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Abstract: Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is
a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct
in different genotypes. To understand the specific response of rice in panicle blast, transcriptome
analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using
RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inocu-
lation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially
expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the
differential disease response. The defense responsive genes are involved mainly in defense pathways
namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell
wall modification. The common differentially expressed genes in both the cultivars were defense
responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxi-
dases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall
proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel
genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly
expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our
study shows that panicle blast resistance is a complex phenomenon contributed by early defense
response through ROS production and detoxification, MAPK and LRR signaling, accumulation of
antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the
entry and spread of the fungi. The present investigation provided valuable candidate genes that can
unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.

Keywords: rice; panicle blast; RNA-Seq; Magnaporthe; cell wall modification; disease resistance

1. Introduction

Rice is the staple food for more than two billion peoples worldwide. With a total
production of nearly 755.473 million tons around the globe in 2019, China ranks first
with 209.614 million tones followed by India with 177.645 million tons (Available online:
http://fao.org/faostat (accessed on 22 December 2020)). Despite enormous production,
it is estimated that 30% more rice is required by 2030 [1]. Worldwide 50% of the total
yield loss is due to different environmental stresses. Amongst all, rice blast disease caused
by a fungus M. oryzae, alone is responsible for 10% to 30% annual yield loss [2], which
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can reach up to 100% under favorable conditions by devastating the entire field of rice
within 15 to 20 days after infection [3]. Rice blast symptoms appear on all parts of the plant
including roots. In leaf blast, necrotic lesions are formed on the surface of the leaf, resulting
in the reduction of photosynthetic rate, plant height, number of bearing panicles and also
individual grain weight. Stem blast or panicle blast reduces the strength of the stem leading
to barren panicles, broken necks and sterile grains. As it directly affects the panicles, it
leads to complete yield losses and thus is a major threat to global rice production.

The most effective and environment-friendly approach for controlling blast disease is
to use blast resistant cultivars of rice [4]. Traditional molecular breeding approaches have
successfully developed blast resistant varieties [5]. However, the breakdown of resistance
in these varieties require continuous efforts to identify novel genes or quantitative trait
loci (QTLs) conferring broad spectrum resistance and also to understand the underlying
mechanisms. Over 100 resistant (R) genes responsible for blast resistance have been
identified and 25 of them have been cloned so far [6]. Two QTLs, panicle blast 6–1(qPb6–1)
and panicle blast-bodao 1 (Pb-bd1) governing panicle blast resistance was identified earlier
by molecular breeding approaches [7] and only one gene panicle blast 1 (Pb1) encoding an
atypical CC domain containing nucleotide binding site leucine-rich repeats (CC-NBS-LRR)
protein had been identified for panicle blast resistance [8]. Traditionally, map-based cloning
using segregating populations like F2, recombinant inbred lines (RILs) and doubled haploid
population was used for identification of blast resistant genes [9–11]. Along with it,
new genomic technique like RNA sequencing (RNA-Seq) is proving to be useful and
affordable to analyze differential expression patterns [12–14] and identification of resistant
and susceptibility genes. Resistance against blast pathogen in rice is a combined effect of
multiple regulons including transcription factors (myeloblastosis family of transcription
factors (MYB), WRKY, ethylene response factor (ERF), etc.), signaling kinases, LRR genes,
cell wall modification related genes, etc. [15–17]. Earlier, microarray analysis of blast
resistant and susceptible lines also showed up-regulation of various defense response
genes involved in resistance reactions in rice [18]. However, all these studies are related to
leaf blast disease.

Though panicle blast is the most harmful type of blast disease, there are very few
reports that are specifically targeting the panicle blast in rice. The disease response of leaf
and panicle to blast infection is different and the varieties which are susceptible to leaf blast
are resistant to neck blast and vice versa [19]. Some of the resistant cultivars at the seedling
stage become susceptible to neck blast [20]. The well-known panicle blast resistant gene Pb1
governs “adult resistance” where rice plants are blast susceptible at a vegetative stage but
are resistant at the reproductive stage and thus induces strong panicle blast resistance [8].
This warrants the identification of more such panicle blast resistant genes and related dis-
ease responsive pathways involved in rice. In the present study, panicle blast resistant and
susceptible cultivars were studied by RNA-seq to compare global gene expression profiles
with time-course analysis at three time points post inoculation of M. oryzae. It resulted
in a plethora of differentially expressed loci involved in disease response. These genes
primarily mapped to the major defense responsive pathways namely, pathogenesis, signal
transduction, stress response, ROS production and detoxification, hormonal regulation,
secondary metabolite synthesis, and cell wall modification. Besides these, some novel
genes, functions of which are not yet characterized were also identified in the resistant
cv. Tetep. The study finally proposed a novel complex transcript network responsible for
resistance against the panicle blast disease.

2. Materials and Methods
2.1. Plant Materials, Fungal Material, Growth Conditions and Treatments

Seeds of indica rice cultivar Tetep (resistant to blast) and HP2216 (susceptible) were
surface sterilized, germinated and allowed to grow in a greenhouse (25 ± 2 ◦C and
16 h light/8 h dark) till panicle formation. The disease resistant and susceptible phe-
notypes of these genotypes are well known and are characterized earlier in our laboratory.



Genes 2021, 12, 301 3 of 22

These plants were then used for inoculation of M. oryzae strain Mo-ni-0025 (Dehradun,
India). For inoculation, fungus culture was maintained on potato dextrose agar (PDA)
media, for 10–12 days at 25 ◦C. Later, it was transferred to Mathur’s media and kept for 8
to 10 days at 25 ◦C for reproductive growth. The reproductive growth having conidia is
then scrapped using 5 mL of autoclaved double distilled water and a conidial suspension
(1 × 105 conidia/mL) was prepared. Panicles at the neck were inoculated with the sus-
pension by syringe inoculation technique which is standardized earlier in our laboratory
and plants were kept in controlled conditions at the temperature (25 ± 2 ◦C) and 90%
relative humidity in dark. Panicle samples of both Tetep and HP2216 cultivars were col-
lected at 48, 72, and 96 h post infection (hpi) of blast pathogen along with mock inoculation
using double distilled water. The time points for sample collection were identified by
conducting experiments of disease infection, where the minor symptoms were visible on
susceptible genotype at 48 hpi. Thus, 48 hpi was considered as early infection response to
study time-course analysis. All samples were frozen in liquid nitrogen and stored at −80
◦C till RNA isolation.

