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Abstract: The reasons for selecting a gene for further study might vary from historical momentum
to funding availability, thus leading to unequal attention distribution among all genes. However,
certain biological features tend to be overlooked in evaluating a gene’s popularity. Here we present
a meta-analysis of the reasons why different genes have been studied and to what extent, with a
focus on the gene-specific biological features. From unbiased datasets we can define biological prop-
erties of genes that reasonably may affect their perceived importance. We make use of both linear
and nonlinear computational approaches for estimating gene popularity to then compare their rel-
ative importance. We find that roughly 25% of the studies are the result of a historical positive feed-
back, which we may think of as social reinforcement. Of the remaining features, gene family mem-
bership is the most indicative followed by disease relevance and finally regulatory pathway associ-
ation. Disease relevance has been an important driver until the 1990s, after which the focus shifted
to exploring every single gene. We also present a resource that allows one to study the impact of
reinforcement, which may guide our research toward genes that have not yet received proportional
attention.

Keywords: gene; Matthew effect; biological feature; genomics; machine learning; linear model; gene
regulatory networks

1. Introduction

One of the current great challenges in biology is integrating knowledge into a coherent
model, thus allowing predictions to be made. However, this quest heavily relies on our un-
derstanding of all the different features that define our biological question. How well do we
understand the different features, and has the manner or motivation for study affected our
conclusions about them? As systems biologists, we wondered if we could somehow address
these questions based on the intrinsic properties of the genes. Similar studies have previously
addressed this question, making a great contribution in highlighting social features (funding,
transitioning to principal investigator status, model organism and scientific literature data-
base availability) and a plethora of physicochemical properties of protein-coding genes [1].
However, the amount of literature about factors behind gene popularity integrating biological
feature information yielded by NGS-derived datasets, CRISPR-screens, gene regulatory
(GRNs), and protein—protein interaction (PPis) networks is limited.

Scientometry is the discipline that studies scientific and technologic literature from the
quantitative perspective [2]. From scientometry it is known that literature is usually skewed
to cover some subjects at a much greater depth than others. Various statistical distributions
seem able to explain current and past publication trends, proposed to follow laws such as
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those of Bradford and Lotka, or the Pareto distribution [3]. It is, however, not clear what con-
stitutes a “subject” nor how generally consistent these principles are. Pareto-like distributions
are generated in systems having the Matthew effect, in other words, a positive feedback loop
where “the rich become richer”. In scientific research, a few critical discoveries nucleate fields
of which some grow much faster than others. Throughout this paper we will call this effect
“reinforcement”.

In this study we consider individual genes as “subjects” and show that literature follows
a Matthew-like principle. We theorize that this is because it is easier to study genetics once a
few “reference genes” have been discovered and studied. However, this also means that the
number of papers might mainly reflect a social process of discovery rather than reflect the real
relevance of the genes to the subject of interest.

To correlate citations with social driving force versus a gene’s biological relevance, we
made use of unbiased datasets that may suggest a gene to be perceived as important, includ-
ing single-cell RNA-seq data, protein—protein interactions, as well as CRISPR screens (Figure
1a). The model is by necessity semi-qualitative—there are multiple ways to encode the fea-
tures mathematically. Furthermore, it will always be possible to add further features that
could be of relevance. Thus, the results need to be interpreted considering the model formu-
lation. We try to avoid demarcating different sources as “social” or “biological”, but our choice
of biological factors unavoidably reflects our own view of “importance”. Our unit of study is
one gene, but we could have considered transcript isoforms, post-translationally modified
proteins, or protein domains. These are all valid alternative objects of enquiry but outside our
scope. We have largely ignored how different experimental methodologies have impacted ci-
tations (e.g., proteomics vs. transcriptomics). Finally, gender, class, and ethnicity could all be
included as social reinforcement factors, but here we were mainly interested in the overall
balance of social vs. biological factors.
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Figure 1. (a) Features defining the total model of reinforcement and the datasets used. (b) Citations and discovered genes
over time, along with landmark events in genomic biology research. #Citations are logl0(number of citations + 1). #New
genes are logl0 (number of genes + 1). Gene citation count distributions for all cell types (c) and for T lymphocytes (d).
Overall gene publication frequencies follow a log-normal-like distribution, while when applying a cellular-type context,
a Pareto-like trend appears. (e) Random subset of papers, similar to the number of papers for T cells in d. (f) A fit with an
exponential distribution. This shows the super-exponential nature of citations. (g) Fit with the pareto distribution. This
shows similarities but not a perfect fit either. We conclude that citations follow some intermediate distribution between
these two cases. (h) Features and their relative weight contribution to the total fitted model. The order of features does not
matter. Features do not sum to 1 but the input features are variance-normalized. Age is negative as we use the year of
publication as a feature, which after normalization is negative age. (i) Spearman’s correlation coefficients between the
included features for the total fitted model.
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If we consider the initial reporting date (or time) since the discovery of a gene as the
main social component predictor, then roughly 25% of the papers are a result of social
reinforcement. Gene expression level is the second strongest indicator, followed by mark-
ers of disease relevance to a lesser extent. We believe that further use of unbiased data
generation methods will widen the set of genes considered and hopefully enrich our un-
derstanding of cell biology.

