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Abstract: The reasons for selecting a gene for further study might vary from historical momentum
to funding availability, thus leading to unequal attention distribution among all genes. However,
certain biological features tend to be overlooked in evaluating a gene’s popularity. Here we present a
meta-analysis of the reasons why different genes have been studied and to what extent, with a focus
on the gene-specific biological features. From unbiased datasets we can define biological properties
of genes that reasonably may affect their perceived importance. We make use of both linear and
nonlinear computational approaches for estimating gene popularity to then compare their relative
importance. We find that roughly 25% of the studies are the result of a historical positive feedback,
which we may think of as social reinforcement. Of the remaining features, gene family membership is
the most indicative followed by disease relevance and finally regulatory pathway association. Disease
relevance has been an important driver until the 1990s, after which the focus shifted to exploring
every single gene. We also present a resource that allows one to study the impact of reinforcement,
which may guide our research toward genes that have not yet received proportional attention.

Keywords: gene; Matthew effect; biological feature; genomics; machine learning; linear model; gene
regulatory networks

1. Introduction

One of the current great challenges in biology is integrating knowledge into a coherent
model, thus allowing predictions to be made. However, this quest heavily relies on our
understanding of all the different features that define our biological question. How well do
we understand the different features, and has the manner or motivation for study affected
our conclusions about them? As systems biologists, we wondered if we could somehow
address these questions based on the intrinsic properties of the genes. Similar studies
have previously addressed this question, making a great contribution in highlighting
social features (funding, transitioning to principal investigator status, model organism and
scientific literature database availability) and a plethora of physicochemical properties of
protein-coding genes [1]. However, the amount of literature about factors behind gene
popularity integrating biological feature information yielded by NGS-derived datasets,
CRISPR-screens, gene regulatory (GRNs), and protein–protein interaction (PPis) networks
is limited.

Scientometry is the discipline that studies scientific and technologic literature from
the quantitative perspective [2]. From scientometry it is known that literature is usually
skewed to cover some subjects at a much greater depth than others. Various statistical
distributions seem able to explain current and past publication trends, proposed to follow
laws such as those of Bradford and Lotka, or the Pareto distribution [3]. It is, however,
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not clear what constitutes a “subject” nor how generally consistent these principles are.
Pareto-like distributions are generated in systems having the Matthew effect, in other
words, a positive feedback loop where “the rich become richer”. In scientific research,
a few critical discoveries nucleate fields of which some grow much faster than others.
Throughout this paper we will call this effect “reinforcement”.

In this study we consider individual genes as “subjects” and show that literature
follows a Matthew-like principle. We theorize that this is because it is easier to study
genetics once a few “reference genes” have been discovered and studied. However, this
also means that the number of papers might mainly reflect a social process of discovery
rather than reflect the real relevance of the genes to the subject of interest.

To correlate citations with social driving force versus a gene’s biological relevance,
we made use of unbiased datasets that may suggest a gene to be perceived as important,
including single-cell RNA-seq data, protein–protein interactions, as well as CRISPR screens
(Figure 1a). The model is by necessity semi-qualitative—there are multiple ways to encode
the features mathematically. Furthermore, it will always be possible to add further features
that could be of relevance. Thus, the results need to be interpreted considering the model
formulation. We try to avoid demarcating different sources as “social” or “biological”,
but our choice of biological factors unavoidably reflects our own view of “importance”.
Our unit of study is one gene, but we could have considered transcript isoforms, post-
translationally modified proteins, or protein domains. These are all valid alternative objects
of enquiry but outside our scope. We have largely ignored how different experimental
methodologies have impacted citations (e.g., proteomics vs. transcriptomics). Finally,
gender, class, and ethnicity could all be included as social reinforcement factors, but here
we were mainly interested in the overall balance of social vs. biological factors.
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of publication as a feature, which after normalization is negative age. (i) Spearman’s correlation coefficients between the
included features for the total fitted model.
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If we consider the initial reporting date (or time) since the discovery of a gene as
the main social component predictor, then roughly 25% of the papers are a result of
social reinforcement. Gene expression level is the second strongest indicator, followed by
markers of disease relevance to a lesser extent. We believe that further use of unbiased
data generation methods will widen the set of genes considered and hopefully enrich our
understanding of cell biology.

