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Abstract: Lower levels of physical activity (PA) have been associated with increased risk of
cardiovascular disease. Worldwide, there is a shift towards a lifestyle with less PA, posing a serious
threat to public health. One of the suggested mechanisms behind the association between PA and
disease development is through systemic inflammation, in which circulating blood cells play a pivotal
role. In this study we investigated the relationship between genetically determined PA and circulating
blood cells. We used 68 single nucleotide polymorphisms associated with objectively measured
PA levels to perform a Mendelian randomization analysis on circulating blood cells in 222,645
participants of the UK Biobank. For inverse variance fixed effects Mendelian randomization analyses,
p < 1.85 × 10−3 (Bonferroni-adjusted p-value of 0.05/27 tests) was considered statistically significant.
Genetically determined increased PA was associated with decreased lymphocytes (β = –0.03,
SE = 0.008, p = 1.35 × 10−3) and decreased eosinophils (β = –0.008, SE = 0.002, p = 1.36 × 10−3).
Although further mechanistic studies are warranted, these findings suggest increased physical activity
is associated with an improved inflammatory state with fewer lymphocytes and eosinophils.
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1. Introduction

Reduced physical activity (PA) poses a serious threat for public health. Accumulating evidence
shows that lower levels of PA are associated with an increased risk of cardiovascular disease (CVD)
and all-cause mortality [1–3]. Although the World Health Organization (WHO) recommends at least
150 minutes of moderate-intensity aerobic PA throughout the week, the proportion of Europeans
reported to not meet these recommendations has increased in recent years to 46% [4,5]. This trend is
not limited to Europeans but is occurring worldwide [6]. Although health care cost estimates related
to physical inactivity vary across studies (e.g., 2.4–11.1% of the healthcare expenditure in the United
States of America), it is generally believed that physical inactivity is a costly pandemic and associated
with a substantial disease burden [7].

However, the exact mechanisms underlying the associations of PA the development of disease are
incompletely understood. It has been suggested that systemic inflammation plays a pivotal role in
the association between PA and CVD, possibly through changes in circulating (inflammatory) blood
cells [8,9]. It is therefore important to investigate whether the effects of PA on CVD risk could be linked
through changes in circulating blood cells. However, the association between PA activity and circulating
blood cells has only been investigated using traditional observational analyses, which are prone to
suffering from confounding effects [10,11]. PA is determined by both genetic and environmental
factors [6,12]. A recent genome-wide association study (GWAS) using objectively measured data
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from wrist-worn accelerometers of PA in a large sub-cohort of the UK Biobank identified newly
associated single nucleotide polymorphisms (SNPs) and studied whether activity might contribute
causally to disease outcomes [12]. In this study, we aimed to investigate the relationship between
genetically determined PA levels, based on the previously reported SNPs, and circulating blood cells
using a Mendelian randomization (MR) strategy to minimize confounding effects. We hypothesize
a genetically determined higher level of PA is associated with a lower inflammatory state with fewer
circulating inflammatory blood cells.

2. Material and Methods

2.1. UK Biobank Participants

The UK Biobank study design and population have been described in detail elsewhere [13].
In brief, the UK Biobank is a large community-based prospective study in the United Kingdom that
recruited over 500,000 participants aged 40–69 years aiming to improve the prevention, diagnosis,
and treatment of a plethora of diseases. All participants gave informed consent for the study [13]. At the
baseline visit, vital signs and biological samples were collected, together with data of self-completed
questionnaires, interviews, and physical measurements. The present study was conducted under
application number 12,006 of the UK Biobank resource.