2. Materials and Methods
2.1. Pubmed Data Retrieval and Pre-Processing

Genes and PMIDs were retrieved using the publicly available FTP service (Available
online: ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz (accessed on 29 April 2020));
released on 16 December 2019). Only mouse and human IDs were retained. Mouse
ENSMUSG gene IDs were processed and converted to human Ensembl IDs (ENSID) using
BioMart. Further Pubmed article metadata was downloaded
(ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline (accessed on 29 April 2020)). A custom Java
program (available on our Github) was used to extract date of publication and PMID.

Cell type keywords were defined semi-manually based on the cell type annotation in
the Tabula Muris dataset. MeSH terms could have been a better choice, but literature also
suggests they are not commonly used [4]. Poorly represented cell types were removed or
merged with other categories. The mapping cell type—{PMIDs} was created by searching
Pubmed for keywords (see Supplementary File S1). This association was used along with
the gene-PMIDs mapping to create cell type-specific lists of papers.

The measure #citation was defined as log10 (1 + number of papers for a gene), either
total paper counts or subsetted for one cell type. We also tried to use the rank (number of
papers per gene) as a measure, hoping it would better even out the statistical distribution;
however, because too many genes had similar (low) number of citations, many ranks were
tied, and we decided against the use of this measure.

2.2. Citation Distribution Analysis

We investigated distributions for several genes, and they followed similar trends.
Comparison with the exponential distribution was made with fitdistr() from the R MASS
package [5]. Comparison with the Pareto distribution was made with the R ParetoPosSta-
ble package.

2.3. Gene Family Analysis

Gene symbol nomenclature for the mouse genome (Mus musculus) was extracted
from Tabula Muris datasets. Only gene symbols with a structure containing any combi-
nation of characters from a to z (English alphabet) followed by any combination of digits
from zero to nine were analyzed (structures similar to Abc followed by 1, 2, 3, or specified
as a regular expression: (a-zA-Z) + (0-9) +), with a total of 18,330 unique gene symbols.
The digits make up fr, while #citation of the gene with frr=1 was used as fiounder. For found-
ers themselves, frounder was set to N/A. frr was capped at 30, and this value was also used
for genes that do not have a founder, following our nomenclature. In the total model,
ffounder was set to the median value whenever N/A.

2.4. Gene Homology Analysis

All the mouse protein sequences were obtained from Uniprot (ID UP000000589). A
Java script was used to reduce the FASTA header name to just the gene symbol, and only
genes included in the Tabula Muris count tables were considered. The command “blastp
-db uniprot.fa -query uniprot.fa -out results_prot.out -outfmt 6” was used to do all-
against-all mapping (version 2.6.0+) [6]. Only the highest blastp “pident” score for each
pair of genes was retained.
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Two methods were used to enrich the graph for edges between the most similar
genes. First, only the top 3 edges were retained (largely to speed up following the calcu-
lations). Second, a triangle-inequality method was used, inspired by ARACNe DPI [7].
For genes X, Y, and Z, we compared their protein identity I. If Ix.> Iy and Iy.> Ly, the edge
X=Y was removed. Informally, this means that Z was sufficiently well-matched to inter-
mediate X—Z-Y that the link X-Y could be considered superfluous. This algorithm was
implemented in Java. The #citation of the connected genes then defined fromology.