2. Materials and Methods
2.1. Pubmed Data Retrieval and Pre-Processing

Genes and PMIDs were retrieved using the publicly available FTP service (Available
online: ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz (accessed on 29 April 2020));
released on 16 December 2019). Only mouse and human IDs were retained. Mouse
ENSMUSG gene IDs were processed and converted to human Ensembl IDs (ENSID) using
BioMart. Further Pubmed article metadata was downloaded (ftp://ftp.ncbi.nlm.nih.gov/
pubmed/baseline (accessed on 29 April 2020)). A custom Java program (available on our
Github) was used to extract date of publication and PMID.

Cell type keywords were defined semi-manually based on the cell type annotation in
the Tabula Muris dataset. MeSH terms could have been a better choice, but literature also
suggests they are not commonly used [4]. Poorly represented cell types were removed or
merged with other categories. The mapping cell type—{PMIDs} was created by searching
Pubmed for keywords (see Supplementary File S1). This association was used along with
the gene-PMIDs mapping to create cell type-specific lists of papers.

The measure #citation was defined as log10 (1 + number of papers for a gene), either
total paper counts or subsetted for one cell type. We also tried to use the rank (number of
papers per gene) as a measure, hoping it would better even out the statistical distribution;
however, because too many genes had similar (low) number of citations, many ranks were
tied, and we decided against the use of this measure.

2.2. Citation Distribution Analysis

We investigated distributions for several genes, and they followed similar trends.
Comparison with the exponential distribution was made with fitdistr() from the R MASS
package [5]. Comparison with the Pareto distribution was made with the R ParetoPos-
Stable package.

2.3. Gene Family Analysis

Gene symbol nomenclature for the mouse genome (Mus musculus) was extracted from
Tabula Muris datasets. Only gene symbols with a structure containing any combination
of characters from a to z (English alphabet) followed by any combination of digits from
zero to nine were analyzed (structures similar to Abc followed by 1, 2, 3, or specified as a
regular expression: (a-zA-Z) + (0–9) +), with a total of 18,330 unique gene symbols. The
digits make up fFI, while #citation of the gene with fFI = 1 was used as ffounder. For founders
themselves, ffounder was set to N/A. fFI was capped at 30, and this value was also used for
genes that do not have a founder, following our nomenclature. In the total model, ffounder
was set to the median value whenever N/A.

2.4. Gene Homology Analysis

All the mouse protein sequences were obtained from Uniprot (ID UP000000589). A
Java script was used to reduce the FASTA header name to just the gene symbol, and only
genes included in the Tabula Muris count tables were considered. The command “blastp
-db uniprot.fa -query uniprot.fa -out results_prot.out -outfmt 6” was used to do all-against-
all mapping (version 2.6.0+) [6]. Only the highest blastp “pident” score for each pair of
genes was retained.

Two methods were used to enrich the graph for edges between the most similar genes.
First, only the top 3 edges were retained (largely to speed up following the calculations).

ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz
ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
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Second, a triangle-inequality method was used, inspired by ARACNe DPI [7]. For genes
X, Y, and Z, we compared their protein identity I. If Ixz > Ixy and Iyz > Ixy, the edge X–Y
was removed. Informally, this means that Z was sufficiently well-matched to intermediate
X–Z–Y that the link X–Y could be considered superfluous. This algorithm was implemented
in Java. The #citation of the connected genes then defined fhomology.

