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Abstract: Transposable elements (TEs) play an important role in shaping genomic organization and
structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose
on their host and their importance in microevolutionary processes such as adaptation and speciation,
the number of population genetics studies focused on TEs has been rather limited so far compared
to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the
dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms
that condition their abundance and frequency. We first discuss non-adaptive mechanisms such
as purifying selection and the variable rates of transposition and elimination, and then focus on
positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic
incompatibilities and eventually speciation. We also suggest possible ways to better model TEs
dynamics in a population genomics context by incorporating recent advances in TEs into the rich
information provided by SNPs about the demography, selection, and intrinsic properties of genomes.
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1. Introduction

Transposable elements (TEs) are repetitive DNA sequences that are ubiquitous in the living world
and have the ability to replicate and multiply within genomes. Since their discovery, TEs have proven
to be of paramount importance in the evolution of genomes, shaping their architecture, diversity,
and regulation [1–4]. Given their abundance, the precise quantification of the evolutionary forces and
mechanisms that condition their polymorphism and eventual fixation or loss in natural populations
is needed.

The theoretical and practical tools provided by population genetics have been crucial to better
understand how stochasticity and selection shape TEs dynamics (e.g., [2,5–7]). The first demographic
models specifically designed for the analysis of TE polymorphisms were already developed in the 1980s,
incorporating transposition and excision rates, effective population size, and purifying selection [4].
Despite this early interest, the investigation of TEs’ dynamics in natural populations faded between
1990–2000 [8]. While the precise mechanisms underlying the activity and copy number of TEs have
been the topic of many early studies, relatively little attention has been paid to their microevolutionary
dynamics in the genomic era, when the focus has been on comparative genomics and on analyses
at deeper evolutionary scales. This is mostly explained by the sequencing technologies that have,
until recently, produced rather short sequencing reads, which prevent the accurate identification of
TE insertions. Instead, most population genomics studies have focused on variation regarding single
nucleotide polymorphisms (SNPs). The growing availability of whole-genome resequencing data,
as well as the development of new computational tools, has revived the interest of the evolutionary
genomics community for the analysis of TE polymorphisms [9,10].
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Early reports on the propagation of TEs demonstrated a deleterious effect of their activity.
This work, which was mostly based on the investigation of TE polymorphisms in Drosophila populations,
presented this type of variation as neutral or deleterious [11], and subsequent studies have tried
to explain the allele frequency spectrum of TEs within this framework [5,12]. However, TEs can
dramatically modify phenotypes, for example by triggering epigenetic mechanisms, by modifying gene
expression, or by being a source of ready-to-use functional motifs [13,14]. Thus, TEs can potentially be
recruited in adaptive processes and rise in frequency due to positive selection. It remains unclear how
the abundance and frequency of TEs are controlled by the host, and to what extent they can become
the target of positive selection [9]. In addition, understanding the dynamics of TEs requires jointly
studying the host demography, adaptation, and mechanistic views of genome architecture, regulation,
and coevolution. This will be crucial if we want to quantify the importance of TEs in adaptive processes
and the evolution of species. Here, we summarize the current state of the literature on TEs’ evolution
at microevolutionary scales, but we also propose possible methodologies to jointly study TEs and
traditional markers such as SNPs.

2. Transposable Elements: Classification and Mechanisms of Transposition

“Transposable elements” is an umbrella term that covers a wide diversity of DNA sequences that
have the ability to move from one location of a genome to another location. Besides being mobile,
these sequences don’t have much in common, and they differ considerably in sequence, structure,
length, base composition, and mode of transposition. A number of excellent reviews are available
on TE diversity (among those, we refer the reader to [15–17]), and we provide here a short synthesis
of what is known. TEs are broadly classified into two classes: class I elements (or retrotransposons),
which are mobilized by the reverse-transcription of an RNA intermediate, and class II elements (DNA
transposons), which use a DNA intermediate. Retrotransposons are further divided into long terminal
repeats (LTR) and non-LTR retrotransposons, based on the presence of long terminal repeats (LTR).
LTR retrotransposons, which include the copia and gypsy elements, are mobilized by a process similar
to retroviruses. The RNA is reverse-transcribed in the cytoplasm into a double-strand cDNA, which
is inserted back into the genome by an integrase. Non-LTR retrotransposons, which include the
Long Interspersed Nuclear Elements (LINEs) and Penelope elements, are mobilized by a mechanism
termed target-primed reverse transcription, where the RNA is reverse-transcribed at the site of
insertion [18]. The reverse transcriptase of non-LTR retrotransposons can also act on other transcripts
and is responsible for the amplification of non-autonomous elements (also called Short INterspersed
Elements, or SINEs), which can considerably outnumber their autonomous counterparts [19]. Class II
elements include elements that use a cut-and-paste transposition, such as the hAT and mariner elements,
or elements that have a circular DNA intermediate (Helitrons). Class II elements can also mediate
the transposition of non-autonomous copies, which, similar to SINEs, can amplify to extremely high
copy numbers.