2.5. Gene Expression Analysis

Gene count tables from the Tabula Muris [8] were retrieved from https://tabula-mu-
ris.ds.czbiohub.org/ (accessed on 29 April 2020). We used the “FACS sorted, SMART-Seq2
RNAseq libraries” as the depth appeared better for co-expression analysis, so we used
these libraries throughout for consistency. Based on the existing cell type annotation, the
number of cells in each tissue was counted. The tissue with the largest number of cells
matching a given cell type was designated “the primary tissue”. The average counts were
calculated for each cell type in their primary tissue (by focusing on one tissue we needed
not consider batch effects). fexp was defined as rank (expression level).

2.6. Gene Co-Expression Network Analysis

The Tabula Muris RNA-seq count table for different cell types was used again. In-
stead of the average, single cell counts from the primary tissue were retained. The counts
were rescaled as logl0 (1 + count). The first 6 PCA components were calculated by
prcomp_irlba. A projection was made with UMAP [9]. The k-nearest neighbor (KNN)
graph was calculated with k = 10. feexp was defined as average(#citations) of these neigh-
bors.

2.7. Protein—Protein Interaction (PPI) Network Analysis

We downloaded HuRI.tsv (available online: http://www.interactome-atlas.org/ (ac-
cessed on 29 April 2020) [10]. As this data were already in the form of a network, we could
use them directly without intermediate processing. The triangle inequality was not ap-
plied, as we assumed the dataset to only consider direct interactions. ferr was defined as
average(#citations) of the neighbors of each gene.

2.8. Gene Essentiality Analysis

We downloaded Supplementary Table S3 from the CRISPR screen study online sup-
plement [11] and used the column “% Dependent Cell lines”. The global essentiality score
as defined by their fuzzy set AAAM algorithm was within the range (0, 100), and thus we
used it directly as fessential. For genes not included in the dataset, we set the corresponding
value to the median. We also attempted to generate cell type-specific essentialities by
manually curating the cancer cell line types and comparing them to Tabula Muris tissues;
however, we usually did not manage to clearly decide which exact cell type was the origin
and so this was not used in the end.

2.9. Gene Chromatin Proximity Analysis

The mouse genome GRCm38.97 GTF-file was downloaded from Ensembl. Features
of the type “gene” were retained, and gene positions were calculated as (from-to)/2. The
gene symbol was extracted from the attributes field. The coordinate table was merged
with the cell type-specific paper counts. For each chromosome and cell type, the features
were sorted. Then for each gene, the closest other genes obtained and fchromatin Were defined
as the average #citations of these.
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2.10. GWAS Analysis

The file gwas_catalog_v1.0-associations_e98_r2020-03-08.tsv was downloaded from
the EBI GWAS catalog. We considered as targets those genes in the column “RE-
PORTED.GENE.S.”. Intergenic SNPs were removed. The smallest p-value for any SNP
was calculated but capped at 10%. fowas was defined as —rank (p-value) such that high
positive values implied high relevance.

2.11. COSMIC Analysis

We downloaded the file CosmicGenomeScreensMutantExport.tsv.gz and used a Java
program to extract the number of mutations and length (amino acids) for each gene. The
gene names were mapped to mouse genes. The feature fcosmic was defined as rank (num-
ber of mutations/length of gene). For genes with no COSMIC entry, the smallest value of
fcosmic was used.

2.12. The Total Model (Linear)

The total model was set up as #citation =m + }; ci fi. Features were first scaled to have
unit variance and zero mean. The intercept was discarded. The model was fitted in R using
the limma package [12]. Because the features were normalized, we here report the raw
coefficient values.