2.2. RNA Isolation and cDNA Preparation

All the inoculated panicle samples along with mock of both Tetep and HP2216 cultivars
were used for total RNA isolation. SpectrumTM Plant Total RNA Kit (Sigma-Aldrich, Co., St.
Louis, MO, USA) was used for total RNA isolation according to the manufacturer’s protocol.
The isolated RNA was analyzed for its quality by gel electrophoresis and quantified by
spectrophotometer (Nano-Drop 2000, Thermo Fisher Scientific, Wilmington, DE, USA).
RNA integrity number (RIN) was calculated by using Agilent 2100 Bioanalyzer (Agilent
Technologies, Thermo Fisher Scientific Inc, Waltham, MA, USA) RNA samples with RIN
greater than or equal to 7 were used for library and cDNA preparation. 1 µg of total
RNA, isolated from the samples, was used to prepare cDNA using Applied Biosystems
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific Baltics UAB,
Vilnius, Lithuania) by following the manufacturer’s instructions.

2.3. Library Preparation, Illumina Sequencing and Processing of The Reads

The fragment library for RNA sequencing was prepared using Illumina True-Seq
RNA Library Prep Kit (San Diego, California, USA) by following the given protocol. Each
biological replicate was a pool of five independent panicles. Two biological replicates were
used for each sample and thus 16 samples were sequenced. Illumina Hi-Seq 2000 platform
was used to generate large amounts of sequencing data performing paired-end sequencing
runs using 1 µg of good quality total RNA (RIN ≥ 7) to obtain 101 bp sequence length
reads. Quality analysis of raw reads was performed using fast quality check (FastQC)
(version 0.11.5) [21]. These raw reads were further processed by Trimmomatic (version
0.36) [22] for clipping adapter and low-quality sequences. Reads shorter than 36 bp were
discarded and trailing bases below the quality 30 were trimmed. The reads were again
subjected to quality check by FastQC before using for transcriptome analysis.

2.4. Reference Mapping, DEG and Pathway Analysis

Read mapping for gene expression analysis and identification of differentially ex-
pressed genes were performed using the Tuxedo pipeline. The Tuxedo pipeline includes
TopHat2 [23], cufflinks, and cuffdiff. High quality trimmed reads were mapped to the rice
reference genome (Oryza sativa L. ssp. japonica cv. Nipponbare) using TopHat2. Parameters
during reference alignment of reads using TopHat2 were as follow: read mismatch as 2,
read gap length as 2, read edit-distance as 2, minimum and maximum intron length as
50 and 500,000 respectively, maximum multi hits as 20, maximum insertion and deletion
length of 3. Cufflink version 2.1.1 was used to estimate and assemble their abundance
in RNA-seq samples using parameters like average fragment length of 200 bp, fragment
length standard deviation of 80 bp and unlimited alignment was allowed per fragment
(Available online: http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/ (accessed on 22
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June 2020)). In cufflink, RNA-seq reads were accepted and assembled to a parsimonious
set called transcripts [24]. After mapping, reads were used to merge with their biological
replicates using cuff-merge. Cuffmerge removes transcribed fragments that are artifacts in
the experiment. Lastly, Cuffdiff version 2.1.1 was used to quantify transcripts in terms of
fragments per kilobase of transcript per million mapped reads (FPKM) and to obtain a list
of the significant differentially expressed loci.

Differentially expressed loci with fold change value of ≥ +2 and −2 and p-value of ≤
0.01 were used to select the significant loci from the data. For further analysis, R-studio
was used to generate a heatmap for the selected loci [25]. To compare between the two
data sets and to identify novel, unique and common loci, Venn diagrams were prepared
using InteractiVenn [26]. Pathway analysis for the significant differentially expressed
loci (SDEL) was performed using the MapMan 3.5.1 with O. sativa L. ssp. japonica cv.
Nipponbare MSU v7 mapping files [27] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway. The chromosome map showing the locations of all the genes was
generated using the Chromosome Map Tool available on Oryzabase (Available online:
http://viewer.shigen.info/oryzavw/maptool/MapTool.do (accessed on 29 June 2020)).

2.5. Singular Enrichment Analysis and Gene Ontology Analysis

Singular enrichment analysis (SEA) and Gene ontology analysis was used to classify
SDEL based on the molecular function, biological process, and the cellular component
at different time points in both resistant and susceptible cultivars using AgriGo v2.0 [28].
AgriGo is an online tool and database used for Gene Ontology analysis, specially designed
for agricultural studies.

2.6. Validation of Transcripts by Quantitative Real-Time PCR

Quantitative real-time PCR (qRT-PCR) was performed for validation of differentially
expressed loci obtained from the RNA-seq data. Primers were designed according to
the gene sequences present at the gene database using PrimerQuest (Integrated DNA
Technologies, Coralville, IA, USA) tool (Supplementary Table S1). Light Cycler® 480 II
(Roche, Rotkreuz, Switzerland) was used to perform qRT-PCR with Brilliant III Ultra-Fast
Sybr® Green qPCR Master Mix from Agilent Technologies (Santa Clara, CA, USA). The
reaction mixture of qRT-PCR was prepared using required amount of diluted cDNA as
template, 0.3 µL of each primer, 15 µL 2 x SYBR Green Master Mix and 0.4 µL 6-Carboxy-
X-Rhodamine (ROX) fluorescence dye (diluted as per the instructions given in manual)
and nuclease-free water for making a total volume of 30 µL qRT-PCR reaction mix. This
reaction mix was then used for qRT-PCR with the following thermal profile: 95 ◦C for 30 s,
60 ◦C for 15 s, and 72 ◦C for 20 s with 40 cycles of amplification. Three biological replicates
were used for the experiment with three technical replicates of each biological replicate
and the 18s gene was used as a housekeeping gene for normalization. Relative fold change
in the level of gene expression was calculated using the 2−∆∆CT method [29]. Significant
variations between the mock and different time periods of infection were designated by
the asterisk sign above the error bars, calculated by two-way ANOVA (p < 0.05).

