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Abstract: The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and
transported to guard cells to promote stomatal closure. Although several transmembrane ABA
transporters have been identified, how the movement of ABA within plants is regulated is not fully
understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an
ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates
stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface
temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when
expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several
leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal
closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.

Keywords: abscisic acid (ABA); Arabidopsis thaliana L.; guard cells; NITRATE TRANSPORTER
1/PEPTIDE TRANSPORTER FAMILY (NPF); transporter

1. Introduction

The plant hormone abscisic acid (ABA) plays crucial roles in various processes such
as seed development, germination and responses to abiotic and biotic stresses [1–3]. Fre-
quently, these physiological responses are associated with changes in endogenous ABA
levels. For example, ABA levels increase in response to water deficit to induce stomatal
closure and the expression of stress-responsive genes [4–6]. In developing seeds, ABA lev-
els peak during the middle stage when seeds accumulate storage compounds and acquire
desiccation tolerance [7–9]. Therefore, the concentration of ABA within plants is a key
determinant of ABA-mediated physiological responses.

The amount of ABA within a cell is defined by the balance between biosynthesis and
catabolism. To date, most of the genes and enzymes involved in ABA metabolism have
been identified [10]. It is now widely accepted that the enzymatic reaction catalyzed by
nine-cis-epoxycarotenoid dioxygenase (NCED) is the rate-limiting step for ABA biosyn-
thesis. Among five NCEDs in Arabidopsis (NCED2, 3, 5, 6 and 9), NCED3 plays a central
role in the drought-inducible accumulation of ABA in vegetative organs [11,12]. On the
other hand, NCED6 and NCED9 are the main NCEDs that contribute to ABA production in
Arabidopsis seeds [13]. Expression of NCED3 is rapidly induced upon water deficit [11,14],
whereas mRNA levels of NCED6 and NCED9 are regulated by environmental factors
that affect seed dormancy and germination (e.g., light and temperature) during imbi-
bition [15,16]. Recently, the expression of NCED3 was reported to be regulated by the
CLE25 peptide [17]. A transcription factor (NGATHA1) that directly binds to the NCED3
promoter has also been identified [18], although its relationship to CLE25 is currently
unknown. A number of studies in other plant species have documented the presence of
NCED(s) in vegetative organs and seeds whose expression is regulated by environmental
factors [4,19–23]. ABA 8’-hydroxylase, belonging to the CYP707A subfamily of cytochrome

Genes 2021, 12, 885. https://doi.org/10.3390/genes12060885 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-4372-1337
https://orcid.org/0000-0002-3362-9361
https://orcid.org/0000-0001-6206-1923
https://orcid.org/0000-0001-8325-7984
https://doi.org/10.3390/genes12060885
https://doi.org/10.3390/genes12060885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12060885
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12060885?type=check_update&version=2


Genes 2021, 12, 885 2 of 15

P450s, is well established as the rate-limiting enzyme of ABA catabolism. There are four
CYP707As (CYP707A1-4) that function as ABA 8’-hydroxylases in Arabidopsis [24,25]
and differentially regulate various physiological processes. For example, the expression
of CYP707A3 is strongly induced by rehydration of plants after dehydration, indicating
that the gene product plays an important role in drought stress responses [24,26]. In fact,
mutants defective in CYP707A3 accumulate higher levels of ABA during water deficit and
subsequent rehydration compared to the wild type. In contrast, CYP707A1 and CYP707A2
are highly expressed in the middle and late stages of seed development, respectively.
Mutant seeds defective in these genes exhibit deeper dormancy and have a higher ABA
content compared to the wild type [27]. The physiological functions of CYP707As that are
involved in ABA catabolism have also been studied in other plant species [22,23,28–30].