2.5. Gene Expression Analysis

Gene count tables from the Tabula Muris [8] were retrieved from https://tabula-muris.
ds.czbiohub.org/ (accessed on 29 April 2020). We used the “FACS sorted, SMART-Seq2
RNAseq libraries” as the depth appeared better for co-expression analysis, so we used
these libraries throughout for consistency. Based on the existing cell type annotation, the
number of cells in each tissue was counted. The tissue with the largest number of cells
matching a given cell type was designated “the primary tissue”. The average counts were
calculated for each cell type in their primary tissue (by focusing on one tissue we needed
not consider batch effects). fexp was defined as rank (expression level).

2.6. Gene Co-Expression Network Analysis

The Tabula Muris RNA-seq count table for different cell types was used again. Instead
of the average, single cell counts from the primary tissue were retained. The counts
were rescaled as log10 (1 + count). The first 6 PCA components were calculated by
prcomp_irlba. A projection was made with UMAP [9]. The k-nearest neighbor (KNN)
graph was calculated with k = 10. fcoexp was defined as average(#citations) of these
neighbors.

2.7. Protein–Protein Interaction (PPI) Network Analysis

We downloaded HuRI.tsv (available online: http://www.interactome-atlas.org/ (ac-
cessed on 29 April 2020) [10]. As this data were already in the form of a network, we
could use them directly without intermediate processing. The triangle inequality was not
applied, as we assumed the dataset to only consider direct interactions. fPPI was defined as
average(#citations) of the neighbors of each gene.

2.8. Gene Essentiality Analysis

We downloaded Supplementary Table S3 from the CRISPR screen study online supple-
ment [11] and used the column “% Dependent Cell lines”. The global essentiality score as
defined by their fuzzy set AdAM algorithm was within the range (0, 100), and thus we used
it directly as fessential. For genes not included in the dataset, we set the corresponding value
to the median. We also attempted to generate cell type-specific essentialities by manually
curating the cancer cell line types and comparing them to Tabula Muris tissues; however,
we usually did not manage to clearly decide which exact cell type was the origin and so
this was not used in the end.

2.9. Gene Chromatin Proximity Analysis

The mouse genome GRCm38.97 GTF-file was downloaded from Ensembl. Features
of the type “gene” were retained, and gene positions were calculated as (from-to)/2. The
gene symbol was extracted from the attributes field. The coordinate table was merged with
the cell type-specific paper counts. For each chromosome and cell type, the features were
sorted. Then for each gene, the closest other genes obtained and fchromatin were defined as
the average #citations of these.

2.10. GWAS Analysis

The file gwas_catalog_v1.0-associations_e98_r2020-03-08.tsv was downloaded from the
EBI GWAS catalog. We considered as targets those genes in the column “REPORTED.GENE.S.”.
Intergenic SNPs were removed. The smallest p-value for any SNP was calculated but

https://tabula-muris.ds.czbiohub.org/
https://tabula-muris.ds.czbiohub.org/
http://www.interactome-atlas.org/
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capped at 10−40. fGWAS was defined as –rank (p-value) such that high positive values
implied high relevance.

2.11. COSMIC Analysis

We downloaded the file CosmicGenomeScreensMutantExport.tsv.gz and used a Java
program to extract the number of mutations and length (amino acids) for each gene. The
gene names were mapped to mouse genes. The feature fCOSMIC was defined as rank
(number of mutations/length of gene). For genes with no COSMIC entry, the smallest
value of fCOSMIC was used.

2.12. The Total Model (Linear)

The total model was set up as #citation = m + ∑i ci fi. Features were first scaled to
have unit variance and zero mean. The intercept was discarded. The model was fitted in R
using the limma package [12]. Because the features were normalized, we here report the
raw coefficient values.