3. Results
3.1. Phenotype of Resistant and Susceptible Cultivars against M. oryzae

Flowering stage panicles of rice cultivars Tetep and HP2216, inoculated with M. oryzae
strain Mo-ni-0025 were harvested from the first node of the panicle from the top at different
time points (Figure 1). Panicles infected with the suspension without any conidia showed
wounding marks in both the cultivars, but no lesions were observed in either of them.
In contrast, panicles infected with conidial suspension showed wounding marks in all
the panicles as well as the disease reaction. While typical lesion formation was observed
in cv. HP2216 48 hpi which further increased at 72 and 96 hpi, panicles from cv. Tetep
were devoid of any lesion symptoms but showed just minor symptoms of hypersensitive
response. The level of disease in panicle blast was scored using the method proposed by
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Ou [30] with 0–5 disease rating scale. Genotypes with scoring of lesions around 0 to 3 were
considered as the resistant reactions and those with 4 to 5 were considered as susceptible
reactions against the blast disease. Based on the scoring, Tetep was highly resistant with
scores of mostly 0 and 1. In contrast, HP2216 panicles showed scores of mostly 4 and 5
confirming its susceptibility to M. oryzae infection (Supplementary Table S2).
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Figure 1. Inoculation of M. oryzae to rice panicles and disease phenotyping. (A) Suspension of M. oryzae spores, ready to
infect the host. (B) Infection was given to the neck of rice panicle using 5 mL syringe. (C) Representative image of rice
panicles showing the impact of pathogen on blast resistant (Tetep) and susceptible (HP2216) cultivars at different time
intervals at 48 hpi, 72 hpi and 96 hpi (hpi= hour post infection) along with mock inoculated.
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3.2. Transcriptome Sequencing and Data Analysis

RNA-seq of the collected samples was performed using Illumina Hi-Seq 2000 plat-
form. A standard protocol using a Tuxedo pipeline was used for removal of low-quality
reads, alignment of reads along with the reference genome, and finding the differentially
expressed loci. On an average 32 million raw reads were obtained from transcriptome
sequencing run of each sample. After pre-processing (removal of adapters and low-quality
reads) using Trimmomatic, 31 million 101 bp paired-end high quality reads per sample
were obtained. This indicated a good quality of sequencing results. Approximately, 83% of
total reads were aligned against reference genome O. sativa L. ssp. japonica cv. Nipponbare
MSU v7 (Supplementary Table S3).

Number of significant differentially expressed loci in HP2216 were 1430, 2027 and
2094 and in Tetep were 1376, 1073 and, 1333 loci at 48, 72 and 92 hpi, respectively in
comparison with mock (Figure 2, Supplementary Table S4). These datasets were then
merged to form a table with the pair-wise comparison which showed a total of 5205
common differentially expressed loci in both genotypes. The distribution of SDEL over 12
chromosomes in rice was observed on each chromosome for both resistant and susceptible
genotypes (Supplementary Figures S1 and S2).

3.3. Differentially Expressed Loci among Blast Resistant and Susceptible Rice Cultivars

The number of up-regulated and down-regulated loci varied across the different time
points in both HP2216 and Tetep. Most of the loci showed similar expression in control
tissues of both cultivars, as both are indica rice. A total of 244 SDEL were common to both
the cultivars while 409 and 223 loci were uniquely expressed in the HP2216 and Tetep,
respectively (Figure 2A). However, across different hpi, the number of common down-
regulated loci were decreasing (i.e., 221, 69, and 48 differentially expressed loci (DELs)
respectively at 48, 72 and 96 hpi) while the number of common up-regulated DELs were
similar (i.e., 82, 80 and 84 DELs at 48, 72 and 96 hpi) between the resistant and susceptible
cultivars (Figure 2B–D). This data indicated that the plant-pathogen interaction may trigger
the genes responsible for the response of the plant to infection in their early stage of
interaction, and after reaching their threshold value, the expression of genes again restores
to their normal form. When we compared the loci from all the three time points of HP2216
and Tetep together in a single Venn diagram, a broad visualization of loci distributed
among all the time points could be observed. By comparing the loci from all the three time
points, it was found that a total of 211 loci were specific to Tetep and a total of 334 loci were
specific to HP2216 (Figure 2E). This preliminarily suggests that there are specific genes in
both the cultivars that could possibly play a role in plant pathogen interaction which could
lead to resistance in Tetep and susceptibility in HP2216.

Tetep cultivar responded to blast pathogen by up-regulation of 659 loci at 48 hpi which
got reduced to 588 at 72 hpi and rose to 1019 at 96 hpi. However, the number of down-
regulated loci was reduced from 717 at 48 hpi to 485 at 72 hpi and 314 at 96 hpi. In contrast,
there was a continuous increase in the number of both up-regulated and down-regulated
loci in HP2216 as the disease infection progressed. The up-regulated loci were 610 at 48 hpi,
1056 at 72 hpi and 1170 at 96 hpi; whereas down-regulated loci were 820 at 48 hpi which
then increased to 971 at 72 hpi and 924 at 96 hpi. This data supports that in Tetep, some
loci show early up-regulation after infection (Figure 2B–D).
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expression profiling in Tetep and HP2216 rice, infected with M. oryzae, at different time intervals. (A) Total expressed
loci common and unique between Tetep and HP2216 in mock samples without infection (control). (B) Significant (FDR
adjusted p ≤ 0.01) DELs (log2 fold change ≥2) common and unique in Tetep and HP2216 at 48 hpi. (C) Significant DELs
common and unique in Tetep and HP2216 at 72 hpi. (D) Significant DELs common and unique in Tetep and HP2216 at
96 hpi. (E) Significant DELs common and unique between Tetep and HP2216 at all three-time intervals. (F) Heat map of
significant (FDR adjusted p ≤ 0.05 & log2 fold change ≥2) DELs of Tetep and their respective log2 fold change in HP2216.
Red represents up-regulated loci and green represents down-regulated loci.
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3.4. Gene Ontology Analysis

Gene ontology (GO) enrichment analysis was conducted to identify the biological
functions of the SDEL of Tetep and HP2216 cultivars. The loci were categorized into 3 major
categories: biological process (BP), molecular function (MF), and cellular components (CC);
and further subcategories of each main category (Supplementary Figure S3A,B). Overall, M.
oryzae infection in rice caused an expression of a higher number of genes (SDEL) involved
in various processes in HP2216 than in Tetep. Both cultivars showed similar patterns
where most of the loci were present in binding and catalytic activity under MF, metabolic
process and cellular process under BP, and cell part in CC. Further, to understand the
real-time molecular response towards disease infection which results in different responses
of resistant and susceptible cultivars, the analysis of these loci at different time intervals
was carried out and the same has been depicted in Figure 3.

Comparative results of each time point in both cultivars for all three gene ontology
categories were shown in Supplementary Figure S4. In Tetep, there was a higher number
of SDEL at 48 hpi than HP2216 which gradually declined at 72 hpi and again restored
at 96 hpi. However, the number of SDEL in categories like, response to stimulus and
transmembrane transporter activity was decreased at both 72 hpi and 96 hpi. In Tetep, the
exceptional category was of transcription regulator activity where the number of SDEL
increased as the duration after infection increased. The number of genes (SDEL) in BP at
48, 72 and 96 hpi in HP2216 showed a gradual increase except for the loci in response to
stimulus which declined after 72 hpi. A similar pattern was observed for the number of
SDEL in MF and CC categories in HP2216, except for transmembrane transporter activity
which declined after 72 hpi.