In addition to the well-studied regulatory roles of ABA biosynthesis and catabolism,
recent studies have demonstrated that transmembrane transport of ABA is also an impor-
tant factor determining the cellular hormone content and, hence, the resulting physiological
responses [10,31]. Studies on the localization of ABA biosynthetic enzymes within plants
have shown that leaf vascular tissues, more specifically phloem companion cells, are the
main site of ABA biosynthesis during water stress responses [5,32,33]. This finding indi-
cates that ABA synthesized in vascular tissues has to be translocated to guard cells to induce
stomatal closure. In fact, three types of transporter families, namely ATP binding cassette
(ABC), NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) and Detoxi-
fication Efflux Carriers (DTX)/Multidrug and Toxic Compound Extrusion (MATE) proteins
that possibly regulate the process have been identified. In Arabidopsis, genes encoding
the subgroup G ABC protein (ABCG) ABCG25 and the NPF protein NPF4.6, which was
originally identified as the low-affinity nitrate transporter NRT1.2 and also called AIT1
after ABA IMPORTING TRANSPORTER 1, are expressed in vascular tissues and possibly
facilitate ABA export and import from/into the cells, respectively [34,35]. Genes encoding
another ABCG protein ABCG40 (also referred to as PDR12 after PLEIOTROPIC DRUG RE-
SISTANCE 12) and the DTX/MATE protein DTX50 that functions as an ABA importer and
exporter, respectively, are expressed in guard cells [36,37]. In Arabidopsis seeds, ABCG25
and ABCG31 export ABA from the endosperm, whereas ABCG30 and ABCG40 import
ABA into the embryo [38]. Possible ABA transporters have also been identified in several
other plant species [10,39–44]. These investigations indicate that the movement of ABA
within plants must be regulated by multiple steps.

In this study, we found that Arabidopsis NPF4.6 was localized in the guard cells of
leaves in addition to vascular tissues. Furthermore, we found that mutants defective in
NPF5.1 (npf5.1) had higher leaf surface temperatures compared to the wild type. When
expressed in yeast cells, NPF5.1 mediated cellular ABA uptake, indicating that this protein
also functions as an ABA importer. We discuss how the two NPFs coordinately regulate
stomatal aperture through the transport of ABA.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Arabidopsis (Arabidopsis thaliana (L.) Heynh.) accession Columbia-0 (Col-0) was used
as the wild type. T-DNA insertion lines were obtained from the Arabidopsis Biological Re-
source Center. aao3-4 (SALK_072361) and npf4.6-1 (ait1-1) (SALK_146143) were isolated in
previous studies [35,45]. Homozygous npf5.1-1 (SALK_085919) and npf5.1-2 (SALK_000464)
were selected by PCR using primer combinations designed by the T-DNA Primer Design
Tool (http://signal.salk.edu/tdnaprimers.2.html, accessed on 25 March 2014). Transgenic
plant lines (pNPF4.6:gNPF4.6-GUS, 35S:NPF5.1 and pNPF5.1:GUS) were generated by
transformation using Agrobacterium strain GV3101.

After surface sterilization with 70% (v/v) ethanol and then with 5% (v/v) NaClO (0.25%
active chlorine) containing 1% (w/v) Tween 20, seeds were sown on plates containing
half-strength MS media and 0.8% (w/v) agar. The plates were incubated at 4 ◦C for 3 d
in the dark and then incubated at 22 ◦C under continuous light (50 µ moles/m 2/s). For
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measurements of leaf surface temperature and quantification of plant hormones, young
seedlings (around 7-d-old) were transplanted on soil containing vermiculite and Metro-mix
350 (Sun Gro Horticulture, MA, USA) at a 3:1 ratio and grown under day (10 h) and night
(14 h) conditions. For GUS staining and seed propagation for germination assays, plants
were grown under continuous light after transplanting.

2.2. Germination Assays

Surface sterilized seeds were sown on plates containing half-strength MS media and
0.8% (w/v) agar with or without supplementation with 0.5 µM ABA. ABA was dissolved
in DMSO at a concentration 1000 times greater than the final concentration used in the
assay. The stock ABA solution was added to the cooled autoclaved media. DMSO was
added to the control media. Plates were incubated at 4 ◦C for 3 d, and the numbers of
germinated seedlings with green cotyledons were scored after transferring the plates to
lighted conditions at 22 ◦C.

2.3. Vector Construction

For expression of NPF5.1 in yeast, NPF5.1 CDS cloned in pENTR/D-TOPO (Thermo
Fisher, Waltham, MA, USA) was transferred to pYES-DEST52 (Thermo Fisher, Waltham,
MA, USA) by LR reactions [46].

To generate pNPF4.6:gNPF.6-GUS plants, a promoter region (2 kb upstream of the ATG
start codon) of NPF4.6 was amplified by PCR with the primer pair 5′-CACCATTAATATATT
GCGGCTA-3′/5′-TCTCTCTCTTTCTTTCTCTC-3′ and cloned into pENTR/D-TOPO. The
genomic sequence of NPF4.6 was amplified by PCR with the primer pair 5′-AAAGAAAGA
GAGAGAATGGTGGGTTCTTGAAGCTTCTCACATTATTTTC-3′/5′-GGCGCGCCCACCC
TTGCTTCTTGAACCAGTTGATCTATACTTGTA-3′ and combined with the 2 kb upstream
region cloned in pENTR/D-TOPO that had been linearized by inverse PCR with the primer
pair 5′-AAGGGTGGGCGCGCCGACCCAGC-3′/5′-TCTCTCTCTTTCTTTCTCTCAAACTT
TGAG-3′ using an In-Fusion Cloning Kit (Takara Bio, Shiga, Japan). The NPF4.6 promoter
plus genomic sequence was cloned into pGWB3 [47] by LR reactions.