2.13. The Total Model (Nonlinear)

Several neural network models were fitted using the PyTorch library [13]. To avoid
overfitting, we only considered networks with low numbers of layers. We picked one
representative model, with 2 RelU layers (16 parameters); for example, having 3 RelU
layers give similar output. Parameters were then searched using the ADAM optimizer
(convergence shown in Supplementary Figure S2a). The relative importance of the features
was estimated using a LIME [14]-like approach; for each feature and for each data point
(gene), the neural network was asked to predict #citations if one standard deviation was
added. The average difference in #citations was taken as the indicator of importance. The
neural network explanation for T cells is shown in Supplementary Figure S2b. The RMSE
was 0.55.

We also tested an approach based on gradient boosting (XGBoost) [15], resulting
in an RMSE of 0.51. The model was tested in the same manner as the neural network
(Supplementary Figure S2c).

The Jupyter notebooks containing the non-linear models are provided in the Github
repository.

2.14. Creation of Online Data Visualizer

The online visualizer is provided at http://data.henlab.org/genepub created with the
Python framework Dash (available online: https://plotly.com/dash/, version 1.10.0). Most
of the underlying data is stored in SQLite3 files, which enable data to be read efficiently
upon need. The files were generated using the R package RSQLite.

2.15. Drug Availability Analysis

The XML database from DrugBank 5.0 was downloaded and parsed in Java [16]. This
program took all drugbank-id records, looked for a gene-symbol record and all gene-name
records within target-records. These human gene symbols were translated into mouse gene
symbols and compared. We tried taking both all targets and just the first target. Both yield
similar citation correlations and drugs-per-gene trends, but including all the targets empha-
sized GABA-ergic genes higher. This is the approach used for Supplementary Figure S3.

3. Results
3.1. The Scholastic Gene Coverage Follows Matthew Principle under Cellular Context

For simplicity and because mouse (Mus musculus) is the common model organism
of choice for human diseases, we only focus on mouse and human genes. No doubt,
simpler organisms such as Caenorhabditis C. elegans have been used as well, but for our own
focus on immunology, mouse is the main go-to species. We include both protein-coding
and non-coding genes whenever possible. Furthermore, we only consider 1:1 orthologs.

http://data.henlab.org/genepub
https://plotly.com/dash/
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An overview of the output of papers over time for genes is shown along with the first
description of each gene (Figure 1b). The output increased exponentially, with a marked
increase after the end of WW2 and gene discovery surging after the discovery of the DNA
double helix in 1953 [17]. The rate of gene discovery increased continuously, despite such
basic methods such as restriction enzyme-based cloning appearing only in 1973 [18].

Using this data, we wondered if the Matthew principle was an emerging property
observed at a systemic level or was highly context dependent. For that, we first investigated
to what extent the Matthew principle might dominate in biology if we consider each gene
as its own scientific area. The distribution of the total number of papers for each gene is
shown in Figure 1c. It follows a log-normal-like distribution, which is not compatible with
the general Matthew principle. We then attempted to focus on a narrower set of papers,
such as those within a biological subfield, and wondered whether this strategy would allow
us to detect this. We focused our attention on different cell types and searched PubMed
with suitable keywords. When restricting the context of study to a particular cell type and
attempting a fit to the Pareto distribution, papers were closely (but not entirely) Pareto
distributed (Figure 1f,g). This is compatible with the Matthew principle, and subsetting
for all cell types yielded similar results (Supplementary Figure S4). However, a random
subsampling of papers down to the number for just T cells showed that this was a function
of the number of papers covered and not a cell type effect (Figure 1e). We performed all
analyses both on the total number of papers and for several cell types, but obtained similar
results; for simplicity, we use total paper counts in the remainder of this paper.