Since TEs are part of the genome of their hosts, they are transmitted vertically from parents
to offspring. However, many elements have the ability to invade genomes horizontally, and the
recent sequencing of a large number of eukaryotic genomes revealed that this process is not as
uncommon as previously thought. Some elements seem to be more prone to horizontal transfer than
others. Non-LTR retrotransposons are transmitted mostly vertically [20–22], but some families, such as
RTE, have been shown to readily transfer across highly divergent taxa, for instance from reptiles to
cows [23,24]. The horizontal transfer of LTR retrotransposons is more frequent and seems particularly
common in plants and insects [25,26]. Similarly, the horizontal transmission of DNA transposons has
been widely documented, and for some unknown reason, some organisms, such as butterflies, bats,
and squamate reptiles, seem much more prone to horizontal transfer than others [27–31]. Another case
of horizontal transfer occurs when the germline is invaded by retroviruses, which can become stable
residents of genomes, keeping the ability to multiply in the genome while lacking infectivity [32,33].
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The abundance and diversity of TEs differ considerably among organisms, and the evolutionary
mechanisms responsible for these differences remain unclear. The number of TE copies is highly
correlated with genome size and can show large variation, even within the same eukaryotic lineage.
For instance, among parasitic unicellular eukaryotes, TEs are absent from the genome of Plasmodium
falciparum [34], while the genome of Trichomonas vaginalis is composed of 40% TEs [35]. In plants,
~85% of the maize genome is composed of TEs [36], whereas this number is only ~10% in Arabidopsis
thaliana [37]. Among vertebrates, the abundance in TEs range from ~6% in the pufferfish to more
than 50% in zebrafish and some mammals [1,38]. The diversity of TEs also differs considerably
among organisms. For instance, the genome of non-mammalian vertebrates (fish, amphibian, reptiles)
typically contains a large diversity of active TEs represented by many families of class I and class II
elements, whereas the genome of placental mammals generally harbors a single type of autonomous
TE: the LINE-1 (L1) element [1,38–40].

3. How Population Dynamics and Intrinsic Properties of Genomes Shape TEs Polymorphisms

3.1. The Role of Purifying Selection and Demography

As for SNPs, the frequency of TE insertions in natural populations is conditioned by the balance
among the drift, selection, and migration between demes (Figure 1A). TEs can disrupt genes and
regulatory sequences, and thus can negatively affect the fitness of their host. For instance, in humans,
several genetic diseases are caused by TE insertions, such as hereditary cancer [41] or haemophilia [42]
(for a more exhaustive review, see [43]). This is also exemplified by the extreme rarity of insertions
within exons (e.g., in Drosophila [44,45] or Brachypodium distachyon [46]), compared to intergenic and
intronic regions. Thus, it is expected that purifying selection (i.e., selection against deleterious alleles)
against TE insertions plays a major role in shaping their frequency in populations. A consequence
of purifying selection is that it prevents or delays the fixation of mutations that reduce fitness in a
population. This leads to shifts in the derived allele frequency spectrum (AFS), with an excess of derived
variants at low frequencies. Many studies have highlighted this effect, using different approaches.
Using a diffusion approximation similar to early models of TE evolution [4], Hazzouri et al. estimated
the selective coefficient (Nes) against an Ac-like transposon to range between −50 and −10 in Arabidopsis
arenosa [47]. In Drosophila melanogaster, the selective coefficient against insertions from the BS family in
an African population was estimated at Nes ≈ −4 [48], and was as low as −100 for some TE families [45].
In humans, this coefficient was estimated at Nes = −1.9 against L1 retrotransposons [49]. Comparisons
of TEs’ frequencies with estimates obtained from coalescent simulations often reveal deviations from
purely neutral expectations. This is observed in green anoles [50,51], mice [50], or Arabidopsis [7,47],
for which TEs display an excess of singletons compared to SNPs, which is consistent with purifying
selection. A common point between those studies is that they take into account the demographic
history of investigated populations to properly estimate the significance of deviation from neutrality,
revealing substantial differences with estimates of Nes obtained assuming stable demography [48].
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Figure 1. Summary of mechanisms impacting the diversity and frequency of transposable elements
(TEs), and their impact on flanking sequences. (A) Demographic changes affect the frequency spectra
of both TEs and single nucleotide polymorphisms (SNPs) in a similar way, assuming neutrality and
a constant rate of transposition. Reductions in effective population sizes should lead to an excess of
alleles at intermediate frequencies, while population expansions may lead to an excess of singletons.
On the other hand, purifying selection on TEs should lead to an excess of singletons compared to SNPs.
Variable rates of transposition may also lead to discrepancies in the spectra between SNPs and TEs.
(B) TEs involved in adaptation may be detected through their changes in frequencies, but also through
the signature left in flanking regions. In the case of positive selection, longer, younger haplotypes
should be found nearby positively selected insertions. The similarity of selected haplotypes may be
very high in the case of a recent hard sweep, where the insertion is immediately selected and rises in
frequency. It may be lower in the case of a so-called soft sweep, where selection either acts after the
insertion has already reached an appreciable frequency in the population, or when two insertions
with a similar effect on fitness appear at the same time. Positive selection should also result in higher
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differentiation at the selected locus compared to populations where selection is not acting. On the
other hand, balancing selection may lead to signatures of partial selective sweep when it is recent.
Since the selected alleles may be maintained through long periods of time, they have more time to
recombine and accumulate new mutations than neutral haplotypes, leading to a narrow signature
of high diversity. Since alleles under balancing selection tend to introgress into new populations,
and have high diversity, low differentiation is expected at these sites. (C) Left panel: Given a constant
recombination rate, positive and linked selection in a given population (here, a population of two)
may increase differentiation and reduce diversity at selected TEs and flanking regions compared to
the rest of the genome. On the other hand, if TEs play a role in incompatibilities after secondary
contact, a signature of both elevated differentiation and diversity may be expected. Right panel:
However, an excess of TEs in regions of reduced polymorphism, higher differentiation, and lower
recombination may be caused by different mechanisms such as purifying selection. This can be due to
a reduced effective rate of transposition in regions of high recombination due to deleterious ectopic
exchanges, and/or because of the larger-scale effect of selection that accelerates lineage sorting and the
differentiation of TEs in regions of low recombination.