For guard-cell specific expression of NPF4.6, the Arabidopsis MYB60 promoter re-
gion [48] and the NPF4.6 CDS were amplified by PCR with primer pairs 5′-AAGCTTGGGTT
CCCTCTGCTGTATG-3′/5′-GTCGACCTTTCTCTCTCTCTCTTCCTCTAG-3′ and 5′-TCTAG
AGTCGACATGGAAGTGGAAGAAGAGGT-3′/5′-GGTACCTTAGCTTCTTGAACCAGTTG-
3′, respectively, and cloned into pT7Blue (Novagen, Darmstadt, Germany). The MYB60
promoter sequence was cloned into pBIB-HYG [49] using the Hind III and Sal I restriction
sites. NPF4.6 CDS was then cloned into pBIB-HYG containing MYB60 promoter using the
Sal I and Kpn I restriction sites.

For transient expression of GFP-fused NPF5.1 in onion epidermal cells, the NPF5.1 CDS
cloned in pENTR/D-TOPO was transferred to pUGW5 [47] by LR reactions. pUGW2 [47]
was used for the transient expression of GFP alone.

To generate 35S:NPF5.1 plants, the NPF5.1 CDS was amplified by PCR with a primer
pair 5′-GCCGCCCCCTTCACCATGGAGGCTGCAAAAGTTTA-3′/5′-AGCTGGGTCGGCG
CGTTAGATACTAAGAGGAGATGTGTC-3′ and cloned into pENTR4 (Thermo Fisher) us-
ing an In-Fusion Cloning Kit (Takara Bio). After confirming the sequence, the NPF5.1 CDS
was cloned into pGWB402-omega [50] by LR reactions.

To generate pNPF5.1:GUS plants, a promoter (the 3 kb region upstream of the ATG start
codon) region of NPF5.1 was amplified by PCR with the primer pair 5′-GCCGCCCCCTTCA
CCTACTAAGATGTTTATTGGTTGA-3′/5′-AGCTGGGTCGGCGCGTAATTGTTTTTTCTG
TTTATATCAA-3′ and cloned into pENTR/D-TOPO that had been linearized by inverse
PCR with the primer pair 5′-CGCGCCGACCCAGCTTTCTTG-3′/5′-GGTGAAGGGGGCG
GCCGCGG-3′ using an In-Fusion Cloning Kit. The NPF5.1 promoter sequence was cloned
into pGWB3 by LR reactions.
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2.4. Thermal Imaging

Thermal images were obtained using a thermal video system (TVS-8500; Nippon
Avionics, Kanagawa, Japan).

2.5. GUS Staining

GUS staining was performed using a solution composed of 50 mM sodium phos-
phate buffer (pH 7.2), 10 mM EDTA, 0.05% (v/v) Triton X-100, 0.5 mM potassium ferro-
cyanide, 0.5 mM potassium ferricyanide and 1 mM X-Gluc. Close-up views were observed
using a Leica M205 stereo microscope or a Leica DM2500 (Leica Camera AG, Wetzlar,
Germany) microscope.

2.6. Transport Assays

The NPF5.1 CDS cloned in pYES-DEST52 was introduced into the Saccharomyces
cerevisiae strain INVSc1 (Thermo Fisher). As a negative control, yeast cells were transformed
with the empty pYES-DEST52 vector. Assays were conducted as described previously [51].
Yeast cells expressing NPF5.1 were incubated with 1 or 10 µM substrates for 10 min in
50 mM potassium phosphate buffer (KPB) (pH 5.8). Extraction, purification, quantification
by LC-MS/MS were performed, as described previously [44].

2.7. ABA Measurements

Endogenous levels ABA were quantified as described previously [51]. Samples were
purified using Oasis HLB, MCX and WAX column cartridges (1 cc, Waters, MA, USA).

2.8. Chemicals

(±)-ABA was purchased from Sigma-Aldrich (MO, USA). (+)-ABA was purchased
from Tokyo Chemical Industry Co (Tokyo, Japan). (D6) ABA was purchased from Icon
Isotope (MI, USA).

(±)-ABA was used for germination assays, whereas (+)-ABA was used for transport assays.