3.2. A Total Model Integrates Sources of Reinforcement

We deliberated about the potential biological factors that could help us explain and
predict gene popularity throughout time. To compare them, we decided to integrate
different sources of reinforcement (referred to as “features”) and quantify their relative
importance. Scores of each source were generated from several databases (Figure 1a) to
be described and commented on throughout this paper. We used a linear model as well
as nonlinear machine learning models (neural network and adaptive boosting) over the
features to predict the number of citations (log10(1 + number of citations)) of each gene
(henceforth called “#citations”). The nonlinear models made slightly better predictions
(RMSE 0.51 and 0.55 vs. 0.78) but similar explanations (Supplementary Figure S2). However,
nonlinear models suffered from several problems, most importantly overfitting (due to
more parameters, as exemplified in Supplementary Figure S1), and the explanations could
also have a complex local nature (partially described by, for example, SHAP [19] and
LIME [20]). For the ease of interpretation, we here present the simpler linear model.
The relative weight of the features is shown in Figure 1d (for T cells; other cell types in
Supplementary File S1) and the confounder matrix (i.e., how strongly two features are
correlated) in Figure 1e. The time from the first citation of a gene was the strongest feature
(fage), contributing to an effect of self-reinforcement. It accounted for approximately 25% of
the total reinforcement. The other features are now further described in roughly the order
of their impact.

3.3. Paralogy and Gene Family Linkage Are Strong Drivers of Gene Popularity

We suspected that knowledge about a gene would reinforce research about similar
genes. Genes are commonly named in groups such as Gata1, Gata2, and so forth. We
denoted Gata1 as the founding gene. One feature (ffounder) was the #citations of the founding
member. We further defined the family index feature (fFI), e.g., 2 for Gata2. The impact of
these is best understood from Figure 2a. The founding member was almost always the
most cited gene, which further explains why fFI was inversely proportional with #citations.
One concern is that say, Gata2 might have been studied before Gata3, and thus obtain more
citations due to mere age. However, even when regressing out the age, the same pattern
emerged (Figure 2a, yellow).
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Figure 2. (a) Citation trends with relative #citations vs. gene family member’s index for the first 10 indices. Citations
within gene families are normalized to index 1, which constitutes ffounder. (b) Gene–gene graph representation. The average
citations of neighboring genes in a gene–gene graph is used to define several features for each gene: fcoexp, fPPI, and
fchromatin. (c) fchromatin defined as #citations vs. ranked chromosome position of gene, for chromosome 7, colored by some
gene families named at the bottom*. Chromosomal position is a highly dimensional feature that captures several relevant
biological parameters and strongly influences the #citations. Gene families tend to show similar patterns of citation. (d)
#Citations vs. RNA expression level (primary tissue normalized) for T lymphocytes. Highly expressed genes generally
tend to positively correlate with #citations. (e) #Citations vs. Pearson correlation values of RNA expression—#citations
across cell types. The positive correlation trend observed in Figure 2d is consistent across cell types, thus reinforcing the
idea of gene expression levels being a critical feature in gene popularity. (f) #Citations vs. cell type-specific expression
level for the gene Oct4. Despite being highly expressed on professional antigen presenting cells, the cellular context in
which Oct4 has been extensively cited is stem cell research. This hints at the existence of underlying features not included
within this study that might be paramount drivers of gene popularity. (g) fessentiality defined as #Citations vs. cellular
essentiality. Gene essentiality shows a positive correlation trend with gene popularity. This highlights that genes important
for basic cell biology tend to produce a phenotype, which in turn facilitates gene reporting and enhances popularity. (h)
UMAP projection of single-cell RNA-seq data showing the co-expression network (T cells, each point is a gene) colored by
expression level and number of citations. A group of highly cited genes is pointed out in red.

The naming of genes, such as for Gata1–5, is not systematic; it may vary from the genes
sharing a protein domain, or whole gene sequence homology, to sharing KO phenotype.
To focus specifically on whole-gene homology, we used BLASTp to create a graph of
gene-coded amino acid sequence similarity (see methods). We then defined the feature
fhomology as the average #citations of neighboring genes (Figure 2b). This feature turned
out to be roughly twice as predictive as ffounder, with which it was moderately correlated
(Figure 1e). The strength of the prediction was possibly due to fhomology being applicable
to all the genes, while not all genes were organized in families following the considered
name convention.