3.5. Validation of Transcripts Using Quantitative Real-Time PCR

The transcriptome data obtained through RNA-Seq was validated by qRT-PCR analy-
sis. We selected 12 genes which included both up-regulated and down-regulated based
on biological functions and variations in their expression patterns. Some of the important
genes selected for validation were LRR receptor protein kinase precursor, laccase precursor,
peroxidase precursor, ethylene responsive transcription factor, ethylene responsive element
binding protein and cysteine-rich receptor-like protein kinase which were known to be
disease responsive. Expression of all these genes by qRT-PCR analysis showed good corre-
lation with RNA-Seq data (Figure 4). For example, LRR receptor protein kinase precursor
(LOC_Os05g07820) showed more than 25-, 15- and 17-fold up-regulation at 48, 72 and
96 hpi, respectively in Tetep whereas in HP2216 the up-regulation was far less. Similarly,
another gene cysteine-rich repeat secretory protein 55 precursor (LOC_Os03g16960) which
showed down-regulation in transcriptome data in both Tetep and HP2216 also showed
down-regulation in qRT-PCR analysis.
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Figure 3. Gene Ontology for significant differentially expressed genes. Graphical representation of significant differentially
expressed loci (SDEL; FDR adjusted p ≤ 0.01) in HP2216 comparative to Tetep present in different biological processes,
molecular functions and cellular components of all significant GO terms at all three-time intervals. (A) Significant GO
terms in HP2216 comparative to Tetep at 48 hpi. (B) Significant GO terms in HP2216 as comparative to Tetep at 72 hpi. (C)
Significant GO terms in HP2216 comparative to Tetep at 96 hpi. GO terms for biological processes are biological regulation
(GO:0065007), cellular metabolic process (GO:0044237), cellular process (GO:0009987), localization (GO:0051179), metabolic
process (GO:0008152), nitrogen compound metabolic process (GO:0006807), post-translational modification (GO:0043687),
response to stimulus (GO:0050896) and transport (GO:0006810). GO terms of molecular function are binding (GO:0005488),
catalytic activity (GO:0003824), kinase activity (GO:0016301), transcription regulator activity (GO:0030528), transferase
activity (GO:0016740) and transmembrane transporter activity (GO:0022857). GO terms of cellular components are cell
(GO:0005623), cell part (GO:0044464), membrane (GO:0016020), membrane part (GO:0044425), membrane bound organelle
(GO:0043227) and organelle (GO:0043226). The green bars represent for HP2216 and blue bars represent for Tetep.
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Figure 4. qRT-PCR validation of selected differentially expressed genes. qRT-PCR validation of significant differentially
expressed loci (SDEL) in HP2216 and Tetep upon M. oryzae infection. The green and blue bars represent the absolute fold
change of HP2216 and Tetep, respectively. 18s was used for transcript normalization. Standard error bar shows the standard
deviation for three replicate assays. LOC_Os06g08360 (ethylene-responsive element-binding protein), LOC_Os06g12210
(helix-loop-helix DNA-binding domain containing protein), LOC_Os05g07820 (leucine-rich repeat receptor protein kinase
EXS precursor), LOC_Os01g62480 (laccase precursor protein), LOC_Os03g46860 (helix-loop-helix DNA-binding protein),
LOC_Os08g43700 (OsSAUR36 –small Auxin-responsive SAUR gene family member), LOC_Os06g09860 (expressed pro-
tein), LOC_Os03g17200 (plant-specific domain TIGR01589 family protein), LOC_Os04g56430 (cysteine-rich receptor-like
protein kinase), LOC_Os02g43790 (ethylene-responsive transcription factor), LOC_Os04g59150 (peroxidase precursor),
LOC_Os03g16960 (cysteine-rich repeat secretory protein 55 precursor).
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3.6. Pathway Analysis

For comparative analysis of defense mechanisms in rice blast resistance (Tetep) and
susceptible (HP2216) cultivars, pathway analysis was carried out. The important pathways
where differentially regulated loci involved were defense response, cell wall modifica-
tion, hormonal response, transcription regulation, LRR signaling and secondary metabolite
synthesis which are described here in detail.

3.6.1. Primary Defense Response through Reactive Oxygen Species

During infection of blast pathogen on resistant and susceptible cultivars, primary
response leads to respiratory burst that includes redox state genes like glutathione, glutare-
doxin, thioredoxin, redoxin glutathione S-transferases and peroxidase (Figure 5). In both,
Tetep and HP2216 cultivars, the number of SDEL related to primary response was gradually
increased post infection. However, the number of up-regulated genes was more in Tetep.
One of the most important genes identified for stress response in the study was stress
responsive A/B Barrel domain containing protein (LOC_Os11g05290), which showed more
than 4-fold up-regulation in Tetep but no expression in HP2216. In Tetep, the number
of up-regulated loci related to redox state was 6 at 48 hpi, 7 at 72 hpi and 8 at 96 hpi,
whereas this number was comparatively less in HP2216 at initial response as 4 at 48 hpi,
5 at 72 hpi but increased at later stage as 10 at 96 hpi. These SDEL includes up-regulated
loci like cytochrome b5-like Heme/Steroid binding domain containing protein involved
in monooxygenase cycle [31], glutaredoxin family proteins involved in protection against
photooxidative stress [32], glutathione reductase which provides resistance against oxida-
tive stress [33], OsGrx_S2-glutaredoxin subgroup III, SOUL heme-binding protein that
plays a key role in stress signaling and plants primary metabolic pathway [34], tetratri-
copeptide repeat thioredoxin like proteins, TTL1 and TTL3 involved in osmotic stress
tolerance in plants [35], L-ascorbate oxidase precursor, protein disulfide isomerases, mon-
odehydroascorbate reductase which helps in reactive oxygen species (ROS) detoxification
and play key role in maintaining oxidative stress in plants [36], electron carrier/ protein
disulfide oxidoreductase, etc. At the same time infected plants exhibited down-regulation
of several genes such as glutathione synthetase working in nitrogen metabolism [37], cy-
tochrome b561, glutathione S-transferase, glutaredoxin family protein, peroxiredoxin type 2
to control the oxidative stress, L-ascorbate peroxidase, catalase domain containing protein,
thioredoxin, etc. However, the number of differentially expressed loci related to respiratory
burst was more in resistant cultivar compared to susceptible one (Figure 5A–F). Number
of up-regulated SDEL after the infection was higher in Tetep than HP2216 that goes on
increase as the disease progresses. Most importantly, NADPH dependent oxidoreductase
which plays a role in detoxification showed near about 5-fold up-regulation at 48 hpi
which increased to more than 6.6 fold at 72 hpi in Tetep but its expression was not detected
in HP2216 at 48 hpi and showed up-regulation only at 72 and 96 hpi. This indicates a
strong response of resistant cultivar Tetep to activate respiratory burst related genes against
panicle blast infection.
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Figure 5. MapMan analysis for significant differentially expressed genes. MapMan overview of significant (FDR adjusted p
≤ 0.05 & log2 fold change ≥2) differentially expressed loci (SDEL) involved in biotic stress pathway, in HP2216 and Tetep,
at different time intervals of M. oryzae infection. SDEL are binned to MapMan functional categories and values represented
as log2 fold change values. (A,B) MapMan overview of SDEL in biotic stress pathways in HP2216 and Tetep respectively
at 48 hpi. (C,D) MapMan overview of SDEL in biotic stress pathways in HP2216 and Tetep respectively at 72 hpi. (E,F)
MapMan overview of SDEL in biotic stress pathways in HP2216 and Tetep respectively at 96 hpi. Red color represents up-
regulated loci and green represents down-regulated loci.ABA, abscisic acid; JA, jasmonic acid; SA, salicylic acid; HSPs, heat
shock proteins; R genes, resistance genes; ERF, ethylene response factor; bZIP, basic region-leucine zipper; WRKY, WRKY
family of transcription factors; MYB, myeloblastosis family of transcription factors; DOF, DNA-binding with one finger
plant specific transcription factors; MAPK, mitogen-activated protein kinase; PR-protein, pathogenesis-related protein.
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3.6.2. Transcript Level Changes in Cell Wall Proteins