2.9. Quantitative Reverse Transcription-PCR

Quantification of mRNA levels was performed as described previously [52]. Total
RNA was prepared from 7-d-old seedlings of wild type and npf5.1 mutants. The primer
pair 5′-GCGGTTTGGATCACTCCCAT-3′/5′-GTCAAGAGAATCATCCCCAGGAC-3′ was
used to detect NPF5.1 cDNA. Expression levels were normalized against the levels of
18S rRNA.

2.10. Transient Expression of GPF Fused NPF5.1 in Onion Epidermal Cells

One milligram of gold particles (1 µm diameter, Bio-Rad, Hercules, CA, USA) were
coated with 2 µg plasmid DNA for each bombardment. Onion bulb scales were placed with
their inner side up on 1.5% (w/v) agar plates. Gold particles coated with plasmid DNA were
introduced into the inner epidermal cells of an onion by particle bombardment at 1100 psi
using a PDS-1000 He Biolistic Particle Delivery System (Bio-Rad). After bombardment,
the onion bulb scales were incubated in moist conditions overnight at 25 ◦C in the dark.
GFP fluorescence was observed using a confocal laser scanning microscope LSM700 (Carl
Zeiss, Oberkochen, Germany). Onion epidermal peels were stained with 50 µM propidium
iodide solution to visualize the cell walls. To observe plasmolysis, 20% (w/v) mannitol
was used.

3. Results
3.1. NPF4.6 Mediates ABA Uptake into Guard Cells

We previously showed that NPF4.6 functions as an ABA importer in Arabidopsis [35].
The inflorescence stems of mutants defective in NPF4.6 (npf4.6) had lower surface tem-
peratures with more open stomata; however, the mutants did not show any clear leaf
phenotypes, presumably due to redundancies with other ABA transporters. Therefore, the
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physiological roles of NPF4.6 remained not fully understood. To examine the contribution
of NPF4.6 in the regulation of leaf stomatal apertures, we first investigated the effects of
reduced endogenous ABA levels on the phenotypes of npf4.6. In Arabidopsis, there are
four genes encoding aldehyde oxidase (AAO1-4) [53]. Although the AAO3 product plays a
central role in the conversion of abscisic aldehyde to ABA, other isoforms could replace
the function of AAO3, at least in the loss of function aao3 mutant background [45,53,54].
Therefore, aao3 has a relatively mild phenotype. When cultivated under well-watered
conditions, aao3 did not show the growth retardation that is a typical symptom of mutants
severely affected in ABA biosynthesis (Figure 1); however, the leaf surface temperature
of the mutant was reduced compared to the wild type. In the same conditions, npf4.6
was not distinguished from wild type in terms of leaf surface temperature as we reported
previously. Nevertheless, we found that the npf4.6 mutation was able to enhance the “cool”
phenotype observed in the aao3 mutant background (Figure 1), indicating that NPF4.6 is
potentially a positive regulator of stomatal closure.
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Figure 1. NPF4.6 is a positive regulator of stomatal closure. (A) Wild type (WT), npf4.6-1 (npf4.6),
aao3-4 (aao3) and aao3-4 npf4.6-1 (aao3 npf4.6) plants (approximately 1-month-old) grown under a day
and night cycle (10 h light/14 h dark). Scale bar = 1 cm. (B) Leaf surface temperature of plants in (A)
observed by a thermal imaging camera.

Since the promoter activities of NPF4.6 were detected in the vascular tissues of leaves
where ABA is supposed to be synthesized [35], we hypothesized that the protein regu-
lates the amount of ABA transported from the tissues by mediating cellular ABA uptake.
However, if this is the case, one may imagine that the loss of NPF4.6 function would result
in an increased amount of ABA transported from the vascular tissues to guard cells and,
hence, reduce the stomatal aperture (increased leaf surface temperature). One possible
explanation for this unexpected result is that NPF4.6 is present also in guard cells and
transports ABA into the cells. To examine this possibility, we generated transgenic plants
that contained a transgene in which the GUS reporter gene was placed after the NPF4.6
genomic sequence so that the GUS fused NPF4.6 protein was expressed under the control
of the NPF4.6 native promoter (pNPF4.6:gNPF4.6-GUS) (Figure 2). As in the case of simple
promoter-GUS lines, GUS staining was clearly detected in leaf vascular tissues in the
pNPF4.6:gNPF4.6-GUS plants (Figure 2A,B). In addition, closer investigation revealed that
guard cells of the transgenic plants were also stained with GUS (Figure 2C,D). These results
indicated that NPF4.6 is localized to both the vascular tissues and the guard cells.