The deleterious effect of TEs can have three causes. First, a cost related to where the element inserts
(insertional mutagenesis) can affect the host; the number of disease-causing insertions in humans
and other organisms constitute prime examples of this [41–43,52]. Second, TEs can produce RNAs or
proteins that could be deleterious to the host. For instance, damages induced by the endonuclease
encoded by retrotransposons on DNA [53] or the competition of TEs with hosts’ genes for transcription
factors [54] may lead to a loss in fitness. Third, ectopic recombination between non-allelic copies
can lead to deleterious chromosomal rearrangements. Since the 1980s, the relative importance of
each of these three mechanisms has been a matter of debate [4,55–57]. However, it has been shown
in humans [49], Drosophila [57], mouse [50], and anoles [51] that long elements are found at lower
frequency in populations than short elements. This suggests that purifying selection acts more strongly
against longer copies of elements, and it was shown, in humans, that short elements behave similarly to
neutral alleles [49,58]. This pattern could be explained by selection against intact progenitors—which
are the longest elements, and the only ones that are capable of producing the RNA and proteins
necessary for transposition—or by the ectopic exchange model, since longer elements are more likely
to mediate ectopic recombination than shorter ones [50,57,59]. However, selection seems to act against
long elements that are not full-length and thus not active, which suggests that the ectopic exchange
model plays a preponderant role [50,59]. This model is also supported by the genomic distribution
of elements of different length. Long elements tend to be absent from highly recombining regions of
genomes [44,60] and accumulate in non-recombining regions such as the human Y chromosome [61,62].
The effect of ectopic recombination will depend on the abundance of elements and the frequency of
the insertions. For ectopic recombination to have a substantial effect requires the elements to have
reached a copy number threshold so that large families of TEs are more likely to be deleterious than
smaller ones [45,57,63]. In addition, heterozygous insertions are more likely to be involved in ectopic
recombination because of the lack of an allelic copy on the other chromosome [64]. Thus, elements
at low frequency in populations are more likely to be deleterious, since insertions are more likely
to be present in the heterozygous state. This suggests that selection against TE insertions may be
frequency-dependent, so that the selection coefficient against a specific insertion will decrease when
the insertion increases in frequency. Thus, it is expected that rapidly expanding TE families, which are
characterized by a high copy number and a majority of insertions in the heterozygous state, are more
deleterious than smaller families, where elements are found at high frequency (for instance, after a
strong bottleneck effect). These predictions still need to be tested, and this aspect will need to be
incorporated in future models of TE evolution.

Genetic drift is the stochastic variation of allele frequencies across generations due to the finite
size of natural populations. The effect of genetic drift will depend on the effective size of populations
and their past demographic history. When an effective population size is small, genetic drift can
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cause large changes in allelic frequency, and may even counteract the effect of selection, so that
insertions that would be eliminated by selection in large populations can reach high frequency or
even fixation in small populations. The stochasticity induced by demographic events explains a
significant amount of TEs’ diversity in natural populations, which is consistent with theoretical models
(e.g., [4,65,66]). For example, in Arabidopsis lyrata, smaller populations showed an accumulation of
TEs at higher frequencies, due to stronger stochasticity and a reduced efficiency of purifying selection
in those populations [7,67], and this has been documented across six TE families. In B. distachyon,
the loss of retrotransposons across genetic clusters is partly explained by recent bottlenecks and
demography [46]. In Drosophila subobscura, recent bottlenecks explain the high frequencies of the
bilbo and gypsy elements [68]. A recent study demonstrated that TEs’ diversity could be explained by
variation in effective population sizes in humans and sticklebacks [50,69], while a joint effect of purifying
selection and demography was more obvious in anoles and mice [50,70]. Overall, demography may
play an important role in the likelihood for TEs to reach fixation and increase genome size, which is in
accordance with the hypothesis that genome size may be directly related to demographic history [71].

3.2. Non-Equilibrium between Transposition and Loss

Another important parameter when characterizing TE dynamics is the interplay between the
rate of insertion and the rate at which copies are lost from the population. For the sake of simplicity,
early models of population genetics applied to TEs have often assumed that these parameters were in
equilibrium [66]. However, the frequency of TEs is likely impacted by shifts in this balance. Sudden
bursts of transposition can occur, generating a large cohort of insertions with roughly the same age.
Such bursts are well-documented in Drosophila [72], rice [73], piciformes [74], fish [75], or mammals [28].
On the other hand, hosts defense mechanisms may be triggered by a high level of transposition.
This may lead to waves of extinction, with fast drops in the number of functional TE copies in
genomes, and ultimately to the complete cessation of transposition. This alteration between periods
of proliferation and elimination has sometimes been described as a life cycle [76,77], which results
in genealogies between insertions that are quite different from classical turnover expectations [76].
Some stages of this life cycle may be particularly sensitive to high genetic drift, as the stochastic loss of
functional copies may lead to the premature loss of transposition compared to large populations [65].
From a population genomics perspective, this non-equilibrium dynamic has a direct impact on the
average age of TE insertions in a given population. This affects not only the copy number, but also the
frequency spectrum of these insertions. Ultimately, this can generate complications when interpreting
discrepancies between the allele frequency spectra obtained from SNPs and TEs, since they may
then be explained by a combination of selection and unbalanced ratios between transposition and
elimination rates (Figure 1A). For example, an excess of rare insertions may be due to a recent burst of
transposition, leading to an excess of low-frequency TEs insertions [78]. Such a signature would be
mistakenly attributed to purifying selection in equilibrium models [7,12].