ROS signaling plays a key role in inducing cell wall modification mediated defense.
Our results indicated many genes related to cell wall biogenesis and modifications were
up-regulated in Tetep as compared to HP2216. These cell wall related SDEL include cell
wall proteins, cellulose synthesis (cellulose synthase), cell wall degradation (cellulases, β
-1,4-glucanases, mannan-xylose-arabinose-fucose, pectate lyases, and polygalacturonases),
cell wall hemicellulose synthesis, cell wall pectin esterase, and cell wall precursor syn-
thesis (Supplementary Table S4). Transcriptional level changes of cell wall modification
transcripts were one of the highest sets of SDEL that showed a change in expression upon
infection. In resistant cultivar, major cell wall related SDEL showed up-regulation while
opposite trend was observed in susceptible cultivar HP2216 at 48, 72 and 96 hpi. For
instance, in Tetep, several genes of glycosyl hydrolase family, glycosyltransferase family,
Powdery Mildew Resistance 5 (PMR5), dirigent, tubulin, cellulose synthase and other
cell wall proteins were highly induced immediately after infection but the number of
genes, as well as their level of induction was less in HP2216. Two glycosyltransferase 8 do-
main containing protein coding genes (LOC_Os07g48830 and LOC_Os07g45260) involved
in cell wall thickening were up-regulated in Tetep at 72 hpi and continued to express
even at 96 hpi. The expression of these genes was negligible in HP2216. In addition,
Tetep showed up-regulation of many MYB family transcription factors (LOC_Os06g02250,
LOC_Os05g49310, LOC_Os05g37050, LOC_Os05g50350, LOC_Os01g19330) working in
regulation of secondary cell wall biogenesis, but their expression in HP2216 was low. In
Tetep, as many as six chitinase family protein precursors were up-regulated at both 48 and
72 hpi with an increased expression level at 72 hpi. In contrast, the number of chitinase
family protein precursor genes in HP2216 were high at the initial stage of infection but
its expression was reduced at later stages. Cell wall degradation loci were composed of
both up and down-regulated SDEL at all the time points in both the cultivars. In resis-
tant cultivar, four SDEL involved in cell wall precursor pathway showed early (48 hpi)
up-regulation compared to susceptible cultivar. Cell wall modification related SDEL at
48 and 72 hpi consist of both up and down-regulated transcripts but at 96 hpi majority of
SDEL were up-regulated in resistant cultivar while down-regulated in susceptible one.

3.6.3. Signal Transduction

Plant signaling plays a crucial role in providing resistance against pathogenesis in
plants. This helps in activating and maintaining the innate immunity of the plant and
involves receptor-like kinases (MAPKs), and leucine rich repeats (LRR) signaling. Figure 5
showing the number of SDEL involved in MAPK pathways and LRR signaling depicts the
gradual increase of these SDEL from 48 hpi to 96 hpi in both Tetep and HP2216 cultivars.
Signaling molecules like receptor kinase, G proteins, calcium binding protein, phospho-
inositides and MAPK showed a constant increase in expression level from 48 hpi to 96 hpi
in Tetep. The most important signaling protein of disease response brassinosteroid insensi-
tive 1-associated receptor kinase 1 (BAK1) precursor (LOC_Os11g31540) and leucine-rich
repeat transmembrane protein kinase (LOC_Os05g07820) playing crucial role in defense
against various stresses were expressed both in Tetep and HP2216 at all the three time
points studied here. Mitogen-activated protein kinase works as a signaling molecule for
the transduction of extra cellular stimulation of cell into intra-cellular response that leads
to activation of transcription factors in plants against any pathogenic invasion (Supple-
mentary Figure S5). Tetep showed significant up-regulation of 13 SDEL of LRR genes at
48 hpi, 12 SDEL related to LRR genes at 72 hpi and 13 SDEL at 96 hpi with increased level
of expression as the disease progresses. It has been reported in previous studies that the
LRR gene family has the most predominant R-genes, responsible for providing resistance
against many pathogens in plants. The resistant cultivar Tetep has more than 455 NBS-LRR
genes that are largely responsible for its blast resistance [38].
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3.6.4. Regulation by Transcription Factors