Genes 2021, 12, 885 6 of 15

Genes 2021, 12, x FOR PEER REVIEW 6 of 15 
 

 

explanation for this unexpected result is that NPF4.6 is present also in guard cells and 

transports ABA into the cells. To examine this possibility, we generated transgenic plants 

that contained a transgene in which the GUS reporter gene was placed after the NPF4.6 

genomic sequence so that the GUS fused NPF4.6 protein was expressed under the control 

of the NPF4.6 native promoter (pNPF4.6:gNPF4.6-GUS) (Figure 2). As in the case of simple 

promoter-GUS lines, GUS staining was clearly detected in leaf vascular tissues in the 

pNPF4.6:gNPF4.6-GUS plants (Figure 2A,B). In addition, closer investigation revealed that 

guard cells of the transgenic plants were also stained with GUS (Figure 2C,D). These re-

sults indicated that NPF4.6 is localized to both the vascular tissues and the guard cells. 

. 

Figure 2. GUS staining of pNPF4.6:gNPF4.6-GUS plants. (A) A rosette (approximately 3 weeks 

old). Scale bar = 1 cm. (B) Close-up view of a leaf from (A). (C) Close-up view of the leaf surface. 

Arrowheads indicate guard cells. V denotes vascular tissues. (D) Close-up view of a pair of guard 

cells. Scale bar = 20 μm. Plants were grown in continuous light. 

To examine whether the lack of NPF4.6 proteins present in guard cells is the cause of 

the reduced leaf surface temperature in the aao3 npf4.6 double mutant compared to the 

single aao3 mutant, we expressed wild-type NPF4.6 using a guard cell-specific Arabidop-

sis MYB60 promoter in the double mutant background (Figure 3). Three independent 

transgenic lines had higher leaf surface temperatures compared to the original aao3 npf4.6 

double mutant, although there were variations in the degree of the effect. Altogether, 

these observations support the idea that NPF4.6 localized in guard cells facilitates ABA 

uptake into the cells and promotes stomatal closure. 

Figure 2. GUS staining of pNPF4.6:gNPF4.6-GUS plants. (A) A rosette (approximately 3 weeks
old). Scale bar = 1 cm. (B) Close-up view of a leaf from (A). (C) Close-up view of the leaf surface.
Arrowheads indicate guard cells. V denotes vascular tissues. (D) Close-up view of a pair of guard
cells. Scale bar = 20 µm. Plants were grown in continuous light.

To examine whether the lack of NPF4.6 proteins present in guard cells is the cause
of the reduced leaf surface temperature in the aao3 npf4.6 double mutant compared to the
single aao3 mutant, we expressed wild-type NPF4.6 using a guard cell-specific Arabidop-
sis MYB60 promoter in the double mutant background (Figure 3). Three independent
transgenic lines had higher leaf surface temperatures compared to the original aao3 npf4.6
double mutant, although there were variations in the degree of the effect. Altogether, these
observations support the idea that NPF4.6 localized in guard cells facilitates ABA uptake
into the cells and promotes stomatal closure.
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npf4.6/pMYB60:NPF4.6). Plants were grown under a day and night (10h light/14h dark) cycle (around
1 month old). Scale bar = 1 cm. B, Leaf surface temperature of plants in (A) observed by a thermal
imaging camera.

Figure 3. Guard-cell specific expression of NPF4.6 in the aao3 npf4.6 double mutant background. (A)
Wild type (WT), npf4.6-1 (npf4.6), aao3-4 (aao3), aao3-4 npf4.6-1 (aao3 npf4.6) and three independent
lines (#1-3) of aao3-4 npf4.6-1 that express wild-type NPF4.6 specifically in the guard cells (aao3
npf4.6/pMYB60:NPF4.6). Plants (approximately 1 month old) were grown under a day and night
(10 h light/14 h dark) cycle. Scale bar = 1 cm. (B) Leaf surface temperature of plants in (A) observed
by a thermal imaging camera.
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3.2. Identification of Another NPF That Regulates Stomatal Aperture

Our previous study showed that several Arabidopsis NPF proteins other than NPF4.6
were able to induce interactions between the ABA receptor PYR1 and the PP2C protein
phosphatase ABI1 in yeast under low ABA concentrations in the growth media [35,46],
indicating that other NPF proteins can mediate ABA uptake into the cells. NPF5.1 was
one of the identified proteins [46], and transcriptome data available in a public database
(Arabidopsis eFP Browser; http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, accessed on
5 April 2016) indicate that the expression of NPF5.1 is induced by exogenous ABA treat-
ment (Supplemental Figure S1). Thus, we hypothesized that NPF5.1 might somehow be
involved in ABA-mediated physiological responses and examined this possibility.