Non-equilibrium explanations for the excess of rare insertions are considered unlikely [5,45] by
some authors. Nevertheless, the direct application on TEs of classical population genetics assumptions
that rely on constant mutation rates may not be realistic. For example, in Drosophila, the frequency
spectra of TEs from different families is directly related to each family’s age and their time since
inactivation [44]. This may be particularly important for models where little is known about the
dynamics of the TEs. To take this issue into account, a test that quantify purifying selection on TEs has
been developed [12] that is conditional on the age of elements. However, this age is often overestimated
for TE sequences, because of non-equilibrium demography and mutations introduced by transposition
errors [12]. Recent advances in modeling may facilitate the deployment of methods that jointly estimate
selection and transposition [79].
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3.3. Transposition and Variable Rates of Recombination

A consequence of selection limiting the proliferation of TEs in genomes is that TEs should be more
frequently found in regions of the genome where natural selection and elimination mechanisms are
weaker or less efficient. This requires a better quantification of the relationship between the number
and the type of TE insertions and genomic features such as recombination, which is often found to be
negatively associated with TE content [60,80]. Regions of low recombination tend to be associated
with a lower gene content, which reduces the likelihood for an insertion to be strongly deleterious.
Selection is more likely to remove TE insertions in regions of high recombination, since more frequent
ectopic recombination should increase the likelihood of deleterious chromosomal rearrangements [56].
In addition, TE silencing is often associated with epigenetic modifications that are negatively associated
with recombination [81,82]. Another mechanism is Hill–Robertson interference. Competition between
haplotypes harboring different deleterious TE insertions may reduce the efficiency of selection, similar
to a reduction of local effective population sizes that enhance the impact of genetic drift in regions
of low recombination [83,84]. Ultimately, this may lead to the fixation of TEs through the process
of Muller’s ratchet, where low recombination prevents the persistence of a haplotype without any
insertion, increasing mutational load [56]. However, this latter effect is more likely for TEs in regions
of extremely low recombination [56]. The position of recombination hotspots varies across species [85],
which can be an alternative explanation to divergent selection when interpreting variation in TE
frequencies between species and populations.

Recent studies of recombination landscapes have improved our understanding of TEs dynamics.
The expected negative correlation between TEs and recombination rates has been observed for LINEs
in humans [59,62], mice, and rats [86]. In Drosophila, there is evidence that both reduced gene content
in regions of low recombination and ectopic recombination shape the frequency of TEs along the
genome [87,88]. However, the insertion process itself varies between different TE families, and may be
responsible for variation in abundance and frequency along chromosomes. Indeed, a more detailed
examination of the correlation between TEs and recombination shows a heterogeneous pattern,
with some TE families [89] and endoviruses [90] found more frequently near recombination hotspots.
The same pattern is observed near recombination hotspots in Ficedula, which is possibly due to the
shared preference of recombination and transposition machineries for open chromatin [85]. A preference
for high-recombining regions has also been shown for DNA transposons (but not non-LTR elements)
in Caenorhabditis elegans [91]. This may be due to the cut-and-paste mechanism of transposition
that takes advantage of the double-stranded breaks that initiate recombination events. Another
possible explanation lies in the negative correlation between the age of TEs and the recombination
rate, suggesting that a long-term effect of recombination is needed to remove TEs from genomes.
Overall, this suggests that previous demonstrations of a negative correlation between TE content and
recombination rate need to take into account the properties and histories that are specific to each TE
family [60,91].

Until recently, most theoretical works on TE dynamics have considered constant recombination
rates [56]. The emergence of new simulation tools that can simultaneously incorporate the intrinsic
properties of the genome and the evolutionary history of populations may be valuable to disentangle
the effects of demography, selection, recombination, and the transposition process of TEs (Figure 2).
A promising method is SLIM3 [79], which is able to simulate TEs as well as flank genomic fragments
under any arbitrary complex demographic scenario, and can also incorporate variations in transposition
rates due to thresholds in abundance or any other feature deemed useful by the user. Then, contrast
between simulations and observed data may be performed to quantify the dynamics of TEs, for example
through approximate Bayesian computation (ABC) [92] approaches (see [50] for an example).
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Figure 2. A possible analytical pipeline for population genomics of TEs, highlighting some promising
methods. Genetics and genomics may provide information about the intrinsic properties of genomes
(e.g., recombination maps) and extrinsic processes such as demographic changes and selection.
This information may then be used to build neutral expectations about both TEs and SNPs. Contrasting
the observed statistics for TEs (e.g., frequencies, length, properties of flanking regions) with simulations
may facilitate the quantification of the mechanisms that act on their diversity.

3.4. Coevolutionary Dynamics

Coevolution between TEs and their hosts is a crucial aspect that shapes TE diversity and
impacts the likelihood for insertions to reach high frequencies. Understanding the distribution of TE
polymorphisms across genomes and populations requires a better quantification of the mechanisms
behind TEs silencing [93]. Refining the timescale of coevolution between TEs and control mechanisms
would provide important insights about constraints on the transposition rate. Such knowledge would
improve our models of transposition for specific TE families.

