthetic root-microbe symbiosis with microorganisms already
capable of fixing nitrogen [69–71].

Another consideration for sustaining an extended human presence on Mars is that of producing
nutritious food. Poor nutrition can cause detrimental effects on health and adversely affect physical and
cognitive performance [72]. Plants could be central to maintaining good nutrition on long-duration
manned space expeditions. For instance, the consumption of carotenoids, a group of isoprenoid
compounds with activity as antioxidants and vitamin A precursors [73], has been identified as of
particular interest for humans on space [49,74]. Unlike plants, which synthesize carotenoids in
their plastids [75,76], humans do not produce carotenoids and have to incorporate them in their
diets [73]. Because carotenoid accumulation in plants is the result of multiple processes [23,76,77],
the combination of various bioengineering strategies, from manipulating the carotenoid biosynthesis
and storage mechanisms to installing alternative carotenogenic pathways [76,78–81] holds potential to
take the carotenoid content of crops to a new level. From a holistic point of view, the ultimate synthetic
biology approach to make the most of plant-based food on Mars would be to develop multi-biofortified
crops with improved nutritional properties [82–84] and enhanced quality traits (e.g., extended shelf
life and reduced allergenicity) [85–92].

3. Tailoring Microorganisms to Complement and Facilitate Plant Life on Mars

The establishment and utilization of plants on Mars would benefit significantly from its use in
conjunction with microorganisms. Besides their potential use to supply nitrogen as discussed above,
engineered microbes would be necessary for the removal of toxic compounds from the Martian soil
and its transformation from an arid and oligotrophic desert material into a nutrient-rich soil able to
support plant growth (Figure 2). As in the case of plants, due to the drastically different environment
in which these microbes would need to perform, synthetic biology will be essential for engineering
desired functions. Once plants are established, microbes could be used to convert plant biomass into
proteins and metabolites that serve as materials, chemicals, and medicines. By using plant sugars and
biomass as versatile feedstock for bioprocessing, these resources could be made available on-demand
at high rates, titers, and yields. It is important to note that an enormous array of microbes designed
to perform a multitude of useful tasks could be transported to Mars with very little cargo-burden.
In this section, we focus on crucial applications of microorganisms relating to the establishment and
utilization of plants on Mars.
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Figure 2. Engineering microorganisms to facilitate plant life on Mars. This conceptual microbe
scavenges atmospheric hydrogen (H2) and carbon dioxide (CO2), and it is customized to condition
Martian soil for plant growth by reducing soil perchlorate salts (MgClO4 and CaClO4) and increasing
soil moisture. H2O: water; Cl−: chlorine; Ca2+: calcium; and Mg2+: magnesium.

3.1. Conditioning Martian Soil for Plant Growth Using Microbes

Recent experiments have shown that several plant species are remarkably healthy when grown on
Mars soil simulants [93]. Additional experiments simulating the gravitational conditions of Mars also
suggest that soil-based agriculture would require about 90% less water than on Earth as a consequence
of lower leaching rates [94]. As a whole, these results are encouraging for the prospect of utilizing
Martian soil for growing plants on Mars. Towards this goal, microorganisms can be utilized to perform
several critical tasks in the conditioning of Martian soil for plant growth.

First, we need to identify and learn from microorganisms capable of surviving Martian soil
conditions with minimal nutritional requirements. The Antarctic Dry Valleys on Earth have some
of the most comparable conditions to Mars, with extreme aridity, low temperatures, high radiation,
and lack of nutrients [95,96]. It was recently found that a novel mode of metabolism facilitates
bacterial persistence in these extreme conditions, whereby atmospheric trace levels of hydrogen (H2),
CO2, and carbon monoxide (CO) provide energy and carbon to support microbial communities [97].
This type of metabolism, for example, could potentially be exploited by primary colonizing microbes
designed to implement the first conditioning steps of the hyper-arid Marian soil. Critically, the required
gases to sustain this type of chemotrophic growth could be made available directly from the Martian
atmosphere and water electrolysis [8].