We obtained two alleles of the loss-of-function npf5.1 mutants (npf5.1-1 and npf5.1-
2) from T-DNA insertion lines (Supplemental Figure S2). Observing the mutants with
an infrared thermal imaging camera showed that both mutants had higher leaf surface
temperatures compared to the wild type, suggesting that NPF5.1 is a negative regulator of
stomatal closure (Figure 4). In this experiment, we took thermographic images just after
detaching the rosette leaves from roots. This step was necessary because the phenotype
was relatively weak, and the leaf surface temperature was affected by its contact with the
wet soil when observations were made on intact potted plants. Again, clear differences in
the leaf surface temperature were not observed between wild type and the npf4.6 single
mutant. If, however, we introduced an npf5.1 mutation into the npf4.6 mutant background,
the phenotype observed in the original npf5.1 mutant was suppressed (Figure 4). This
result supports the idea that NPF4.6 is a positive regulator of stomatal closure. In addition,
the higher leaf surface temperature observed in npf5.1 is likely to require the function
of NPF4.6.
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Figure 4. npf5.1 has a higher leaf surface temperature compared to the wild type. (A) Rosette leaves
of wild type (WT), npf4.6-1 (npf4.6), npf5.1-1, npf5.1-2 and npf4.6-1 npf5.1-1 (npf4.6 npf5.1) plants
(approximately 1 month old) grown under a day and night (10 h light/14 h dark) cycle. Scale
bar = 1 cm. (B) Leaf surface temperature of plants in (A) observed by a thermal imaging camera
immediately after detachment of the rosette leaves from the roots.
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3.3. NPF5.1 Has an ABA Uptake Activity

We then examined whether NPF5.1 can transport ABA. Yeast cells expressing NPF5.1
were incubated with solutions containing ABA, and the amount of compound taken into the
cells was quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
The results clearly showed that NPF5.1 mediated cellular ABA uptake when the substrate
concentrations were 1 and 10 µM (Figure 5).
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Figure 5. ABA transport activity of NPF5.1. The amounts of ABA (f moels/1 × 107 cells/min) taken
into yeast cells expressing NPF5.1 or control cells containing an empty vector were determined when
the substrate concentration was 1 or 10 µM. Results are presented as mean ± SD of three biological
replicates. ** Significantly different compared with the values in the control cells (p < 0.001) by
Student’s t-test.

The accumulation of ABA in the NPF5.1-expressing yeast cells indicated that the
protein was localized to the plasma membrane. To determine if this localization site is
also the case in plant cells, we transiently expressed GFP-fused NPF5.1 proteins in onion
epidermal cells by particle bombardment (Figure 6). Fluorescence was detected broadly
in the cells expressing GFP alone; in contrast, the signals were localized to the plasma
membrane in the cells expressing NPF5.1-GFP fusion proteins.
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Figure 6. Overexpression of NPF5.1 enhances ABA sensitivities during germination. A, Cotyledon

greening of wild type (WT) and two independent transgenic lines that overexpress NPF5.1 (OX1 and 2)
on control media without supplementation of ABA or media containing 0.5 μM ABA scored at 4 (control)
and 7 (0.5 μM ABA) days after stratification. B, Expression levels of NPF5.1 in 7-day-old seedling of
wild type (WT) and two independent transgenic lines that overexpress NPF5.1 (OX1 and 2). Asterisks
indicate statistically significant differences compared to wild type determined by Dunnett’s multiple

comparison test (**P < 0.01; ***P < 0.001; ****P<0.0001).
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Figure 6. Plasma membrane localization of NPF5.1. GFP signals in onion epidermal cells that tran-
siently express GFP-fused NPF5.1 or GFP alone under the control of the 35S promoter (35S:NPF5.1-
GFP and 35S:GFP, respectively). Photos were taken before (A) and after (B) plasmolysis with 20%
mannitol. PI indicates propidium iodide staining of the cell walls. Scale bar = 200 µm.
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If NPF5.1 is localized to the plasma membrane and mediates cellular ABA uptake,
overexpression of the protein should result in enhanced ABA sensitivity as we have shown
for NPF4.6 [35]. Two independent transgenic lines that overexpress NPF5.1 (35S:NPF5.1)
were tested for their responsiveness to exogenously applied ABA during germination. Our
result indicates that the overexpressors were more sensitive to the treatment in terms of
inhibiting cotyledon greening compared to the wild type (Figure 7).
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Figure 7. Overexpression of NPF5.1 enhances ABA sensitivities during germination. (A) Cotyledon greening of wild type
(WT) and two independent transgenic lines that overexpress NPF5.1 (OX1 and 2) on control media without supplementation
of ABA or media containing 0.5 µM ABA scored at 4 d (control) and 7 d (0.5 µM ABA) after stratification. (B) Expression
levels of NPF5.1 in 7-d-old seedlings of wild type (WT) and two independent transgenic lines that overexpress NPF5.1 (OX1
and 2). Asterisks indicate statistically significant differences compared to the wild type determined by Dunnett’s multiple
comparison test (** p < 0.01; *** p < 0.001; **** p < 0.0001).