Hosts use many mechanisms to control the proliferation of TEs within their genomes (see [94]
for an exhaustive review in humans). An important example is the APOBEC enzymes. APOBEC3
proteins inhibit endoviruses by editing dC residues to dU during reverse transcription. This increases
the rate of G to A mutation, and ultimately results in the inhibition of transposition. They are also
inhibitors of reverse transcription, making them efficient against LINEs and other retrotransposons [95].
Variation in the sequence and structure of APOBEC genes seems to be directly related to their efficiency
in controlling TEs [96,97]. There is already evidence that APOBEC proteins act in specific ways on
TEs from different families across vertebrates [97]. In vertebrates, epigenetic modifications such as
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methylation [98] and histone modifications [99] may be responsible for controlling TEs by limiting their
expression. In rice, mutants at a chromomethylase, OsCMT3a, cannot methylate TEs, and display a
burst of transposition [100]. Finally, another control mechanism lies in small RNA pathways, by which
TEs RNA is recognized and eliminated. In fruit flies, two main mechanisms regulate TE activity:
siRNA/Dicer [101] and piRNA [102,103]. Therefore, further refinements of models of TEs’ evolution
would benefit from the knowledge of the spatial repartition of methylated regions and other control
mechanisms that are specific to the host. A promising approach lies in simulations and model-fitting
incorporating demography, selection, and control mechanisms to test expectations about TE dynamics.
For example, a recent simulation study showed that large, non-recombining clusters of piRNAs are
more efficient at trapping TEs and preventing invasions [104]. Transposition rates and population
sizes mostly influenced the length during which TEs were active, but not the final amount of TE
insertions [104]. Combining experimental evolution with modeling may provide better resolution on
the coevolutionary process; an example is provided in [105]. In this work, the authors investigated
how synergies between RNAi and methylation pathways effectively controlled TE proliferation, using
a set of ordinary differential equations describing transposition, elimination, methylation, and RNA
interference. By reanalyzing the expression and transposition of the Evade element in two A. thaliana
inbred lines, they could show that small amounts of RNAi were enough to initiate methylation
and silencing. According to the model, the retention of methylated TEs prevented reamplification
more efficiently than elimination. Although these models may benefit from further refinements by
incorporating unstable demography or linked selection to be broadly applicable, they already provide
a solid conceptual and methodological basis.

Importantly, this dynamic implies that there is a coevolution between the different components of
the genome, which may have an impact on the diversity of hosts’ defense genes. Scanning the genome
for loci that display correlation between their diversity and the number of TE families found in the host
may be a way to identify which genes in a pathway are of primary functional importance. There are
signatures of fast adaptive evolution at genes that are involved in RNA interference in Drosophila [106],
with recent selective sweeps encompassing genes from the piRNA pathway [107]. Another compelling
example of coevolution is found in primates, where two zinc-finger genes, ZNF91 and ZNF93, evolved
rapidly to prevent the expansion of SINE and LINE elements [108]. Besides the need for a more
comprehensive understanding of the pathways involved in TEs regulation, there is a need for further
investigation in a population genetics context. For example, are demographic fluctuations such as
bottlenecks responsible for a relaxation of selective pressures at defense genes that may explain bursts
of transposition? Is there a link between diversity at defense genes associated with speciation and
environmental adaptation?

4. Transposable Elements as a Source of Adaptation

4.1. Evidence for Positive Selection on TEs and SNPs

Identifying TEs that are under positive selection and therefore rise to high frequency in populations
is an exciting alley for research in population genomics. However, detecting positive selection is a
challenging task even for traditional markers such as SNPs [109]. TEs idiosyncrasies must also be
taken into account, since bursts of transposition or insertion bias due to recombination also shape
their diversity. Many TEs have been domesticated by hosts genomes over long evolutionary time
scales, leading to the emergence of novel cellular functions through the recruitment of TE-derived
coding sections or cis-regulatory domains [110]. For example, the RAG genes that are involved in the
recombination process of antibodies in jawed vertebrates [111,112] originated from a domesticated
Transib element [113]. Whole TE families may be domesticated by a host. For example, in Drosophila,
three non-LTR retrotransposons (TART, TARHE, and HeT-A) preferentially transpose in telomeres and
prevent their shortening [114], although their domestication is likely incomplete [115]. TEs are also
important for the stability of centromeres during replication [116], and might be involved in speciation.
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For example in rice, recent insertions of both class I and class II transposons are responsible for the
accelerated differentiation of centromeres between three cultivated species and subspecies [117].

Bursts of transposition are known to occur in organisms put under stressful conditions [118], which
may be subsequently recruited by the host for rapid adaptation [2,119]. For example, the increased
transposition of BARE-1 may be adaptive and is associated with higher elevation and dryness in
natural populations of the wild barley [120]. A burst of transposition is associated with the adaptive
radiation of Anolis lizards. This has led to an increase in TE insertions within the HOX genes clusters
compared to other vertebrates, which may be linked to the outstanding morphological diversity in
these lizards [121]. In maize, the expansion of Helitrons might have been associated with positive
selection over 4% of these elements [122]. Some Helitrons subfamilies can capture gene fragments.
The survival rate of these elements was correlated with the length of genetic inserts, which might
enhance their adaptive potential.