2.13. The Total Model (Nonlinear)

Several neural network models were fitted using the PyTorch library [13]. To avoid
overfitting, we only considered networks with low numbers of layers. We picked one rep-
resentative model, with 2 RelU layers (16 parameters); for example, having 3 RelU layers
give similar output. Parameters were then searched using the ADAM optimizer (conver-
gence shown in Supplementary Figure S2a). The relative importance of the features was
estimated using a LIME [14]-like approach; for each feature and for each data point (gene),
the neural network was asked to predict #citations if one standard deviation was added.
The average difference in #citations was taken as the indicator of importance. The neural
network explanation for T cells is shown in Supplementary Figure S2b. The RMSE was
0.55.

We also tested an approach based on gradient boosting (XGBoost) [15], resulting in
an RMSE of 0.51. The model was tested in the same manner as the neural network (Sup-
plementary Figure S2c).

The Jupyter notebooks containing the non-linear models are provided in the Github
repository.

2.14. Creation of Online Data Visualizer

The online visualizer is provided at http://data.henlab.org/genepub created with the
Python framework Dash (available online: https://plotly.com/dash/, version 1.10.0). Most
of the underlying data is stored in SQLite3 files, which enable data to be read efficiently
upon need. The files were generated using the R package RSQLite.

2.15. Drug Availability Analysis

The XML database from DrugBank 5.0 was downloaded and parsed in Java [16]. This
program took all drugbank-id records, looked for a gene-symbol record and all gene-
name records within target-records. These human gene symbols were translated into
mouse gene symbols and compared. We tried taking both all targets and just the first tar-
get. Both yield similar citation correlations and drugs-per-gene trends, but including all
the targets emphasized GABA-ergic genes higher. This is the approach used for Supple-
mentary Figure S3.
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3. Results
3.1. The Scholastic Gene Coverage Follows Matthew Principle under Cellular Context

For simplicity and because mouse (Mus musculus) is the common model organism of
choice for human diseases, we only focus on mouse and human genes. No doubt, simpler
organisms such as Caenorhabditis C. elegans have been used as well, but for our own focus
on immunology, mouse is the main go-to species. We include both protein-coding and
non-coding genes whenever possible. Furthermore, we only consider 1:1 orthologs. An
overview of the output of papers over time for genes is shown along with the first descrip-
tion of each gene (Figure 1b). The output increased exponentially, with a marked increase
after the end of WW2 and gene discovery surging after the discovery of the DNA double
helix in 1953 [17]. The rate of gene discovery increased continuously, despite such basic
methods such as restriction enzyme-based cloning appearing only in 1973 [18].

Using this data, we wondered if the Matthew principle was an emerging property
observed at a systemic level or was highly context dependent. For that, we first investi-
gated to what extent the Matthew principle might dominate in biology if we consider each
gene as its own scientific area. The distribution of the total number of papers for each gene
is shown in Figure 1c. It follows a log-normal-like distribution, which is not compatible
with the general Matthew principle. We then attempted to focus on a narrower set of pa-
pers, such as those within a biological subfield, and wondered whether this strategy
would allow us to detect this. We focused our attention on different cell types and
searched PubMed with suitable keywords. When restricting the context of study to a par-
ticular cell type and attempting a fit to the Pareto distribution, papers were closely (but
not entirely) Pareto distributed (Figure 1f,g). This is compatible with the Matthew princi-
ple, and subsetting for all cell types yielded similar results (Supplementary Figure 54).
However, a random subsampling of papers down to the number for just T cells showed
that this was a function of the number of papers covered and not a cell type effect (Figure
le). We performed all analyses both on the total number of papers and for several cell
types, but obtained similar results; for simplicity, we use total paper counts in the remain-
der of this paper.