3.4. Endogenous ABA Levels in NPF5.1

ABA is reported to move long distances within plants, for example, from roots to
shoots and vice versa [31]. Therefore, the increased leaf surface temperature observed in
npf5.1 might be caused by an accumulation of ABA in leaves due to altered long-distance
ABA transport. To examine this possibility, we quantified the endogenous ABA content in
rosette leaves of wild type and npf5.1 (Supplemental Figure S3) and found that the levels
were comparable between wild type and the mutant.

3.5. Spatial Expression Patterns of NPF5.1

To understand how NPF5.1 regulates stomatal aperture, it is important to know where
the protein functions. We found that promoter activities of NPF4.6 and NPF4.6-GUS
proteins were not always detected in the same cells (Figure 1) [35]. Therefore, we first
generated transgenic plants that express GUS-fused NPF5.1 proteins under the control of
the NPF5.1 promoter; however, we were unable to detect GUS activities in the transgenic
lines possibly due to low levels of protein accumulation. Accordingly, we visualized
promoter activities of NPF5.1 using a 3 kb region upstream of the ATG start codon and the
GUS reporter gene (pNPF5.1:GUS) (Figure 8). In young seedlings, the NPF5.1 promoter
was active in true leaves, weakly active in cotyledons, and no activity was detected in
the roots. In rosette leaves, GUS staining was observed in many leaf tissues, including
mesophyll/epidermal cells, vascular tissues and trichomes. Unlike the case of NPF4.6,
the promoter activities of NPF5.1 were not strong in the primary and secondary leaf
veins. Furthermore, no GUS activity was specifically detected in the guard cells of the
transgenic plants.
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Scale bar = 1 mm. (B) Rosette leaves of plants grown under continuous light (approximately 3 weeks old). Scale bar = 1 cm.
(C) Close-up view of a leaf in (B). Scale bar = 1 mm.

4. Discussion

Although earlier studies reported that ABA is synthesized in the roots in response
to soil drying, it is now widely accepted that drought-inducible ABA biosynthesis takes
place mainly in leaf vascular tissues [31]. ABA synthesized in the guard cells has also been
reported to induce stomatal closure [55]. The recent identification of ABA transporters
indicates that stomatal aperture is regulated by multiple steps through ABA export and
import between the vascular tissues and guard cells [10,31]. We previously identified
Arabidopsis NPF4.6 as an ABA importer [35]. Promoter-reporter analysis indicated that
NPF4.6 was expressed in leaf vascular tissues and inflorescence stems. Therefore, we
hypothesized that NPF4.6 limits the amount of ABA exported from the vascular tissues by
facilitating cellular ABA uptake at the site of its active biosynthesis. However, this model
cannot explain completely the reduced stomatal apertures observed in the inflorescence
stems of npf4.6. In addition, the contribution of NPF4.6 in regulating stomatal aperture in
leaves was not clear. In this study, we found that the aao3 npf4.6 double mutant had a lower
leaf surface temperature compared to the aao3 single mutant (Figure 1), indicating that
NPF4.6 is potentially a positive regulator of stomatal closure in leaves. Again, this finding
is somewhat contradictory to the possible function of NPF4.6 as an ABA importer that is
localized in leaf vascular tissues; one may expect that the loss of NPF4.6 function would
result in an increased amount of ABA translocated to guard cells and, hence, reduced
stomatal aperture. One possibility to explain these results would be that NPF4.6 is present
in guard cells, although promoter activity of NPF4.6 was not detected there. In fact,
GUS activities were detected in guard cells as well as in vascular tissues in leaves of
pNPF4.6:gNPF4.6-GUS transgenic plants (Figure 2). Regulatory regions for transcription
and/or translation may be present in the NPF4.6 genome sequence. It is also possible
that NPF4.6 proteins are stabilized by unknown factors in guard cells. Expression of
NPF4.6 specifically in the guard cells of aao3 npf4.6 increased the leaf surface temperature
of the double mutant (Figure 3), indicating that the positive effect of NPF4.6 on stomatal
closure relies on the proteins localized in guard cells. Variations in the effects of guard
cell-expressed NPF4.6 on leaf surface temperature among the three independent lines
tested in this study are possibly due to different expression levels of the transgene that can
be influenced by the location of the insertion sites and/or copy number. The physiological
roles of NPF4.6 present in vascular tissues are still unknown. In the future, it will be
important to precisely determine the localization of NPF4.6 proteins within vascular tissues
and to see the effects of cell type-specific expression of NPF4.6 on the phenotypes of
aao3 npf4.6.