TEs can provide a selective advantage and quickly modify phenotypes, for example by triggering
epigenetic mechanisms and enhancing gene expression due to the insertion of a TE promotor [13,123].
A recent example includes the genetic determinism of the industrial melanism trait in peppered moth,
which is associated with a TE insertion in the cortex gene [124]. In Drosophila, there is evidence that TEs
may be recruited in adaptation to temperate environment, pesticides [125,126], development [127],
or oxidative stress [128,129]. The same insertion may have both positive and negative effects on
fitness [127,130], which may prevent fixation due to the associated cost of selection. In humans, analyses
based on TE frequencies in 15 populations sampled across Europe, Asia, and Africa highlighted
candidate TEs for adaptation that might be responsible for change in gene expression [131]. However,
we note that unlike recent studies in Drosophila [129], this study focused primarily on TE frequencies,
and did not examine signatures of selection in flanking regions, and used a relatively simplistic model
of human demography. Importantly, similar to traditional markers such as SNPs, the effects of past
demography may mimic expected signatures of selection. For example, in D. melanogaster, latitudinal
variation in North America and Australia was partly explained by past admixture between African
and European populations [6]. Overall, the way that TEs are recruited by the host—either through the
recycling of TE-derived coding regions (e.g., RAG genes), because of the repeats themselves (e.g., TART)
or because of regulatory effects (cortex in peppermoth, [132]—the candidate genes in humans [131])
still need to be quantified.

4.2. Quantifying Positive Selection on TEs

A promising approach consists in the joint analysis of TEs and SNPs to detect candidate insertions
for positive selection (Figure 1B,C and Figure 2). SNPs can be used to build neutral demographic
models and allele frequency spectra that are expected under neutrality [7,51]. Variation in allele
frequencies across populations can be used to detect insertions displaying high differentiation driven
by positive selection [10,133]. A common bias in these approaches is that background selection can also
lead to unusual allele frequency spectra and patterns of differentiation due to stronger drift in regions
of low recombination. A possible way to overcome this issue and identify loci that are truly under
positive selection consists of performing genome-wide association with environmental or phenotypic
features [109]. Other approaches based on linkage disequilibrium (LD) can help identify insertions
that are associated with long haplotypes, and are therefore more likely to be under recent positive
selection. The distribution of haplotypes’ length may provide useful information to estimate the age of
an insertion (see for example [124]). A number of tests, including iHS, XP-EHH, and H2/H1 statistics
or nSL [134–137], can be used on datasets combining TE insertions and SNPs.

Other approaches that directly link environmental and phenotypic variation to SNPs may be
applied to TEs as well. Methods that track association between allele frequencies and environmental
features across populations are increasingly powerful (e.g., BAYPASS [138]). Classical genome-wide
association analyses (GWAS) at the scale of individual phenotypes are also a good way to better
link TEs variation with relevant ecological mechanisms that may shape diversity. Other potentially
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fruitful approaches have been developed that facilitate the joint inference of demography and selection
and make a better use of whole-genome information. Those include ancestral recombination graphs
(ARGs) inference [139], approximate Bayesian computation (ABC) [92], and machine learning [140].
ARGs inference reconstructs coalescent and recombination landscapes along genomic fragments,
and is useful to quantitatively estimate the time since selection and completeness of selective sweeps.
However, this inference is computationally intensive and unpractical for very large datasets [139].
ABC and machine learning are faster approaches that use summary statistics computed across genomic
windows to classify them as selected or not. These approaches allow combining multiple tests for
selection such as the ones described above. Then, expectations for these statistics can be obtained
by simulations under the hypothesis of selection or neutrality, and algorithms can be trained to
classify windows as more or less likely to contain selected sites [141,142]. This type of approach has
the advantage of directly including the confounding effects of demography in its implementation,
and provides an estimate of false positive and false negative rates.

A general question in the study of adaptation at the genomic level lies in identifying the origin of
beneficial alleles. Selected alleles can have independent mutational origins and rise independently
in the frequency in each population, as they provide a selective advantage. Selected alleles might
originate from novel alleles that quickly reach high frequency due to their benefit (hard sweep) or
from pre-existing standing variation (so-called soft sweeps [143]). At last, an allele initially selected
in one population can spread through migration to other populations where it provides a selective
advantage. These questions are especially interesting for TEs. For example, biases in transposition due
to recombination and coevolution with the host may facilitate the repeated emergence of advantageous
mutations in the same genomic regions, ultimately promoting convergent evolution. Methods similar
to diploS/HIC [144] may be used to disentangle scenarios of neutrality, selection on de novo mutations
(hard sweep), or on standing variation (soft sweep). Another recently developed maximum-likelihood
approach, dmc [145], aims at distinguishing between different modes of convergent adaptation
at candidate sites for selection, and may be useful to use on candidate TEs for adaptation and
flanking SNPs.

4.3. Studying Balancing Selection on TEs

Evidence for balancing selection, a type of selection that maintains variation, is still elusive
in natural populations, even for SNPs (but see [146] for a discussion of its importance). This type
of selection is notoriously difficult to detect due to its very localized effects, especially on long
evolutionary time scales. Several recent methods have been specifically developed to detect this type
of selection [139,147,148], and may be used on TEs or linked SNPs and haplotypes (Figure 1B). The role
of TE insertions in facilitating balancing selection is worth investigating, although neglected [149].
A recent example in a locust is a Lm1 insertion in the heat-shock protein Hsp90, which is found only in
the heterozygote state and seems to display latitudinal variation [150]. This insertion is associated
with the faster development of embryos, and may control the number of broods that hatch in a year.
Instead of directly providing a selective advantage, TEs might facilitate the maintenance of diversity at
loci where their expression at the homozygote state would be detrimental, for example at genes of the
Major Histocompatibility Complex [151].