Several transcription factors like ERF, MYB and WRKY activates the defense respon-
sive genes after perceiving the signals from defense signaling pathways in plants. Impor-
tantly, ERF transcription factors are responsible for the regulation of pathogenesis related
(PR) genes and integrate the signals received from ethylene (ET) and jasmonic acid (JA). In-
fection of M. oryzae in Tetep and HP2216 induced a large number of ERF, MYB, and WRKY
TFs at all the stages of infection with variation in their numbers. M. oryzae infection in Tetep
caused up-regulation of large number of Basic Region-Leucine Zipper (bZIP), WRKY and
MYB transcription factors at 48 hpi (Figure 5B) and the expression of these genes increased
at 72 hpi and 96 hpi (Figure 5D,F). The number of up-regulated ERF TFs increased to a great
extent at 96 hpi. MYB TFs regulate the development, differentiation and metabolism of
plant cells and also play a vital role in stress response [39]. It activates the genes responsible
for immune signaling, phenylpropanoid biosynthesis, and ROS production due to biotic
stress for defense against the pathogens in plants [40,41]. WRKY genes which are well
known for their role in defense response against M. oryzae and Xanthomonas oryzae were
also predominantly up-regulated in Tetep. For example, WRKY71, WRKY118, WRKY55,
WRKY1, WRKY83 and WRKY7 were highly induced in Tetep after infection. At the same
time there was down-regulation of WRKY43 and WRKY35 in Tetep. In HP2216, early stage
of infection was characterized by down-regulation of more MYB TFs and up-regulation
of more WRKY TFs whereas the large number of ERF TFs was up-regulated at 72 hpi
(Figure 5A,C). At 96 hpi also, more MYB TFs continued to show up-regulation (Figure 5E).
In addition, observation of down-regulation of some of the TFs in both genotypes indicates
that they might play a negative role in disease response as well.

3.6.5. Hormonal Regulation

JA, SA, and ET are important hormonal signal molecules for biotic stress response
during plant pathogen interactions [42]. M. oryzae infection to both resistant and susceptible
rice cultivars showed major changes in the expression of SDEL involved in ET metabolism
at early and late infection stages. At an early stage of infection (48 hpi), several genes
involved in the biosynthesis of methyl salicylate, jasmonate, abscisic acid (ABA) and ET
were up-regulated in Tetep (Figure 5B). Genes for JA and SA synthesis continued to express
at high level at all the stages, but there was slight down-regulation of genes for ET synthesis
at 72 hpi which got up-regulated again at 96 hpi (Figure 5D,F). In comparison, the number
and level of expression of genes involved in JA, SA and ET was less in HP2216 at all the
stages of infection (Figure 5A—C). Genes encoding for flavonol synthase/flavanone 3-
hydroxylase involved in phenolic defense against fungi and insects [43] were up-regulated
and gibberellin 3-β-dioxygenase regulating the level of gibberellins was down-regulated
in Tetep. Overall, the number of expressed genes for SA, JA and ET was higher at the
early stage of infection which declined at 72 hpi but again increased at 96 hpi showing
complex regulation of hormones in Tetep cultivar. In HP2216, the genes for S-adenosyl-
L-methionine: benzoic acid carboxyl methyltransferase involved in the biosynthesis of
methyl salicylate continued to express at 72 hpi and 96 hpi as well, however, genes involved
in JA were not up-regulated during the latter course of infection (Figure 5C,E). ET synthesis
also decreased in HP2216 after 72 hpi as evident by reduced expression of its biosynthetic
genes at 96 hpi.

3.6.6. Activation of Secondary Metabolites

Secondary metabolites in plants such as flavonoids, terpens, lignins, and phenyl-
propanoids are the products of primary metabolic pathways that are necessary for defense
against pathogen infection [44]. Disease response in Tetep was characterized by induction
of genes that are involved in the biosynthesis of some of the major metabolites like chal-
cone, anthocyanin, isoflavonoid phytoalexin, terpenes, lignins, etc. and down-regulation of
genes related to anthocyanidin 3-O-glucosyltransferase, dihydroflavonol-4-reductase and
cycloartenol (Supplementary Figure S6B). In subsequent stages of infection at 72 and 96 hpi
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(Supplementary Figure S6D,F), the number of SDEL for synthesis of secondary metabo-
lites (e.g., LOC_Os04g27430, LOC_Os03g24690, LOC_Os04g42830, LOC_Os08g04540,
LOC_Os10g20610, LOC_Os11g16260, LOC_Os11g42480) and also number of secondary
metabolites increased which could be responsible for resistance against panicle blast dis-
ease. In an exception, expression of phenylalanine ammonia-lyase (LOC_Os02g41670)
involved in lignin synthesis was higher at 48 hpi but decreased to zero at succeeding stages
of infection. Comparatively, the initial response of HP2216 at 48 hpi was similar to Tetep
(Supplementary Figure S6A). However, the number of genes involved in all these pathways
increased at 72 hpi and again decreased at 96 hpi (Supplementary Figure S6C,E). Moreover,
flavonoids and phenylpropanoids biosynthesis related genes increased in number as well
as expression level during infection in Tetep while decreased in HP2216, suggesting that it
could be one of the mechanisms of resistance in Tetep.

3.7. Expression of Novel Genes Specific to Resistant Cultivar Tetep

There are large number of genes in Tetep along with NBS-LRR genes responsible
for blast disease resistance but are not yet characterized. We, therefore, screened the
transcriptome data to identify genes which were up-regulated significantly in Tetep post
infection but were either negatively regulated or not expressed at all in HP2216. Thus,
comparative analysis of transcriptome data helped to identify several novel genes like
von Willebrand factor type A (VWA) domain containing genes (4 fold up-regulation in
Tetep), eukaryotic aspartyl protease domain containing gene (5 fold up-regulation in
Tetep), auxin-induced in root cultures protein 12 (AIR12) gene that codes for a dopamine
β-monooxygenase N-terminal (DOMON) domain containing protein (3 fold up-regulation
in Tetep), Armadillo/β-catenin repeat family protein (4 fold up-regulation in Tetep) etc.
whose function in disease response is not yet well characterized. Characterization of these
genes may provide in-depth insight into panicle blast resistance.

4. Discussion

Considering the devastating nature of rice blast disease, it is necessary to develop
rice cultivars resistant to blast in order to ensure global food security. The foremost thing
to develop such resistant varieties is to identify the genes responsible for resistance and
also to understand the resistance mechanisms. Researchers have explored large number of
resistant genotypes and have identified more than 100 R genes providing resistance against
M. oryzae infection [1] and many R genes and defense response genes have been identified
in the rice genome [45,46]. Among the widely used sources of resistance, Tetep is the most
important rice genotype as it provides durable and broad-spectrum resistance against rice
blast [38,47]. The blast resistance gene Pi54 has already been cloned and characterized from
this genotype using a map-based cloning approach [9]. Recently, as many as 455 NBS-LRR
genes have been identified in Tetep and 219 of them have been cloned and characterized
for resistance against 12 different strains of M. oryzae [38]. This report re-established
the Tetep as a reliable source of resistance for utilizing in breeding programs. Although
resistance in Tetep or any other resistant line is largely attributed to R genes, the upstream
or downstream pathways of the disease response and the actual mechanisms of resistance
are yet to be characterized. Here, to understand the blast resistance mechanisms and
genes responsible, a comparative panicle blast transcriptome analysis of Tetep along with a
susceptible cultivar HP2216 at different time points after the infection was carried out. In
order to understand the early and late response of plants through expression of disease
responsive genes, 3 different stages of infection i.e., 48, 72 and 96 hpi and mock inoculation
as control were targeted for expression analysis. The present study revealed a number of
genes involved in various disease responsive pathways which might be responsible for the
differential nature of Tetep and HP2216 during panicle blast disease. Infection of M. oryzae
in HP2216 led to the formation of lesions at all the wounding sites. The size of lesions
increased during disease progression indicating that the susceptible plants could not arrest
the growth and spread of fungi to neighboring tissues (Figure 1). This ultimately resulted
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in reduced photosynthetically active area at the neck and also movement of nutrients to
the panicle that has direct impact on the yield. On the other hand, the resistance of Tetep at
the phenotypic level is characterized by development of hypersensitive response, a form
of programmed cell death, at the site of infection and thus, restricts the spread of fungi
to healthy tissues [48]. This phenotypic resistance is the ultimate result of several molecular,
biochemical and physiological responses involving various pathways and accumulation
of reactive oxygen species, antimicrobial compounds and phytoalexins at the infection
site [49].