2.2. Genotyping and Imputation

The genotyping process and arrays used in the UK Biobank study have been described elsewhere
in more detail [14]. Briefly, participants were genotyped using the custom UK Biobank lung exome
variant evaluation axiom (Affymetrix: Santa Clara, CA, United States; n = 49,949), which includes
807,411 SNPs or the custom UK Biobank axiom array (Affymetrix; n = 452,713), which includes 820,967
SNPs [13]. The arrays have insertion and deletion markers with more than 95% common content [14,15].
Imputed genotype data were provided by UK Biobank, based on merged UK10K and 1000 Genomes
phase 3 panels [16]. Figure 1 shows a flowchart of the study sample selection and is further described
below. Participants were excluded if there was no genetic data available or if there was a mismatch
between genetic and reported sex (n = 378). Furthermore, participants with high missingness or excess
heterozygosity were excluded (n = 963). Participants with familial relatedness or who were not of
white British descent were excluded as well (n = 64,535). In addition, participants included in the
GWAS on physical activity (n = 90,277) [12] and participants without lab measurements were excluded
(n = 18,498). Lastly, participants with diseases or medication affecting the immune response were
excluded as well (n = 105,263). We created a set of 222,645 individuals for the present analyses.

For the definitions of diseases, we used hospital episode statistics data in combination with
self-reported diagnoses and medication, as described previously [17]. Further information on the
definitions of diseases is presented in Supplementary Table S1.
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Figure 1. Flowchart for the selection of the analyzed study sample from the UK Biobank Study.
GWAS: Genome-wide association study; UKBB: UK Biobank; CRP: C-reactive protein; HIV: human
immunodeficiency virus.

2.3. Single Nucleotide Polymorphisms

For our analyses between genetically determined PA and circulating blood cells, we used a set
of 68 SNPs identified in the GWAS on physical activity by Doherty et al. [12]. Similar to Doherty et
al., we used 68 SNPs that were associated with physical activity with p < 5 × 10−6 (Doherty et al.,
Supplementary Figure S8) to explain more phenotypic variance than the three SNPs at p < 5 × 10−8.
Supplementary Table S2 contains a detailed list of the extracted SNPs. SNPs associated with sleep
duration in the study by Doherty et al. were not present in this list of SNPs.

2.4. Statistical Analyses

Normally distributed continuous variables were summarized as mean ± standard deviation
(SD) and skewed variables as median and interquartile range (IQR). Linear regression analyses were
performed to assess the association between PA and blood cell counts. Regression analyses between
SNPs and circulating cells were adjusted for age at the baseline visit, sex, genotyping chip, and the first
30 principal components provided by UK Biobank (to adjust for population structure). Because the PA
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SNPs were identified in a GWAS on objectively measured PA, the associations between the SNPs with
self-reported PA were not tested as these were considered separate entities. Linear regression analyses
were performed using Stata 15 (StataCorp, College Station, TX, United States).

The association between genetically determined increased physical activity with outcomes was
first assessed using a fixed-effects inverse-variance weighted (IVW) meta-analysis method, combining
the Mendelian randomization (MR) estimates for each SNP with the outcome. To adjust for multiple
testing, we applied a Bonferroni correction (significance level divided by number of independent tests)
and considered a two-sided p-value of less than 0.05/27 = 1.85 × 10−3 as statistically significant for
the main analyses using the MR-IVW fixed effects model. For the MR-IVW effects model to be valid,
the assumption of absence of pleiotropy needs to be fulfilled. Pleiotropy occurs when genetic variants
associated with the exposure of interest, exert their effect on the same outcome through multiple
pathways. Heterogeneity tests are an easy way to evaluate possible pleiotropy, since low heterogeneity
indicates that estimates between the genetic variants’ association with the outcome should vary by
chance only, which is only possible in case of absence of pleiotropic effects. The Rücker framework was
adopted to differentiate between preferred models. In case Cochran’s Q in the MR-IVW fixed effects
analyses was significant (p < 0.05), suggesting heterogeneity and thus non-random error, the MR-IVW
random effects model was adopted. Rücker’s Q was calculated to evaluate the heterogeneity within the
MR-Egger analyses [18]. We then calculated whether the Rücker’s Q’ statistic was different (p < 0.05)
from Cochran’s Q statistic (Q-Q’) [18]. A statistically significant difference indicates the MR-Egger test to
be the best approach in case Q-Q’ is large and positive [18]. MR-Egger assumes pleiotropic effects of the
SNPs on the outcome are independent of their association with PA, and therefore allows for a non-zero
intercept [11]. For this, the MR-Egger must not violate the InSIDE assumption, which assumes the
association of the SNPs with the exposure are independent of their direct pleiotropic effects on the
outcome. The MR-Egger provides additional information on pleiotropy as a non-significant different
intercept from 0 (p > 0.05) indicates evidence for absent pleiotropic bias. MR-Steiger filtering was
performed to remove variants with stronger associations (R2) with the outcome than the exposure [18].
Beta values (β) and standard errors (SE) are provided for the MR outcomes. Lastly, we performed
a weighted median analysis, which allows up to 50% of the information from variants to violate the
MR assumptions [19]. For sensitivity analyses, we adopted a p-value of <0.05.