NPF proteins were originally identified as nitrate or peptide transporters [56]. More
recent studies have demonstrated that the member proteins of this family transport a vari-
ety of compounds, including plant hormones (ABA, gibberellin (GA), auxin and jasmonoyl
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isoleucine (JA-Ile)) [35,57–61], secondary metabolites (glucosinolates and alkaloids) [62–64],
and nutrients (potassium and chloride) [65–67]. The Arabidopsis genome encodes 53 NPFs;
however, their biochemical and physiological functions are still largely unknown [68]. We
previously identified several NPFs that can transport ABA [35,46]. Among them, NPF5.1
had a relatively weak impact on the ABA-dependent PYR1–ABI1 interactions in yeast [46],
but we confirmed that the protein did mediate ABA uptake into the cells by direct analysis
with LC-MS/MS (Figure 5). The apparently low ABA transport activities of NPF5.1 might
be due to lower protein accumulation levels in yeast, although we could not determine
this possibility. Thus, it is still possible that NPF5.1 could efficiently transport ABA within
plants. Our previous study also indicated that NPF5.1 transports GA in addition to ABA
when expressed in yeast [46]. We hypothesize that NPF5.1 is a multifunctional transporter
as has been reported, for example, for NPF4.6 (nitrate and ABA) [35,69], NPF2.10 (glucosi-
nolates, GA and JA-Ile) [58,61,62], and NPF7.3 (nitrate, potassium and indole-3-butyric
acid) [52,67,70]. Nevertheless, we focused on the role of NPF5.1 on ABA transport in
this study.

The expression of genes involved in ABA biosynthesis, catabolism, signaling and trans-
port are reportedly regulated by the hormone. The Arabidopsis eFP Browser
(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi, accessed on 5 April 2016) indicated that
the expression of NPF5.1 is induced by exogenous ABA treatment ( Supplemental Figure S1).
Therefore, we hypothesized that NPF5.1 might also be involved in ABA-mediated physi-
ological responses, although the physiological meaning of this gene expression was not
known. Although NPF4.6 positively regulates stomatal closure, NPF5.1 appeared to func-
tion as a negative regulator of the process because the loss-of-function npf5.1 mutants
had higher leaf surface temperatures compared to the wild type (Figure 4). Based on the
observation that the promoter activities of NPF5.1 were detected in leaf vascular tissues as
well as in the mesophyll and/or epidermal cells (Figure 8), we propose a model in which
NPF5.1 regulates the amount of ABA transported from the vascular tissues to the guard
cells by mediating cellular ABA uptake (Supplemental Figure S4). As mentioned above,
promoter activity and protein accumulation can be detected in different places, but we were
unable to observe the distribution of NPF5.1. Tissue/cell-type-specific expression of NPF5.1
in the npf5.1 mutant background and monitoring the effects on the mutant phenotype
will be required to identify the functional sites of NPF5.1. According to our model, the
loss-of-function of both NPF4.6 and NPF5.1 should result in an increased amount of ABA
that can travel through the apoplastic space. Nevertheless, npf4.6 npf5.1 had lower leaf
surface temperatures compared to npf5.1. This result can be explained by the defect in
NPF4.6 that mediates ABA uptake into the guard cells (Supplemental Figure S4).

5. Conclusions

In conclusion, our study demonstrates that two Arabidopsis NPF proteins, which
function as ABA importers, positively and negatively regulate leaf stomatal closure by
mediating ABA uptake in different tissues and cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060885/s1, Figure S1: ABA-inducible expression of NPF5.1, Figure S2: Genome
structure of NPF5.1 and T-DNA insertion sites of npf5.1-1 and npf5.1-2, Figure S3: Endogenous ABA
levels in wild type and npf5.1, Figure S4: A model showing the possible functions of NPF4.6 and
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