4.4. Limitations and Future Improvements

A word of caution is needed, since all those approaches are more likely to identify whole genomic
regions than specific TE insertions under selection. Therefore, functional validation remains an essential
step to identify TE insertions that have a positive impact on fitness [9]. Moreover, several types of
selection remain difficult to detect and quantify, such as multi-locus weak selection or balancing
selection [109]. However, it is now possible to address such issues, as recent advances in sequencing
will allow for the inclusion of large number of individuals in a dataset, and will thus facilitate the
narrowing of candidate regions for selection. Low-depth sequencing becomes an interesting way to
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obtain genotypic information for many individuals [152], and may be associated with the systematic
search for transposable elements using state-of-the-art methods such as MELT, which have been shown
to perform well when detecting polymorphic variants, even at relatively low sequencing depths [153].
However, other methods are being developed (Table 1), and may be more suited to a specific design,
such as pooled whole-genome resequencing. This may be coupled with recent improvements in GWAS
such as mixed linear models that have enhanced power to detect the loci associated with relevant
phenotypes and polygenic selection [154] using large sample sizes.

Table 1. Summary of tools commonly used for transposable elements (TE) detection and analysis.
Methods that have been compared on human datasets in [155] are highlighted in bold.

Name of the Method Purpose Link Reference

Popoolation_TE2 TE detection in pooled designs https://sourceforge.net/p/popoolation-te2/wiki/Home/ [156]

T-LEX2 Detection of polymorphic TEs
from short reads http://petrov.stanford.edu/cgi-bin/Tlex.html [157]

STEAK Detection of polymorphic TEs
from short reads https://github.com/applevir/STEAK [158]

TIDAL Detection of polymorphic TEs
from short reads

http://www.bio.brandeis.edu/laulab/Tidal_Fly/Tidal_Fly_
Home.html [159]

MELT Detection of polymorphic TEs
from short reads http://melt.igs.umaryland.edu/ [153]

LoRTE Detection of polymorphic TEs
from PacBio sequencing http://www.egce.cnrs-gif.fr/?p=6422 [160]

ITIS Detection of polymorphic TEs
from short reads https://github.com/Chuan-Jiang/ITIS [161]

TEMP Detection of polymorphic TEs
from short reads https://github.com/JialiUMassWengLab/TEMP [162]

Mobster Detection of polymorphic TEs
from short reads http://sourceforge.net/projects/mobster/ [163]

Tangram Detection of polymorphic TEs
from short reads https://github.com/jiantao/Tangram [164]

RetroSeq Detection of polymorphic TEs
from short reads https://github.com/tk2/RetroSeq [165]

RelocaTE2 Detection of polymorphic TEs
from short reads https://github.com/JinfengChen/RelocaTE2 [166]

McClintock Combination of several
methods into a single pipeline https://github.com/bergmanlab/mcclintock [167]

Invade

Population genomics
modeling (forward-in-time)
incorporating coevolution

with piRNA clusters

https://sourceforge.net/p/te-tools/code/HEAD/tree/sim3p/ [104]

SLIM3 Population genomics
modeling (forward-in-time) https://messerlab.org/slim/ [79]

5. The Role of Selfish Elements in Genomic Conflicts: Impact in Natural Populations

During speciation, populations may diverge and accumulate private combinations of alleles at
multiple loci. The disruption of these allele combinations in hybrids may result in lower fitness, which
is a process known as Bateson–Dobzhansky–Muller incompatibilities, and prevents the homogenization
of gene pools [168,169]. These incompatibilities can emerge when conflicts between selfish elements
and the host lead to different coevolutionary mechanisms in isolated populations [170–173]. Secondary
contact between these diverged genomes results in a disruption of the control mechanisms and
ultimately the low fitness of hybrids, therefore maintaining differentiated species. TEs may play
important roles in these processes (see [174] for a more exhaustive review). A classic example of
the hybrid dysgenesis induced by TEs is provided in D. melanogaster. In this species, the P-element
(a DNA transposon) that expanded recently was probably introduced through horizontal transfer
from D. willistoni [175,176]. Crosses between females where the P-elements are absent (M females)
and P males carrying the element produce progeny exhibiting high mutation rates, chromosomal
rearrangements and sterility [177]. This is caused by the deposition of piRNAs in the egg by the
females that cannot recognize the P elements provided by the male genome, causing massive expansion.
This recent invasion of the P element in D. melanogaster, but also in D. simulans [178–180], highlights

https://sourceforge.net/p/popoolation-te2/wiki/Home/
http://petrov.stanford.edu/cgi-bin/Tlex.html
https://github.com/applevir/STEAK
http://www.bio.brandeis.edu/laulab/Tidal_Fly/Tidal_Fly_Home.html
http://www.bio.brandeis.edu/laulab/Tidal_Fly/Tidal_Fly_Home.html
http://melt.igs.umaryland.edu/
http://www.egce.cnrs-gif.fr/?p=6422
https://github.com/Chuan-Jiang/ITIS
https://github.com/JialiUMassWengLab/TEMP
http://sourceforge.net/projects/mobster/
https://github.com/jiantao/Tangram
https://github.com/tk2/RetroSeq
https://github.com/JinfengChen/RelocaTE2
https://github.com/bergmanlab/mcclintock
https://sourceforge.net/p/te-tools/code/HEAD/tree/sim3p/
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the fast dynamic of coevolutionary mechanisms dealing with genomic conflicts and how they can lead
to speciation.