MR analyses were performed using the R (version 3.5.1) and the package TwoSampleMR version
0.4.22 (https://mrcieu.github.io/TwoSampleMR/).

3. Results

3.1. Population Characteristics

Baseline characteristics are provided in Table 1. Of the 222,645 participants included in the
UK-Biobank, 105,970 (47.6%) were male, and the mean age was 56 ± 8 years. The population was
slightly overweight (body mass index ≥25 kg/m2) with a mean body mass index of 27.0 kg/m2.
More than half of the population never smoked or smoked <100 cigarettes. On average, participants
spent 4.88 (inter quartile range (IQR): 1.5–11.3) hours per week doing moderate PA and 0.75 (IQR
0.0–2.7) hours per week doing vigorous PA, based on self-reported data using questionnaires.

Table 1. Baseline characteristics.

Characteristic No. (%)

Total, No 222,645
Age, mean (SD), years 56 (8)

Sex, male (%) 105,970 (47.6%)
Body Mass Index, mean (SD), kg/m2 27.0 (4.4)

https://mrcieu.github.io/TwoSampleMR/
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Table 1. Cont.

Characteristic No. (%)

Smoking behavior, No (%)
Never or <100 cigarettes 125,777 (58.1%)

Ex-smokers 66,895 (30.9%)
Current 23,849 (11.0%)

Hypertension, No (%) 60,900 (27.4%)
Hyperlipidemia, No (%) 40,099 (18.0%)

Diabetes Mellitus type 2, No (%) 6,984 (3.1%)

PA phenotypes

Moderate PA, median (IQR), h/week 4.9 (1.5–11.3)
Vigorous PA, median (IQR), h/week 0.8 (0.0–2.7)

Blood cell counts

Leukocytes, median (IQR), 109/L 6.57 (5.60–7.70)
Erythrocytes, median (IQR), 1012/L 4.54 (4.29–4.82)
Neutrophils, median (IQR), 109/L 3.95 (3.20–4.82)

Lymphocytes, median (IQR), 109/L 0.92 (0.60–1.20)
Monocytes, median (IQR), 109/L 0.44 (0.36–0.55)
Eosinophils, median (IQR), 109/L 0.13 (0.10–0.21)
Basophils, median (IQR), 109/L 0.02 (0.00–0.04)

Reticulocytes, median (IQR), 1012/L 0.06 (0.04–0.07)
Thrombocytes, median (IQR), 109/L 246.8 (212.9–285.0)

Data is shown as number (%), as mean with standard deviation (SD) or as median with inter-quartile range (IQR).
Units of measurements are indicated. PA: physical activity.

3.2. Genetically Determined Physical Activity and Circulating Blood Cells

Detailed information on the SNPs and their estimates on circulating blood cells is provided in
Supplementary Table S3. The association between all 68 SNPs associated with PA with circulating
blood cells was assessed using MR analyses. In MR-IVW fixed-effects analyses, genetically determined
increased duration of PA was associated with decreased lymphocytes (β = –0.026, SE = 0.008,
p = 1.35 × 10−3), decreased eosinophils (β = –0.008, SE = 0.002, p = 1.36 × 10−3), and increased platelet
distribution width (β = 0.04, SE = 0.009, p = 9.07 × 10−5) (Table 2). Figures 2–4 displays the individual
SNP forest plots for these three outcomes. Supplementary Figure S1–S3 displays the corresponding
scatter plots. PA was not associated with any of the other outcomes in the MR-IVW fixed-effects
analyses (Table 2), which will therefore not be discussed any further.