3.2. A Total Model Integrates Sources of Reinforcement

We deliberated about the potential biological factors that could help us explain and
predict gene popularity throughout time. To compare them, we decided to integrate dif-
ferent sources of reinforcement (referred to as “features”) and quantify their relative im-
portance. Scores of each source were generated from several databases (Figure 1a) to be
described and commented on throughout this paper. We used a linear model as well as
nonlinear machine learning models (neural network and adaptive boosting) over the fea-
tures to predict the number of citations (logl0(1 + number of citations)) of each gene
(henceforth called “#citations”). The nonlinear models made slightly better predictions
(RMSE 0.51 and 0.55 vs. 0.78) but similar explanations (Supplementary Figure S2). How-
ever, nonlinear models suffered from several problems, most importantly overfitting (due
to more parameters, as exemplified in Supplementary Figure S1), and the explanations
could also have a complex local nature (partially described by, for example, SHAP [19]
and LIME [20]). For the ease of interpretation, we here present the simpler linear model.
The relative weight of the features is shown in Figure 1d (for T cells; other cell types in
Supplementary File S1) and the confounder matrix (i.e., how strongly two features are
correlated) in Figure le. The time from the first citation of a gene was the strongest feature
(fage), contributing to an effect of self-reinforcement. It accounted for approximately 25%
of the total reinforcement. The other features are now further described in roughly the
order of their impact.
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3.3. Paralogy and Gene Family Linkage Are Strong Drivers of Gene Popularity

We suspected that knowledge about a gene would reinforce research about similar
genes. Genes are commonly named in groups such as Gatal, Gata2, and so forth. We de-
noted Gatal as the founding gene. One feature (frounder) was the #citations of the founding
member. We further defined the family index feature (fr), e.g., 2 for Gata2. The impact of
these is best understood from Figure 2a. The founding member was almost always the
most cited gene, which further explains why frr was inversely proportional with #citations.
One concern is that say, Gata2 might have been studied before Gata3, and thus obtain more
citations due to mere age. However, even when regressing out the age, the same pattern
emerged (Figure 2a, yellow).
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Figure 2. (a) Citation trends with relative #citations vs. gene family member’s index for the first 10 indices. Citations within
gene families are normalized to index 1, which constitutes ffounder. (b) Gene—gene graph representation. The average cita-
tions of neighboring genes in a gene—gene graph is used to define several features for each gene: fcoexp, fre1, and fehromatin. (c)
fehromatin defined as #citations vs. ranked chromosome position of gene, for chromosome 7, colored by some gene families
named at the bottom*. Chromosomal position is a highly dimensional feature that captures several relevant biological
parameters and strongly influences the #citations. Gene families tend to show similar patterns of citation. (d) #Citations
vs. RNA expression level (primary tissue normalized) for T lymphocytes. Highly expressed genes generally tend to posi-
tively correlate with #citations. (e) #Citations vs. Pearson correlation values of RNA expression—#citations across cell
types. The positive correlation trend observed in Figure 2d is consistent across cell types, thus reinforcing the idea of gene
expression levels being a critical feature in gene popularity. (f) #Citations vs. cell type-specific expression level for the gene
Oct4. Despite being highly expressed on professional antigen presenting cells, the cellular context in which Oct4 has been
extensively cited is stem cell research. This hints at the existence of underlying features not included within this study that
might be paramount drivers of gene popularity. (g) fessentiality defined as #Citations vs. cellular essentiality. Gene essentiality
shows a positive correlation trend with gene popularity. This highlights that genes important for basic cell biology tend
to produce a phenotype, which in turn facilitates gene reporting and enhances popularity. (h) UMAP projection of single-
cell RNA-seq data showing the co-expression network (T cells, each point is a gene) colored by expression level and num-
ber of citations. A group of highly cited genes is pointed out in red.

The naming of genes, such as for Gatal-5, is not systematic; it may vary from the
genes sharing a protein domain, or whole gene sequence homology, to sharing KO phe-
notype. To focus specifically on whole-gene homology, we used BLASTp to create a graph
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of gene-coded amino acid sequence similarity (see methods). We then defined the feature
fromology as the average #citations of neighboring genes (Figure 2b). This feature turned out
to be roughly twice as predictive as ffounder, with which it was moderately correlated (Fig-
ure le). The strength of the prediction was possibly due to fromology being applicable to all
the genes, while not all genes were organized in families following the considered name
convention.

3.4. The Chromatin Structure Influences Citations in Several Manners

The advent of DNA-focused sequencing techniques has allowed researchers to fur-
ther investigate the interaction between proteins and DNA, as well as chromosomal struc-
ture and loci positioning. Certain loci have been studied extensively due to how the chro-
matin influences gene expression, such as the T helper cell type 2 (Th2) locus, containing
several important cytokines [21]. These cytokines are also co-expressed in Th2 cells (IL4,
IL5, and IL13). We wondered if the chromatin structure influences the number of publi-
cations. A plot of chromosome 7 shows that this is clearly the case (Figure 2c). Coloring
by gene family names, here simply based on genes sharing prefix (e.g., Olfr*), showed
how families have been treated differently —the olfactory receptors being an extreme case.