Comparative transcriptome analysis of Tetep and HP2216 cultivars after infection
revealed that a total 2491 genes were differentially expressed in Tetep but the number of
such genes was 3553 in HP2216 which was significantly higher than Tetep. This supports
the previous reports showing that the infection has a greater impact on the global gene
expression profile of both susceptible and resistant cultivars, but the magnitude of the
impact is higher in susceptible rice cultivar [50]. In susceptible plants, comparatively more
energy is diverted to stress management by defense response which is one of the reasons
that eventually affect the growth and yield of crops [51]. In contrast, less effect on the
global transcriptome of Tetep due to infection explains its effective stress management
and low growth penalty. Moreover, most of the differentially expressed genes in Tetep
were involved in one or the other pathways of disease response. The higher number of
differentially expressed genes related to ethylene hormone metabolism in resistant cultivar
upon infection of Magnaporthe in panicle is highly similar to leaf blast infection as reported
earlier in resistant near isogenic lines (NIL) [16]. The highly up-regulated genes during
the early stage of infection in Tetep included transcription factors like WRKY, MYB and
ERF; defense genes like chitinases, laccases, lipoxygenases, peroxidases, phenyl alanine
ammonia lyase, and pathogenesis related (PR) genes; MAP kinases, genes involved in
respiratory burst and signaling, etc. MAP kinases and WRKY transcription factors are
involved in signal transduction to activate defense gene expression [49]. MYB transcription
factors act as positive regulators of lignin biosynthesis that helps to strengthen the cell wall.
Immediate up-regulation of all these genes at 48 hpi shows a quick response of Tetep to in-
fection as compared to HP2216. Expression of all these genes was either stable or decreased
in later stages of infection in Tetep, however, HP2216 continued their up-regulation in
increasing order throughout the disease progression. This indicates termination of resource
allocations in the resistant line to defense response at an early stage of infection to avoid
additional burden on plant machinery. Re-programming of plant metabolic processes to
suppress the defense response has been earlier reported in rice against Magnaporthe infec-
tion which helps fungi to colonize plant tissue [52]. In resistant cultivar Tetep, there was
up-regulation of genes involved in the synthesis of secondary metabolites like flavonoids,
terpenes, and phenylpropanoids for synthesis of phytoalexins, lignin, and cutin which are
responsible for antimicrobial activity of plant cells and also strengthening physical barrier.
It has been already reported that biosynthesis of secondary metabolites such as phenols,
phenylpropanoids and lignin imparts resistance against fungal diseases in rice [49].

Several reports in various crops have suggested cell wall modification and strengthen-
ing by deposition of lignins, callose, peroxidases, phenols and other chemically modified
cell wall materials as one of the major strategies of disease resistance [49,53,54]. Our results
corroborate the similar mechanism of resistance in Tetep against M. oryzae. For exam-
ple, Tetep cultivar showed significant up-regulation of genes like L-ascorbate peroxidase
(2.3 fold), thylakoid-bound ascorbate peroxidase (OsAPx3) (2.6 fold), monodehydroascor-
bate reductase (2.9 fold), and many peroxidase precursors involved in the synthesis of per-
oxidases and detoxification of ROS at all the stages of infection, however, in HP2216 these
genes down-regulated at later stages showing suppression of their synthesis by pathogen.

To explain the panicle blast resistance mechanism in Tetep, we have proposed a
model where three crucial pathways have been depicted which culminate in strong defense
response against panicle blast disease (Figure 6). The stimulus of pathogen infection in the
form of pathogen associated molecular patterns (PAMP) is perceived by plant cell receptors,
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chitin elicitor receptor kinase 1(CERK1) and chitin elicitor-binding protein receptor (CEBiP)
complex in case of rice [55]. Later, in a series of signal transduction pathways, the systemic
disease response of the plant is activated which either results in resistance like in Tetep or
susceptibility as in HP2216 (Supplementary Figure S7). Downstream signal transduction of
pathogen infection requires BAK1, a central regulator of plant immunity [56] which was
found to be highly up-regulated in Tetep. One of the major pathways responsible for fungal
resistance in Tetep was found to be of a cell wall precursor pathway as evident by higher
up-regulation of genes of this pathway as compared to HP2216. This pathway ultimately
activates redox reaction in the plant cell wall. Conversion of Uridine Diphosphate (UDP-
D) glucose to sucrose is enhanced by nearly identical to sucrose synthase 6 enzyme that
is up-regulated at 48 hpi in Tetep. The early (48 hpi) up-regulation of UDP-glucose-
6-dehydrogenase leads to conversion UDP-D glucose into UDP-D glucuronic acid and
early generation of NA(P)D+ from NAD(P)H. This oxidation of nicotinamide adenine
dinucleotide phosphate (NADP+) leads to ROS production in the plant cell wall. The ROS
act as vital signaling molecules to trigger hypersensitive response in resistant hosts [57] and
therefore, it is important for plants to generate ROS as soon as pathogen attacks. Here, it is
observed that the genes for ROS production were immediately expressed in Tetep, but it was
quite delayed in susceptible HP2216. At the same time, genes regulating electron transport,
oxidative stress and peroxidase synthesis were activated and these molecules accumulated.
The downstream signaling molecules perceive ROS and activate cell wall dependent
kinases, receptor kinases, calcium sensor proteins, G proteins and hormonal signaling
associated with jasmonic acid and ethylene in the cell. The jasmonic acid biosynthesis
is also activated by another pathway where linoleic acid which is a key component of
the membrane in chloroplast, and thylakoids gets released and acts as a stress signal.
The activated kinases then induce the expression of various transcription factors like
WRKY, MYB, ERF, bZIP which in turn activates PR and other defense responsive genes
like chitinases, glucanases, PAL, Lac, Lpo, etc. Enhanced accumulation of JA and ET in the
cell further activates the production of enzymes responsible for lipid metabolism and fatty
acid biosynthesis. Further, activation of shikimate, arylmonoamine and phenylpropanoid
pathways results in synthesis of several important secondary metabolites in plant cells
(Supplementary Figure S8). Accumulation of these phenolics and phytoalexins, lignins,
cutins, etc. ends up in cell wall reinforcement and also programmed cell death against
fungal infection in particular or other biotic stresses in general [15,58,59].