Cochran’s Q of the association between PA and lymphocytes (Q = 160, DF = 67, p = 6.50 × 10−10)
and eosinophils (Q = 180, DF = 67, p = 6.10 × 10−12) indicated the MR-random effects model to be the
preferred approach. Using this approach, the association with eosinophils remained significant (β
= −0.0078, SE = 0.009, p = 0.049), but the association with lymphocytes was attenuated (β = −0.026,
SE = 0.014, p = 0.072). However, the loss of statistical significance was probably attributable to the
larger standard error due to loss of power in the random effects model. In the weighted median
MR analyses, the associations between PA and leukocytes (β = −0.030, SE = 0.0134, p = 0.022) and
eosinophil count (β = −0.0036, SE = 0.0036, p = 0.3229) were lost, of which the latter could be attributed
to wider standard errors. MR-Steiger filtering indicated all SNPs were more strongly associated with
the PA behavior than with lymphocytes and eosinophils. The MR Egger intercept indicated little
evidence for pleiotropy for the analyses on lymphocytes and eosinophils.
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Table 2. Associations between increased physical activity and circulating blood cells.

N snps Inverse Variance Weighted (Fixed
Effects)

Inverse Variance Weighted
(Multiplicative Random Effects) MR Egger Fixed Effects Weighted Median

Beta SE p-Value Beta SE p-Value Beta SE p-Value Beta SE p-Value

Leukocyte count (10ˆ9

cells/L)
68 –0.0406 0.0307 1.86 × 10−1 –0.0406 0.0465 3.83 × 10−1 0.0106 0.1455 9.42 × 10−1 0.0024 0.0487 9.61 × 10−1

Erythrocyte count (10ˆ12

cells/L)
68 0.0001 0.0063 9.85 × 10−1 0.0001 0.0137 9.93 × 10−1 0.0811 0.0417 5.64 × 10−2 −0.0126 0.0098 1.99 × 10−1

Erythrocyte distribution
width (%) 68 0.0078 0.0166 6.40 × 10−1 0.0078 0.0281 7.82 × 10−1 0.0562 0.0878 5.25 × 10−1 −0.0047 0.0251 8.53 × 10−1

Neutrophil count (10ˆ9

cells/L)
68 0.0055 0.0243 8.20 × 10−1 0.0055 0.0357 8.77 × 10−1 0.0768 0.1118 4.95 × 10−1 −0.0099 0.0369 7.88 × 10−1

Neutrophils (%) 68 0.4236 0.1502 4.80 × 10−3 0.4236 0.2288 6.41 × 10−2 0.8990 0.7164 2.14 × 10−1 0.0012 0.2359 9.96 × 10−1

Lymphocyte count
(10ˆ9 cells/L) 68 –0.0259 0.0081 1.40 × 10−3 –0.0259 0.0144 7.21 × 10−2 –0.0317 0.0454 4.87 × 10−1 −0.0305 0.0134 2.24 × 10-2

Lymphocyte (%) 68 –0.3606 0.1294 5.30 × 10−3 –0.3606 0.2016 7.37 × 10−2 –0.8313 0.6300 1.92 × 10−1 0.0836 0.1995 6.75 × 10−1

Monocyte count
(10ˆ9 cells/L) 68 –0.0010 0.0035 7.66 × 10−1 –0.0010 0.0045 8.21 × 10−1 0.0057 0.0140 6.86 × 10−1 −0.0013 0.0052 8.09 × 10−1

Monocytes (%) 68 0.0158 0.0462 7.33 × 10−1 0.0158 0.0613 7.97 × 10−1 0.0549 0.1919 7.76 × 10−1 0.0116 0.0739 8.75 × 10−1

Eosinophil count (10ˆ9

cells/L)
68 –0.0078 0.0024 1.40 × 10−3 –0.0078 0.0039 4.90 × 10−2 –0.0071 0.0123 5.67 × 10−1 −0.0036 0.0036 3.23 × 10−1