Genes 2018, 9, 348 7 of 16

The Martian soil has been found to contain high levels of perchlorates [98]. Perchlorates are
toxic to human hormone systems, and any soil used to grow plants for human consumption
would need to have dramatically lowered perchlorate levels [99,100]. One way to achieve this
would be to remove perchlorate salts with water; however, this would impose a burden on the
valuable water and energy resources on Mars. An attractive alternative solution to this problem is
to use biological removal of perchlorate by engineering CO2-utilizing bacteria to express perchlorate
reduction enzymes. This would enable continued bioremediation over time and possibly contribute
to bacterial growth. Alternatively, bacteria capable of complete perchlorate reduction [99] could be
engineered for autotrophic carbon fixation, although this would be a far more complex feat. In addition
to detoxifying Martian soil, the biological reduction of perchlorates would have the additional benefit of
releasing water found as hydrated perchlorate salts [101], increasing soil moisture (Figure 2). To further
improve soil water content, bacteria could be engineered to produce an extracellular polysaccharide or
adhesive protein that would bind soil particles together and hence mitigate desiccation [102] (Figure 2).

3.2. Microbes for Metabolite and Protein Production from Plant Material

In recent years, a burgeoning bio-economy has emerged where the precision, reaction rates,
and diversity of microbial biochemistry have been harnessed using synthetic biology to produce a
multitude of industrial and consumer products. This economy is arising to create products that are
either produced unsustainably from oil (e.g., chemicals) [103], inefficiently from plants and animals
(e.g., medicines) [104] or that cannot be produced industrially in any other way (e.g., spider silk) [105].
The advantages of this paradigm will be even more pertinent on extraterrestrial outposts, where every
resource must be consumed and/or produced as efficiently as possible. Additionally, any biomolecule
that can be produced on-site and on-demand lowers the burden of having to be transported. Many of
these valuable biomolecules should, if possible, be produced autotrophically using photosynthesis,
acetogenesis, or methanogenesis from waste carbon dioxide and carbon monoxide [8–12]. However,
these modes of metabolism have limitations in terms of the production rates, titers, and yields of
specific products depending on the adenosine triphosphate (ATP) and redox requirements of a given
production pathway [106–108]. Using aerobic heterotrophic catabolism of plant-derived sugars and
biomass can circumvent these limitations due to greater ATP generation and redox flexibility per
molecule of substrate. Such a production scenario could, therefore, be advantageous and compatible
with growing plants on Mars. Using plant biomass to provide sugars for fermentation would also
afford great versatility and adaptability, as the same renewable feedstock would serve as input to a
variety of products as they are required. This mode of production would also enable the use of the
highly developed synthetic biology and bio-production tools available in model organisms such as
Escherichia coli and Saccharomyces cerevisiae.

Production of medicines on Mars will be particularly important to reduce cargo transport and
avoid degradation of stored medicines by radiation and temperature variations [109]. Synthetic biology
principles could be applied to efficiently and simultaneously produce many pharmaceutical molecules
on-demand using both plant biofactories [110,111] and compact microbial bioreactors [112–114].
While plants are very attractive for the production of medicines for oral delivery because fermentation
and purification processes can be avoided [115], microorganism such as Pichia pastoris are advantageous
synthetic biology chassis organisms for a multitude of other applications due to their metabolic
versatility and extensive gene-engineering tools [116]. P. pastoris could potentially be an ideal
production host for medicines, metabolites, and materials on Mars and it also has the ability to
grow on methanol as a sole carbon source. Methanol is a one-carbon alcohol that can be derived
from the oxidation of methane or the reduction of CO/CO2 with H2 to give methane, and then
methanol. Given that CO/CO2 and H2 can be obtained from the combustion of organic material such
as inedible plant matter or human waste, the Martian atmosphere, and water electrolysis, methanol
derived from these sources is a potentially versatile and easily storable carbon source for microbial
production strains.
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4. A Roadmap for Research on Adapting Life to Mars