Thus, along with basal resistance mechanisms like early defense response through
ROS production and detoxification, MAPK and LRR signaling, accumulation of antimi-
crobial compounds and secondary metabolites, we propose cell wall modification and
strengthening as major strategies of defense response in Tetep cultivar of rice. The modified
cell wall may act as a barrier not allowing appressorium of pathogen to penetrate the cell
at early stage and thus, finally make this cultivar resistant to panicle blast.

Besides the understanding of disease resistance mechanism, the present study also
identified some of the novel genes that could play a vital role in panicle blast resistance
in Tetep. For example, two genes with Von Willebrand factor type A (VWA) domain
were found to be highly up-regulated in Tetep as compared to HP2216 during infection.
Recently, these two genes have been identified in a panicle blast resistance Pb-bd1 locus by
fine mapping [7]. This indicates that these VWA domain containing genes could possibly
play an important role in blast resistance. One of these genes was also found to be up
regulated in gall midge resistant rice line after gall midge attack [60]. Similarly, eukaryotic
aspartyl protease domain containing protein, plasma membrane cation-binding protein
1 (PCaP1) and PMR5 family genes showed up-regulation at all the stages of infection
in Tetep. Arabidopsis eukaryotic aspartyl protease APCB1, is involved in autophagy and
fungal resistance in plants by cleaving Bcl-2-associated athanogene 6 (BAG6) protein [61].
Induction of this gene during panicle blast in our study suggests its similar role in blast
resistance in rice. Up-regulation of PCaP1 gene during Magnaporthe infection in Tetep,
shows regulatory networks of biotic and abiotic stress may have significant cross linking,
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as its protein was reported to be increased earlier under salt stress in rice [62]. Another
interesting gene AIR12 which codes for a DOMON domain containing protein was up-
regulated in Tetep but was down-regulated in HP2216. Armadillo/β-catenin repeat family
protein also showed significant up-regulation in Tetep but drastic down-regulation in
HP2216. A cupin domain containing protein known as OsGLP8-12 which belongs to a
germin-like protein family was up-regulated at 72 hpi and 96 hpi in Tetep but it was not
expressed in HP2216. This gene along with its other family members constitutes a QTL that
confers a broad-spectrum resistance to rice blast disease [63]. Thus, in addition to resistance
governed by R genes in Tetep, these genes may account for panicle blast resistance and
necessitate further experimental validation.
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glucanases; Chit, chitinases; LPO, lipoxygenases; POX, peroxidases; Lac, laccases; PHO, phenolics; PHY, phytoalexin. 
Symbols: 1, UDP-glycosyltransferase; 2, UDP-glucose 6-dehydrogenase. 

Thus, along with basal resistance mechanisms like early defense response through 
ROS production and detoxification, MAPK and LRR signaling, accumulation of antimi-
crobial compounds and secondary metabolites, we propose cell wall modification and 
strengthening as major strategies of defense response in Tetep cultivar of rice. The modi-
fied cell wall may act as a barrier not allowing appressorium of pathogen to penetrate the 
cell at early stage and thus, finally make this cultivar resistant to panicle blast. 

Figure 6. Overview of mechanism of rice blast resistance in Tetep at cellular level. A model to represent the resistance
against M. oryzae infection in resistant rice cultivar Tetep. M. oryzae spore in the form of conidia attaches to the surface of
tissue using a hook like structure and grows a germ tube to penetrate inside the epithelial cell layer. This stimulus triggers a
cell wall precursor synthesis pathway leading to generation of two NADPH molecules and their subsequent oxidation for
ROS production. This activates the kinase and hormone signaling molecules. Simultaneously, jasmonic acid production
starts at the cell membrane of infected cells that triggers downstream hormone signaling. Kinase signaling molecules
activate transcription factors (bZIP, MYB, WRKY). Altogether, it results in expression of defense related genes like Pox, Pal,
Lac, Chit, Glc, Lpo leading to synthesis of PHY and PHO type of antimicrobial compounds that responds to M. oryzae growth
on the cell wall. Abbreviations: GTP, Guanosine-5’-triphosphate; UDP, Uridine diphosphate; UTP, Uridine-5’-triphosphate;
PPi, Pyrophosphate; NADP+, Nicotinamide adenine dinucleotide phosphate; CO2, Carbondioxide; ROS, reactive oxygen
species; HR, hypersensitive response; PCD, programmed cell death; TF, transcription factor; ET, ethylene; JA, jasmonic
acid; PR proteins, pathogenesis-related proteins; CA, cinnamic acid; PAL, phenylalanine ammonia lyase; Glc, glucanases;
Chit, chitinases; LPO, lipoxygenases; POX, peroxidases; Lac, laccases; PHO, phenolics; PHY, phytoalexin. Symbols: 1,
UDP-glycosyltransferase; 2, UDP-glucose 6-dehydrogenase.
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5. Conclusions

Comparative transcriptome analysis of blast resistant Tetep and susceptible HP2216
revealed the extensive impact of panicle blast disease on global gene expression patterns in
both the cultivars of rice. Panicle blast resistance in Tetep is characterized by immediate
up-regulation of a large number of genes involved in ROS production and detoxification,
signal transduction, transcription regulation, primary defense response, hormonal regu-
lation, secondary metabolite synthesis, and cell wall synthesis and modifications. Most
importantly, several genes associated with cell wall precursor synthesis, lignin synthesis
and chitinases which strengthen the cell wall and ultimately restrict the entry and spread
of fungi, were predominant in Tetep compared to HP2216. Thus, our results showed that a
plethora of genes and pathways activated for panicle blast resistance specifically in resistant
cultivar Tetep and can be utilized in rice blast breeding program.
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S2: Mapping of RNA-Seq Reads Obtained from Tetep and HP2216 against Oryza sativa Nipponbare
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Significant differentially expressed loci at different time points of infection.
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