To capture the chromatin influence, we defined fchromatin by a neighbor graph, includ-
ing the closest 10 genes along the genome. This feature was a strong predictor but with a
complex interpretation. Together with the pure homology measures, these made up 45%
of the prediction. Due to gene duplication mostly happening locally, chromatin structure
captured homology, paralogy, gene families (by naming), TADs (topologically associating
domains), and thus also co-expression. Thus, this feature, while hugely important, was
non-trivial to interpret.

3.5. Gene Expression Drives Citations

Next, we examined the potential impact of tissue-specific gene expression on citation
prediction. We used the Tabula Muris single-cell (sc)RNA-seq data, spanning 20 different
mice tissues, and within each cell type computed the rank of average gene expression as
feature fexp. This feature showed a clear correlation with #citations (Figure 2d). This corre-
lation also held across cell types (Figure 2e), although we assumed that a gene was studied
in the “wrong” cell type context (i.e., not the cell type with the highest expression) if less
than 25 papers existed. Otherwise, genes were generally cited more in cells in which they
were more expressed, although numeral counter examples existed. Some example genes
are highlighted in Figure 2e. One example of anticorrelated genes is the Yamanaka factor
Oct4 (octamer-binding transcription factor 4, Figure 2f), in which the interest in stem cells
was the driver for research despite it actually being highly expressed in professional anti-
gen presenting cells. However, the biological role of both too much and too little expres-
sion of Oct4 can cause differentiation [22], highlighting that high expression does not al-
ways imply higher biological importance.

3.6. Disease Association and Essentiality Make Up 20% of All Citations

While we did not address the impact of funding for simplicity reasons, we wondered
about disease relevance being a considerable gene popularity reinforcer from a biological
perspective. Historically, cancer has been (and still is) one of the most relevant malignan-
cies for human societies, only behind cardiovascular disease [23,24]. For this reason, and
thanks to the large body of literature and resources available, we decided to consider can-
cer in our final model of reinforcement. From the genome-wide COSMIC cancer mutation
database, we defined fcosmic from the number of mapped mutations normalized by pro-
tein length. Similarly, we defined fewas from the EBI GWAS catalog, which however in-
clude all forms of genome-wide associated studies (diseases and human traits). Overall,
fcosmic was twice as strong a predictor as fewas (Figure 1d).
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Essential genes are of interest as therapeutic targets in cancer treatment. They also
have clear phenotypes, making them easy to spot in screens, thus facilitating their study
and reporting. Here we were able to define the feature fessentiity from CRISPR-Cas9 screens
in 324 human cancer cell lines from 30 cancer types [11]. This feature was easily seen to be
positively correlated with the number of citations (Figure 2g), of about the same impact
as the fewas. The total of fewas+ fcosmic + fessentiality made up about 20% of all citations.

3.7. Gene Regulatory Networks (Grns) Are Weak Reinforcers

One potential source of reinforcement may be studying genes if they are working
together with other known genes. Examples include protein complexes, kinase-substrate
pairs, and genes downstream of a common transcriptomic program. To investigate this,
we used co-expression of genes in scRNA-seq data from Tabula Muris [8], as it provides
an unbiased baseline for what constitutes a transcriptomic program. A GRN was calcu-
lated for each annotated cell type separately, using k-nearest neighbors (kNN) in the Eu-
clidean space of normalized gene expression. The feature fwexp was defined analogously
to fromology, as the average #citations of neighboring genes. Clusters of highly expressed
genes could be found in the UMAP projection (Figure 2h).

Because correlation in expression level primarily reflects transcriptional networks,
we also investigated networks as defined by protein—-protein interaction (PPI). For this
purpose, we used the almost genome-wide HuRI dataset [10]. Using this neighbor graph
without modifications, we defined ferr. It had some degree of correlation with frounder and
fromology (Figure 1g), which we suspected is due to heterodimerization with closely related
proteins; but despite this, it added additional information to the total model (Figure 1d).