Eosinophils (%) 68 –0.0687 0.0340 4.36 × 10−2 –0.0687 0.0619 2.67 × 10−1 –0.1215 0.1946 5.35 × 10−1 0.0021 0.0534 9.69 × 10−1

Basophil count
(10ˆ9 cells/L) 68 –0.0010 0.0009 2.89 × 10−1 –0.0010 0.0009 2.71 × 10−1 –0.0006 0.0028 8.32 × 10−1 −0.0027 0.0013 4.54 × 10−2

Basophils (%) 68 –0.0141 0.0110 1.99 × 10−1 –0.0141 0.0110 1.99 × 10−1 –0.0131 0.0332 6.94 × 10−1 −0.0262 0.0161 1.04 × 10−1

Reticulocyte count
(10ˆ12 cells/L) 68 –0.0256 0.0111 2.04 × 10−2 –0.0256 0.0188 1.73 × 10−1 0.0260 0.0586 6.59 × 10−1 −0.0455 0.0173 8.40 × 10−3

Reticulocytes (%) 68 –0.0242 0.0108 2.50 × 10−2 –0.0242 0.0165 1.41 × 10−1 –0.0001 0.0517 9.99 × 10−1 −0.0479 0.0161 3.00 × 10−3

Reticulocyte volume
(femtolitres) 68 –0.3151 0.1397 2.41 × 10−2 –0.3151 0.2491 2.06 × 10−1 –0.9755 0.7778 2.14 × 10−1 0.0022 0.2097 9.92 × 10−1

Immature reticuloyctes
fraction 68 –0.0027 0.0011 1.42 × 10-2 –0.0027 0.0016 1.01 × 10−1 0.0026 0.0051 6.15 × 10−1 −0.0055 0.0017 1.30 × 10−3

Platelet count
(10ˆ9 cells/L) 68 –2.5671 1.0319 1.29 × 10−2 –2.5671 1.8209 1.59 × 10−1 2.7242 5.6655 6.32 × 10−1 1.4266 1.6611 3.90 × 10−1

Platelet volume
(femtolitres) 68 –0.0001 0.0199 9.96 × 10−1 –0.0001 0.0352 9.98 × 10−1 –0.1221 0.1092 2.68 × 10−1 0.0083 0.0334 8.04 × 10−1

Platelet packed cell
volume (%) 68 –0.0025 0.0008 2.50 × 10−3 –0.0025 0.0014 6.65 × 10−2 –0.0003 0.0043 9.41 × 10−1 0.0000 0.0013 9.76 × 10−1
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Table 2. Cont.

N snps Inverse Variance Weighted (Fixed
Effects)

Inverse Variance Weighted
(Multiplicative Random Effects) MR Egger Fixed Effects Weighted Median

Beta SE p-Value Beta SE p-Value Beta SE p-Value Beta SE p-Value

Platelet distribution
width (%) 68 0.0369 0.0094 1.00 × 10−4 0.0369 0.0146 1.14 × 10−2 –0.0499 0.0443 2.64 × 10−1 0.0106 0.0144 4.64 × 10−1

Hemoglobin (g/dL) 68 0.0009 0.0177 9.60 × 10−1 0.0009 0.0315 9.78 × 10−1 0.1597 0.0974 1.06 × 10−1 −0.0216 0.0274 4.30 × 10−1

Hematocrit (%) 68 –0.0500 0.0521 3.37 × 10−1 –0.0500 0.0948 5.98 × 10−1 0.5543 0.2887 5.92 × 10−2 −0.0150 0.0816 8.54 × 10−1

Mean corpuscular
volume (femtoliters) 68 –0.1090 0.0783 1.64 × 10−1 –0.1090 0.1126 3.33 × 10−1 –0.3913 0.3527 2.71 × 10−1 0.0492 0.1203 6.83 × 10−1

Mean corpuscular
hemoglobin
(picograms)

68 –0.0078 0.0321 8.08 × 10−1 –0.0078 0.0447 8.61 × 10−1 –0.2389 0.1367 8.52 × 10−2 0.0500 0.0488 3.05 × 10−1