Repeated elements are associated with DNA-binding proteins that shape the chromosome
organization. There is evidence for the rapid reorganization of these repeats between closely related
species (e.g., in rice, [117]) that shape heterochromatin repartition and ultimately disturb the meiotic
process in hybrids. Since TEs are associated with major structural changes and variation in repeat
content, they may play an important role in meiotic drive, where driver elements rise in frequency
by distorting meiosis [173]. Their abundance and high turnover on sex chromosomes (among other
repeats) also suggests that TEs may play an important role in the process of speciation and Haldane’s
rule, which states that in hybrids between incipient species, the sex that is most likely to display
reduced fitness is the heterogametic one [181]. Moreover, TEs can be responsible for gross chromosome
rearrangements due to unequal recombination between TE copies [55], which may explain the fast
divergence in karyotypes and ultimately speciation (see [182] for a review). TEs may also play a role
in dosage compensation between males and females, as demonstrated for a domesticated Helitron
element in Drosophila miranda [183]. In this species, a succession of neo-X chromosomes appeared in
the last million years. Gene expression is upregulated by twofold in males by the male specific lethal
(MSL) complex that targets an ~21-bp specific sequence harbored by the domesticated element [184].
Domestication of the Helitron element occurred each time a new sex chromosome emerged, with a
specific motif invading the chromosome and recruiting adjacent genes in dosage compensation.

How can population genomics contribute to the study of TEs involved in incompatibilities and
speciation? First, it remains clear that functional assessments and crosses in controlled conditions may
be critical to provide definite proof of the role of TEs in maintaining barriers between species [174].
However, cline theory [185] and the information provided by SNPs can be useful to assess which
specific elements may be involved in the speciation process. For example, genomes may be scanned
for an excess of private TE insertions in regions of low recombination that resist the gene flow between
two species. Since Haldane’s rule predicts that sex chromosomes should be quicker to accumulate
incompatibility loci, contrasting the TE content between sex chromosomes and autosomes may also
provide evidence for TE-driven incompatibilities. The analysis of SNP and haplotype diversity in
regions flanking TEs may also facilitate the interpretation, for example by estimating the age of
haplotypes that contain insertions and whether they display evidence of resisting introgression.

Coevolution between TEs and recombination may be important in maintaining divergence between
populations (Figure 1C). TEs may drive variation in recombination rates by inducing changes in
chromatin conformation; they may also facilitate the suppression of recombination between diverging
lineages through their accumulation in low-recombining regions (see [80] for a discussion). This is
why when examining the dynamic of TEs after secondary contact, a careful examination of changes
in recombination rates along chromosomes and a comparison of correlation between active and
inactive families would be recommended [80]. On a related note, variation at genes that shape the
recombination landscape may be relevant to assess in association with TEs dynamics. For example,
in mammals, PRDM9 is involved in the fast-evolving positioning of recombination hotspots [186],
but it is also involved in hybrid sterility and speciation [173]. Variation at this gene between incipient
species may lead to divergent constraints on transposable elements diversity along genomes, which in
turn could facilitate the spread of regions of reduced recombination resisting gene flow.

At last, elements involved in incompatibility may display gradients of association with the
environment due to coupling [187], where clines of incompatible alleles drift to match tension zones
corresponding to environmental discontinuity. Special care should be taken to identify possible cryptic
hybrid zones that can trap incompatible alleles along environmental clines when looking for TEs
involved in adaptation to the environment [169,187].
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6. Future Directions

Recent methodological progresses should prove useful to obtain a better understanding of the
dynamics of TEs in natural populations. It is increasingly acknowledged that local variations in
mutation and recombination rate, demography, selective sweeps, and linked and background selection
have to be integrated into analyses of genetic variation (e.g., [188,189]). All these factors are also
likely to explain local variation in TEs density, forcing us to adopt a more integrative approach
when studying TEs’ dynamics. Comparisons of simulations-based models are flexible and powerful,
and have become increasingly popular in population genomics [92,140]. The challenge with TEs lies
in properly simulating the process by which they insert and are removed from genomes, as well
as demography and selection. This requires a good preliminary knowledge of the idiosyncrasies
of the species and the TEs under investigation. As new methods keep being developed to jointly
estimate the effects of demography and selection on genomes, the field of TEs population genomics
will move toward more model-based approaches. This will provide quantitative estimates of the forces
underlying TEs dynamics.

Another crucial aspect that is still missing for most sequenced species is a high-quality genome
assembly. Poor assemblies often omit highly repetitive regions where TEs are more likely to lie. Without
proper assembly and annotation, it becomes impossible to perform a near-exhaustive assessment of TE
insertions and identification of polymorphisms [9]. This is especially important when investigating
the role of repetitive regions in the emergence of incompatibilities. Besides, since the most powerful
methods to detect selection use the spatial distribution of allele frequencies and LD, they cannot be
used efficiently on highly fragmented genomes. This creates biases; for example, in the Tasmanian
devil, poor assembly led to incorrectly assume the inactivation of LINE-1 elements [190]. However,
the advent of third-generation sequencing techniques should circumvent this issue and expand the
study of TEs to a broader diversity of organisms.

Only a few models are available to study the population genomics of TEs, and drosophilids are
clearly over-represented in the field of TE population genetics. This creates a challenge regarding
drawing general conclusions about TE dynamics, as well as the relative importance of selection and
drift in shaping genomic diversity. The large effective population size of the Drosophila species has been
hypothesized to facilitate a widespread effect of selection across the genome [189,191], making both
demographic inference and the detection of outliers difficult. Besides those on humans, Drosophila,
and some crops (rice, Arabidopsis, maize), studies remain scarce, with a few studies highlighting
the effects of both drift and purifying selection on TE’s diversity in green anoles [51] and birds [192].
As whole-genome assembly and resequencing becomes more affordable, there is hope that more
general conclusions about the microevolutionary dynamics of TEs may be drawn.
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