Overall, feoexp+frer only made up 5-10% of citations. It is possible that most genes were
first discovered in isolation and only then added to regulatory networks.

3.8. Social Reinforcement Has Increased over Time

To address whether the sources of reinforcements have changed over time, we plot-
ted several features for genes vs. the first mention of a gene (Figure 3a). Since the 1960s,
genes discovered have been increasingly more essential or related to cancer or disease.
This trend turned in 1990, after which all measures started decreasing. However, frr in-
creased, suggesting that biologists aimed to describe the remaining genes independent of
disease relevance [25]. We fitted our model to 1970-1990 and 1991-2010 separately (Figure
3b). Consistent with the above, fage increased drastically, but mainly by offsetting gene
family membership as a strong indicator. Essentiality and expression level in fact some-
what increased in importance, suggesting that while less relevant genes have now been
covered, their coverage may be better tuned to their relative importance.



Genes 2021, 12, 319

10 of 13

a.

Family index

b. B C.
J 109 ] Co-expression

COsMIC

GWAS

Essentiality m # ﬁ%'\
Expressi;n-##W -05

1900

Essentiality

Founder

Homology

Chromatin
PPI

COsMIC

GWAS
Expression

Age

Family index

. . <
1980 2000 Before 1990 After

Figure 3. (a) Time series plot for several features where each point represents the year of first citation of a gene, from 1900
to 2010. Reinforcement sources for genes tend to vary over time, hinting at the existence of underlying social features for
gene popularity (not included in this study), highly dependent on time. (b) Time series plot for all model-relevant feature
weights for genes discovered between 1970-1990 and 1991-2010. Certain features like expression and essentially seem to
be especially relevant as popularity determinators for genes discovered after 1990. (c) A summary of the proposed model
of gene popularity reinforcers showing the total percentage of different sources of reinforcement.

4. Discussion and Conclusions

Our final model is shown in Figure 3c. From our analysis, self-reinforcement (the
Matthew effect) has a large impact on which genes we study. This is in line with similar
findings from past studies [1,26-29]. Surprisingly, the effect increased post-1990. It cannot
be attributed to new sequencing methods (pyrosequencing emerging in 2005 [30]), possi-
bly rather to expression microarrays in 1995 [31], but more so to the Human Genome Pro-
ject that started in 1990 [32], culminating in 2001 [33] (mouse in 2002 [34]). We had ex-
pected self-reinforcement to be stronger in the early days, given how few genes were
known, but it is possible that the first genes were discovered due to their importance for
the model organism used for study (e.g., insulin already in 1921). For simplicity, we lim-
ited ourselves to 1:1 human-mouse orthologs. As hinted by Stoeger et al., genes initially
studied on certain model organisms (especially Mus musculus and Rattus norvegicus) have
had an enormous impact on their citation popularity over their human homologues. As
our study is primarily focused on human genes and we wished to retain as many genes
as possible, we did not include additional species. However, the availability of model or-
ganisms has also impacted gene popularity [1].

Our model also highlights the impact of gene expression and co-expression features
on gene popularity, for both coding and non-coding gene transcripts. This outcome par-
ticularly enforces the idea that high-throughput methods like (sc)RNA-Seq, DNA-Seq,
protein biology focused methods, and CRISPR screens are central tools in the generation
of unbiased datasets. This translates directly into blurring the historical perspective of tra-
ditional “one gene at the time” research (especially since 1990) and broadening the field’s
scope towards a more integrative, systemic, and less biased understanding of the biolog-
ical question studied by the researcher. Genes are now prioritized better according to their
relevance. It is possible that this spills over into social bias, with some research into a
handful of well-recognized genes being promoted instead of broadening the attention to-
wards emerging secondary players (not exclusively restricted to families) that most likely
complete the explanation for the biological event studied by the researcher. Our feoexp + frer
features attempt to capture the interaction between the queried genes and their important
secondary players at different levels. The relevance of these features, however, seem to
have a low impact on gene popularity, potentially highlighting one of the main limitations
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of this study. GRNs are highly powerful tools for biological stochastic behavior analysis
[35].