Mean corpuscular
hemoglobin

concentration
(grams/dL)

68 0.0402 0.0187 3.19 × 10−2 0.0402 0.0237 8.90 × 10−2 –0.0970 0.0719 1.82 × 10−1 0.0304 0.0284 2.84 × 10−1

Mean sphered cells
volume (femtoliters) 68 –0.0564 0.0955 5.55 × 10−1 –0.0564 0.1836 7.59 × 10−1 –0.5939 0.5733 3.04 × 10−1 0.2760 0.1451 5.72 × 10−2
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Figure 2. Forest plot of physical activity single nucleotide polymorphisms on lymphocyte levels.



Genes 2019, 10, 908 9 of 14

Figure 3. Forest plot of physical activity single nucleotide polymorphisms on platelet width.
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Figure 4. Forest plot of physical activity single nucleotide polymorphisms on eosinophil level.

As an additional analysis, we investigated whether the relationship between genetically determined
PA with circulating lymphocytes or eosinophils differed between levels of self-reported PA. However,
genetically determined PA was not significantly associated with either lymphocytes or eosinophils
amongst individuals with no (n = 16,307), only moderate (n = 52,273), or only vigorous (n = 4536)
self-reported PA.

In the heterogeneity analyses, Q-Q’ was statistically significant for platelet distribution width (Q
= 160 DF = −67 p = 1.80 × 10−3), indicating the MR-Egger analysis to be the best approach. Using this
approach, the association between genetically determined PA with platelet distribution width was
reversed in effect and no longer significant (β −0.05, SE 0.04, p = 0.26). Furthermore, we performed
a look-up in MR-Base to explore whether the 68 genetic variants were associated with other traits than
PA. This information can be found in Supplementary Table S5.

4. Discussion

In the present study, we provide evidence for the association between genetically determined
PA and circulating blood cells. Genetically determined increased duration of PA was cautiously
associated with decreased lymphocytes and decreased eosinophils, suggesting increased levels of PA
may improve the inflammatory state. This is in line with our hypothesis.

The present study is the first to report associations between genetically determined PA and
circulating blood cells. The association between genetically determined increased PA and decreased
lymphocyte levels is partly in line with previous research which studied the association between
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PA and total leukocyte count [8]. In 4,857 individuals with a mean age of 43 ± 1 year and 43%
females, participating in the National Health and Nutrition Examination Survey, the association
between increased PA and a decreased leukocyte count has been observed, suggesting that active
individuals might maintain a lower inflammatory state and might be less prone to future chronic disease
development [8]. We did not assess the correlations between self-reported PA and circulating blood cells,
and this study can therefore not be directly compared with these previous studies. However, our study
is of additive value, since we were able to study the association between PA and a broader range of cell
types (i.e., monocytes, lymphocytes, neutrophils, eosinophils, and basophils) instead of total leukocyte
count solely. We did not observe an association between genetically determined PA and total leukocyte
count, but we did observe an association between increased genetically determined PA and decreased
lymphocytes levels in the MR-IVW analyses. For a long period, a decrease in lymphocytes has been
considered as a suppression of the human immune system and therefore as detrimental [20]. However,
recent evidence indicates that this reduction in peripheral blood does not reflect immune suppression,
but represents a heightened state of immune surveillance and immune regulation, which is driven by
a transfer of cells to peripheral tissues, such as the gut or the lungs [21]. Within the cardiovascular
field, T-lymphocytes are known to stimulate macrophages expressing collagen-degrading enzymes
and thereby increasing the risk of plaque rupture. Lower lymphocyte levels in the blood stream,
might therefore also be beneficial for the risk of CVD [22,23]. The association between lymphocyte
count and PA in our study was lost in the sensitivity analyses, although the strength of the effect
remained similar. This loss of association may be due to a larger standard error reducing the statistical
power. Similarly, no association was observed between genetically determined PA and lymphocytes or
eosinophils across levels of self-reported PA, which is likely due to the small sample sizes in these
groups. Further MR studies using variants which explain a larger variance in PA and also in larger
groups of self-reported PA levels are warranted to further investigate these associations.