3.4. The Chromatin Structure Influences Citations in Several Manners

The advent of DNA-focused sequencing techniques has allowed researchers to further
investigate the interaction between proteins and DNA, as well as chromosomal structure
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and loci positioning. Certain loci have been studied extensively due to how the chromatin
influences gene expression, such as the T helper cell type 2 (Th2) locus, containing several
important cytokines [21]. These cytokines are also co-expressed in Th2 cells (IL4, IL5, and
IL13). We wondered if the chromatin structure influences the number of publications. A
plot of chromosome 7 shows that this is clearly the case (Figure 2c). Coloring by gene
family names, here simply based on genes sharing prefix (e.g., Olfr*), showed how families
have been treated differently—the olfactory receptors being an extreme case.

To capture the chromatin influence, we defined fchromatin by a neighbor graph, includ-
ing the closest 10 genes along the genome. This feature was a strong predictor but with a
complex interpretation. Together with the pure homology measures, these made up 45%
of the prediction. Due to gene duplication mostly happening locally, chromatin structure
captured homology, paralogy, gene families (by naming), TADs (topologically associating
domains), and thus also co-expression. Thus, this feature, while hugely important, was
non-trivial to interpret.

3.5. Gene Expression Drives Citations

Next, we examined the potential impact of tissue-specific gene expression on citation
prediction. We used the Tabula Muris single-cell (sc)RNA-seq data, spanning 20 different
mice tissues, and within each cell type computed the rank of average gene expression
as feature fexp. This feature showed a clear correlation with #citations (Figure 2d). This
correlation also held across cell types (Figure 2e), although we assumed that a gene was
studied in the “wrong” cell type context (i.e., not the cell type with the highest expression)
if less than 25 papers existed. Otherwise, genes were generally cited more in cells in which
they were more expressed, although numeral counter examples existed. Some example
genes are highlighted in Figure 2e. One example of anticorrelated genes is the Yamanaka
factor Oct4 (octamer-binding transcription factor 4, Figure 2f), in which the interest in stem
cells was the driver for research despite it actually being highly expressed in professional
antigen presenting cells. However, the biological role of both too much and too little
expression of Oct4 can cause differentiation [22], highlighting that high expression does
not always imply higher biological importance.

3.6. Disease Association and Essentiality Make Up 20% of All Citations

While we did not address the impact of funding for simplicity reasons, we wondered
about disease relevance being a considerable gene popularity reinforcer from a biological
perspective. Historically, cancer has been (and still is) one of the most relevant malignancies
for human societies, only behind cardiovascular disease [23,24]. For this reason, and thanks
to the large body of literature and resources available, we decided to consider cancer in our
final model of reinforcement. From the genome-wide COSMIC cancer mutation database,
we defined fCOSMIC from the number of mapped mutations normalized by protein length.
Similarly, we defined fGWAS from the EBI GWAS catalog, which however include all forms
of genome-wide associated studies (diseases and human traits). Overall, fCOSMIC was twice
as strong a predictor as fGWAS (Figure 1d).

Essential genes are of interest as therapeutic targets in cancer treatment. They also
have clear phenotypes, making them easy to spot in screens, thus facilitating their study
and reporting. Here we were able to define the feature fessentality from CRISPR–Cas9 screens
in 324 human cancer cell lines from 30 cancer types [11]. This feature was easily seen to be
positively correlated with the number of citations (Figure 2g), of about the same impact as
the fGWAS. The total of fGWAS + fCOSMIC + fessentiality made up about 20% of all citations.

3.7. Gene Regulatory Networks (Grns) Are Weak Reinforcers

One potential source of reinforcement may be studying genes if they are working
together with other known genes. Examples include protein complexes, kinase-substrate
pairs, and genes downstream of a common transcriptomic program. To investigate this, we
used co-expression of genes in scRNA-seq data from Tabula Muris [8], as it provides an
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unbiased baseline for what constitutes a transcriptomic program. A GRN was calculated for
each annotated cell type separately, using k-nearest neighbors (kNN) in the Euclidean space
of normalized gene expression. The feature fcoexp was defined analogously to fhomology, as
the average #citations of neighboring genes. Clusters of highly expressed genes could be
found in the UMAP projection (Figure 2h).