According to our model, features like gene homology (in terms of intraspecific amino
acid sequence similarity between gene products), the presence of pre-existing gene family
founders, and gene index (within the same family) are key players in spurring researchers
towards exploring further gene families. An example of this is the family of olfactory re-
ceptor (Olfr) genes. This has a direct impact on the attention that some genes receive (es-
pecially from a family perspective).

Interestingly, our model shows disease relevance and essentiality features to be rele-
vant for gene popularity, hinting at a cryptic transition of the genomics (and related) field
from an essentially exploratory perspective towards a more goal oriented and context
driven strategy (fueled partially by the advent of drug-target discovery [36]). This could
be due to differences in funding, among other factors [1,37]. We did not include data to
further investigate the impact of the funding system, which also might indirectly affect
recruitment and researchers interests. However, other similar studies have shown inter-
esting social cues that are responsible for part of the explanation of some genes’ popular-
ity, including funding [1]. Altered researcher’s behavior may also affect citations in un-
clear ways; for example, newer generations of scientists tend to switch between topics
more frequently [38]. Would they focus primarily on the commonly known landmark
genes if they were to move to a new topic? The exponentially increasing pace of publica-
tions (Figure 1b) and the concept of “least publishable unit” is likely to also alter behavior
in ways not analyzed here.

We have here included several features that we suspected were important; more fea-
tures can be constructed. Some properties may be difficult to capture, and some genes are
akin to black swans —their importance relies on unlikely events. For example, the COVID-
19 target Ace2 is likely to obtain disproportional coverage with our model and emphasize
fage. However, even if our features were poorly affected by false positives/negatives, this
would not affect their behavior over time. That said, if gene citation or annotation style
has changed over time, this is something that would negatively affect our model. Thus,
the trends in Figure 2 can be considered quantitative, even if other comparisons are better
seen as qualitative. Overall, interpreting the results requires thinking carefully about the
meaning of the features. The co-expression and expression features are influenced by the
choice of tissues sampled. Cancer relevance may not be well represented through fessentiality,
as it was calculated through a CRISPR KO screen rather than CRISPR activation, biasing
it toward one type of cancer gene. There are several other caveats in interpreting essenti-
ality as a proxy for cancer relevance [39]. However, this just begs for a harder question:
Why else did it surge in importance in the 1990s? Many of the top drivers according to
GWAS and COSMIC seem to have come earlier (Figure 3a). Was essentiality the best
driver that could be found, after having run out of other strong disease candidate genes?
In this regard, our analysis opens for more questions than we can answer at this time.

One other limitation in our study is that we have not investigated the impact of a
changing cell type ontology. To avoid this, we have subjectively stuck with the most pop-
ular cell types. For example, the T cell type has been broken down into subtypes, and CD4
T helper cells eventually came to include not just Th1 and Th2, but also Th17 and the still
somewhat ignored Th9 (as judged by citation counts). In future work it would be relevant
to study, for example, how new cell types are “populated” with new genes from their
founding type.

The top genes after 1990 are, in descending order, Pten, Mthfr, Pparg, Mapk1, and Tlr2-
genes familiar to many biologists or clinicians as they frequently appear in textbooks (or
as part of a mentioned protein complex or pathway). It is hard to imagine how we would
have approached biology if we did not have at least some reference points. However, the
number of drugs targeting (or known to target) a gene correlates highly with the citations
(Supplementary Figure S3, r = 0.4, Pearson correlation on log scale). Thus, as the scientific
field of biology has matured, we likely need to look past our “comfort zone of familiar
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genes” and better integrate regulatory networks to find new drug targets. Unbiased meth-
ods such as CRISPR screens and single-cell analysis are likely to be of help. To further
guide colleagues toward poorly explored areas, we provide
http://data.henlab.org/genepub, showing properties of genes and indicating if they ap-
pear understudied. We hope this work enables reflective analysis and enables us to focus
where it matters the most.

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4425/12/2/319/s1, Supplementary File S1: Generated features, keywords for searching cell-specific
papers, and representative tissue for each cell type (40 mb)—during revision.
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