Achieving the proposed goals of adapting plant and microbial life to thrive on a Martian
environment in a timeframe compatible with the forthcoming human expeditions to the red planet will
require novel approaches. We propose that this formidable challenge can be tackled by establishing a
‘Mars Biofoundry’, that is, an automated and versatile platform capable of expediting the engineering
and high throughput phenotyping of biological systems adapted to the environmental conditions that
will be encountered on Mars (Figure 3).
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Figure 3. Schematic roadmap for research on adapting life to Mars. The Mars Biofoundry integrates
the design of synthetic biology approaches (A) with an automated platform for implementing
bioengineering designs in plants and microbes (B) and a facility for high-throughput phenotyping
under simulated Martian conditions (C). The process iterates as a design-build-test cycle. Eventually,
engineered organisms could be periodically transported to Mars (D) to perform experiments within
miniature growth facilities (E). Remote monitoring of performance on Mars (F) would provide critical
knowledge to adjust the work carried out at the biofoundry on Earth.

Biofoundries facilitate complex automated workflows to build, analyze, and optimize thousands
of bioengineering designs in parallel, hence accelerating the exploration of enormous design-space in
ways that are unfeasible with traditional approaches [117]. While the majority of current platforms
operate with microorganisms, the Mars Biofoundry would also incorporate plants. Therefore, it should
be capable of efficient engineering and screening of high-performing plants and microbes under
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simulated Martian conditions. This unique capacity would also help to identify plant species that
would be best suited for Mars.

Direct engineering of plants, even if implementing the most advanced methods [118–120], might
be impractical because of their lengthy regeneration times and the sheer size of facilities to house
large-scale screens. A far more progressive approach would be to test plant-targeted bioengineering
designs in heterologous organisms that would be easy to manipulate, capable of rapidly generating
large populations, and suitable for massive functional analysis in parallel [64,121–123]. Microorganisms
such as algae, yeast, and bacteria could be used to rapidly test an enormous array of circuit and
pathway designs and, whenever possible, also as plant-proxies in screens simulating the conditions
of Mars. Because traits linked to plant development are unlikely to be characterized in unicellular
microorganism, the best-performing solutions would then be transferred into simple multicellular plant
models such as Marchantia polymorpha and Physcomitrella patens [124,125] for additional characterization
under simulated Martian greenhouse conditions (Figure 3). Further refinements in planta (e.g., traits
related to functional or anatomical tissue differentiation) or via reiterative microbial engineering
rounds could be implemented if necessary. The whole process of outsourcing the optimization of
plant-targeted bioengineering designs to microbes could be completed in far less time and with only a
fraction of the cost that would be required if pursuing the direct engineering of plants.

Ultimately, we envision that shakedown experiments could be performed within miniature growth
facilities deployed on the surface of Mars every ~2 years by future frequent unmanned flights [3].
Remote monitoring of performance on Mars would provide critical knowledge to adjust the work of
the biofoundry on Earth (Figure 3). Research on adapting life to Mars would also help to assess the
risk of planetary biological contamination in case of accidental release [9] and would, therefore, be
invaluable to design effective strategies aimed at reducing this risk.

5. From Earth to Mars and Back to Earth

The human exploration of Mars will be one of the greatest achievements of humanity and
the first step of our multiplanetary journey. Developing the technology required for sustaining
humans on another planet would lead to revolutionary advancements and fascinating scientific
discoveries. Plants could contribute to this enterprise with great implications for Earth. A growing
global population is leading to rising demand for food, which will require an increase in
agricultural productivity without adverse environmental impact and without placing more land
under cultivation [126]. Crop yields are already reaching capacity [127] and continuation with current
agricultural technology will strain Earth’s ecosystem [128]. Improving plant traits useful for Mars
such as those discussed earlier (Figure 1) will have far-reaching implications across the board for
terrestrial agriculture. Advances in microbial-mediated soil conditioning, which will be required for
facilitating plant life on Mars (Figure 2), and in the use of plant biomass as renewable feedstock for
the manufacture of all kinds of products will respectively help improve crop yield and develop a
truly sustainable industry on Earth. Establishing facilities such as the proposed Mars Biofoundry
(Figure 3) will likely bring immense benefit to the turnaround time of plant research, hence having
widespread implications for addressing the needs of food security and environmental protection but
also advancing our understanding of plant biology. Ultimately, the main beneficiary of efforts to
develop plants for Mars is Earth.
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