Because correlation in expression level primarily reflects transcriptional networks,
we also investigated networks as defined by protein–protein interaction (PPI). For this
purpose, we used the almost genome-wide HuRI dataset [10]. Using this neighbor graph
without modifications, we defined fPPI. It had some degree of correlation with ffounder and
fhomology (Figure 1g), which we suspected is due to heterodimerization with closely related
proteins; but despite this, it added additional information to the total model (Figure 1d).

Overall, fcoexp + fPPI only made up 5–10% of citations. It is possible that most genes
were first discovered in isolation and only then added to regulatory networks.

3.8. Social Reinforcement Has Increased over Time

To address whether the sources of reinforcements have changed over time, we plotted
several features for genes vs. the first mention of a gene (Figure 3a). Since the 1960s, genes
discovered have been increasingly more essential or related to cancer or disease. This
trend turned in 1990, after which all measures started decreasing. However, fFI increased,
suggesting that biologists aimed to describe the remaining genes independent of disease
relevance [25]. We fitted our model to 1970–1990 and 1991–2010 separately (Figure 3b).
Consistent with the above, fage increased drastically, but mainly by offsetting gene family
membership as a strong indicator. Essentiality and expression level in fact somewhat
increased in importance, suggesting that while less relevant genes have now been covered,
their coverage may be better tuned to their relative importance.
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4. Discussion and Conclusions

Our final model is shown in Figure 3c. From our analysis, self-reinforcement (the
Matthew effect) has a large impact on which genes we study. This is in line with similar
findings from past studies [1,26–29]. Surprisingly, the effect increased post-1990. It cannot
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be attributed to new sequencing methods (pyrosequencing emerging in 2005 [30]), possibly
rather to expression microarrays in 1995 [31], but more so to the Human Genome Project
that started in 1990 [32], culminating in 2001 [33] (mouse in 2002 [34]). We had expected
self-reinforcement to be stronger in the early days, given how few genes were known, but
it is possible that the first genes were discovered due to their importance for the model
organism used for study (e.g., insulin already in 1921). For simplicity, we limited ourselves
to 1:1 human–mouse orthologs. As hinted by Stoeger et al., genes initially studied on
certain model organisms (especially Mus musculus and Rattus norvegicus) have had an
enormous impact on their citation popularity over their human homologues. As our study
is primarily focused on human genes and we wished to retain as many genes as possible,
we did not include additional species. However, the availability of model organisms has
also impacted gene popularity [1].

Our model also highlights the impact of gene expression and co-expression features
on gene popularity, for both coding and non-coding gene transcripts. This outcome
particularly enforces the idea that high-throughput methods like (sc)RNA-Seq, DNA-Seq,
protein biology focused methods, and CRISPR screens are central tools in the generation
of unbiased datasets. This translates directly into blurring the historical perspective of
traditional “one gene at the time” research (especially since 1990) and broadening the
field´s scope towards a more integrative, systemic, and less biased understanding of the
biological question studied by the researcher. Genes are now prioritized better according
to their relevance. It is possible that this spills over into social bias, with some research into
a handful of well-recognized genes being promoted instead of broadening the attention
towards emerging secondary players (not exclusively restricted to families) that most likely
complete the explanation for the biological event studied by the researcher. Our fcoexp
+ fPPI features attempt to capture the interaction between the queried genes and their
important secondary players at different levels. The relevance of these features, however,
seem to have a low impact on gene popularity, potentially highlighting one of the main
limitations of this study. GRNs are highly powerful tools for biological stochastic behavior
analysis [35].