There is limited data on the association between PA and eosinophils. Earlier research in 11 athletes
running an ultramarathon (90 kilometers), showed a non-allergic activation of eosinophils, reflected
by an increase of eosinophil cationic protein [24]. Our study population of community dwelling
middle-aged men and women substantially differed from those athletes (e.g., age, ethnicity, and athletic
condition), and therefore, it is not possible to formulate any hypotheses or to draw any comparisons [24].
Recently, in 5287 patients who underwent coronary angiography, a negative association between
peripheral eosinophil count and the severity of coronary artery disease (CAD) has been observed [25].
Furthermore, previous studies have suggested that eosinophils play a key role in the initiation,
progression, and rupture of thrombotic plaques, which was confirmed by tissue samples obtained
through thrombus aspiration in patients with myocardial infarction [26,27]. In these samples, a large
amount of eosinophils was present [26]. However, these findings (low peripheral eosinophil count
associated with increased CAD severity and high eosinophil counts observed in atherosclerotic plaques)
were observed in CAD patients, whereas our study was performed in a general population of which
only 3.7% had a medical history of CAD at baseline. The present findings indicate increased PA is
associated with decreased eosinophil levels. Possibly, less PA leading to higher eosinophil levels could
play a role in the development of plaques eventually leading to CAD. In this case, increased PA leading
to lower eosinophil levels might be protective for plaques and CAD. Further research is needed to
investigate this hypothesis.

Contrary to previous cross-sectional observational studies, we did not observe associations
between genetically determined PA and red blood cell indices [28–30]. This might imply that changes in
red blood cells during or after PA are bystanders instead of a consequence of PA, although mechanistic
studies are necessary to unravel these associations.

Of interest is the specific function of three leading genetic polymorphisms rs564819152, rs2696625,
and rs59499656, which may provide more insights in the mechanisms underlying genetically determined
PA and circulating immune cells. rs564819152 is located near the SKIDA1 gene. This gene is located
on chromosome 10 and encodes the Ski-Dach domain-containing protein 1, which is associated
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with different types of cancer [31,32]. Furthermore, this gene was found to be associated with lung
function [33]. These functions might affect the relation between PA and blood cells, although our
heterogeneity tests did not indicate pleiotropy of the genetic variants.

rs2696625 and rss59499656 are located near the genes KANSL1-AS1 and SYT4, respectively.
KANSL1-AS1 has been described in the context of Alzheimer’s and Parkinson’s diseases [34]. SYT4
(synaptotagmin 4) is a protein coding gene that has been associated with various traits, i.e., body mass
index, lung function, and body fat percentage [33,35,36]. As obesity is associated with an increased
inflammatory state, this route could be involved in the association between genetically determined PA
and circulating immune cells [37]. Aside from the leading variants, the association with obesity-related
traits was also observed in the MR-base look-up with the other genetic variants. However, further
mechanistic studies are warranted to provide more insights into these possible additional pathways.

A major strength of our study is the large cohort size of 222,645 participants. Second, this is the
first study to assess genetic variants of PA using SNPs that were found in a GWAS performed with
objectively measured PA data using wrist-worn accelerometer data. Thirdly, we used strict exclusion
criteria to confine factors affecting immune cells such as infections. Furthermore, we used a stringent
threshold p-value to reduce false positive rates and increase reproducibility.

As a future perspective, it would be of additional value to investigate the association with the
functionality and activity of cells, for example by examining circulating cytokine levels. Circulating
cytokines were not measured in the UK Biobank and therefore not tested in the present study. This study
could, however, serve as a starting point, providing new insights into where to focus future studies on
the association between PA and circulating blood cells.

5. Conclusions

In conclusion, this study shows that genetically determined PA is associated with changes in
circulating blood cells. Increased genetically determined PA is associated with decreased lymphocyte
and eosinophil levels. Although further mechanistic studies are warranted, these findings cautiously
suggest lifestyle changes that include more PA should be encouraged to improve the inflammatory state.
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