According to our model, features like gene homology (in terms of intraspecific amino
acid sequence similarity between gene products), the presence of pre-existing gene family
founders, and gene index (within the same family) are key players in spurring researchers
towards exploring further gene families. An example of this is the family of olfactory
receptor (Olfr) genes. This has a direct impact on the attention that some genes receive
(especially from a family perspective).

Interestingly, our model shows disease relevance and essentiality features to be rele-
vant for gene popularity, hinting at a cryptic transition of the genomics (and related) field
from an essentially exploratory perspective towards a more goal oriented and context
driven strategy (fueled partially by the advent of drug-target discovery [36]). This could
be due to differences in funding, among other factors [1,37]. We did not include data to
further investigate the impact of the funding system, which also might indirectly affect
recruitment and researchers interests. However, other similar studies have shown interest-
ing social cues that are responsible for part of the explanation of some genes’ popularity,
including funding [1]. Altered researcher’s behavior may also affect citations in unclear
ways; for example, newer generations of scientists tend to switch between topics more
frequently [38]. Would they focus primarily on the commonly known landmark genes
if they were to move to a new topic? The exponentially increasing pace of publications
(Figure 1b) and the concept of “least publishable unit” is likely to also alter behavior in
ways not analyzed here.

We have here included several features that we suspected were important; more
features can be constructed. Some properties may be difficult to capture, and some genes are
akin to black swans—their importance relies on unlikely events. For example, the COVID-
19 target Ace2 is likely to obtain disproportional coverage with our model and emphasize
fage. However, even if our features were poorly affected by false positives/negatives, this
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would not affect their behavior over time. That said, if gene citation or annotation style
has changed over time, this is something that would negatively affect our model. Thus,
the trends in Figure 2 can be considered quantitative, even if other comparisons are better
seen as qualitative. Overall, interpreting the results requires thinking carefully about the
meaning of the features. The co-expression and expression features are influenced by the
choice of tissues sampled. Cancer relevance may not be well represented through fessentiality,
as it was calculated through a CRISPR KO screen rather than CRISPR activation, biasing it
toward one type of cancer gene. There are several other caveats in interpreting essentiality
as a proxy for cancer relevance [39]. However, this just begs for a harder question: Why else
did it surge in importance in the 1990s? Many of the top drivers according to GWAS and
COSMIC seem to have come earlier (Figure 3a). Was essentiality the best driver that could
be found, after having run out of other strong disease candidate genes? In this regard, our
analysis opens for more questions than we can answer at this time.

One other limitation in our study is that we have not investigated the impact of a
changing cell type ontology. To avoid this, we have subjectively stuck with the most
popular cell types. For example, the T cell type has been broken down into subtypes, and
CD4 T helper cells eventually came to include not just Th1 and Th2, but also Th17 and
the still somewhat ignored Th9 (as judged by citation counts). In future work it would be
relevant to study, for example, how new cell types are “populated” with new genes from
their founding type.

The top genes after 1990 are, in descending order, Pten, Mthfr, Pparg, Mapk1, and Tlr2-
genes familiar to many biologists or clinicians as they frequently appear in textbooks (or
as part of a mentioned protein complex or pathway). It is hard to imagine how we would
have approached biology if we did not have at least some reference points. However,
the number of drugs targeting (or known to target) a gene correlates highly with the
citations (Supplementary Figure S3, r = 0.4, Pearson correlation on log scale). Thus, as
the scientific field of biology has matured, we likely need to look past our “comfort zone
of familiar genes” and better integrate regulatory networks to find new drug targets.
Unbiased methods such as CRISPR screens and single-cell analysis are likely to be of help.
To further guide colleagues toward poorly explored areas, we provide http://data.henlab.
org/genepub, showing properties of genes and indicating if they appear understudied.
We hope this work enables reflective analysis and enables us to focus where it matters
the most.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/319/s1, Supplementary File S1: Generated features, keywords for searching cell-specific
papers, and representative tissue for each cell type (40 mb)—during revision.
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