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Abstract: Inherited retinal diseases (IRD) comprise a heterogeneous set of clinical and genetic
disorders that lead to blindness. Given the emerging opportunities in precision medicine and gene
therapy, it has become increasingly important to determine whether DNA variants with uncertain
significance (VUS) are responsible for patients’ IRD. This research was performed to assess the
functional consequence of six VUS identified in patients with IRD. Clinical assessments included an
ophthalmic examination, best-corrected visual acuity, and kinetic perimetry. Imaging was acquired
with the Optos ultra-widefield camera and spectral domain optical coherence tomography (SD-OCT).
Genetic testing was performed by Molecular Vision Laboratories. VUS that were predicted to alter
splicing were analyzed with a minigene assay, which revealed that VUS in the genes OPA1, CNGB1,
and CLUAP1 altered spicing mechanisms. Due to emerging gene and cell therapies, these results
expand the genotype-phenotype correlations for patients diagnosed with an IRD.
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1. Introduction

Inherited retinal diseases (IRDs) have a prevalence of 1 per 3000 individuals and are
among the leading causes of vision impairments that develop due to a genetic mutation [1].
IRD comprises a largely heterogeneous set of clinical and genetic disorders that lead to
blindness. To date, 271 genes have been identified that cause IRD (www.sph.uth.edu/
retnet/sum-dis.htm; accessed on 10 April 2021). Given the emerging opportunities in
precision medicine and gene therapy, it is increasingly important to provide patients
with a genetic diagnosis. Next generation sequencing (NGS) has advanced the detection
of pathogenic mutations in 60–80% of patients with IRD [2]. Despite the need for a
definitive genetic diagnosis, NGS frequently identifies DNA changes that are classified as
variants of uncertain significance (VUS), leaving the genetic, clinical, or both diagnoses
unresolved. Validating the functional consequence of VUS aids in determining whether it is
the causative mutation for a patients’ IRD. Functional analysis of VUS impacts the standard
for patient care, which will lead to earlier diagnosis, new treatments, and prevention
of blindness.

Recently, RNAseq studies of the retina have shown that a large fraction of the human
genome is alternatively spliced with about 50% of genes displaying various exon com-
position compared to the reference sequence [3–5]. Photoreceptors in particular express
different exons that are not found in extra-retinal tissues, [6] signifying that alternative
splicing can be cell-type specific. Although underestimated, it has been projected that
25% of all variants within exons influence splicing mechanisms [7]. Additionally, intronic
variants can also alter splicing motifs, thereby disrupting splicing regulation. There are
numerous variants that have not been characterized at the transcript level, especially those
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found in patients with IRD. Direct analysis of native transcripts is ideal, but it is not pos-
sible for genes specifically expressed in the retina. In such instances, a minigene assay
(also called exon trapping) has been used for validating the predicted splicing defects
associated with VUS [8,9]. By transfecting mammalian cells such as COS7 cells, splicing
mechanisms can be evaluated by analyzing the transcripts expressed and processed by
the cell’s inherent splicing machinery. In this study, we use a minigene in vitro assay to
functionally test six VUS in the genes OPA1, CNGB1, and CLUAP1 that were predicted to
alter spicing mechanisms.

2. Materials and Methods

Informed consent was obtained prior to blood collection or clinical exams, which was
approved by an institutional ethics review board and which adhered to the Declaration of
Helsinki. Clinical exams were performed as previously described [10]. Briefly, the Optos®

camera (Optos PLC, Dunfermline, UK) was used to obtain pseudocolored and fundus
autofluorescence (FAF) retinal images. The spectral domain optical coherence tomography
(SD-OCT) images were obtained with the Spectralis Heidelberg retina angiography + OCT
(Heidelberg Engineering, Inc., Franklin, MA, USA). Kinetic perimetry was performed
using an Octopus900 (Haag-Streit AG, Köniz, Switzerland). For the Octopus900 kinetic
exam, the field was mapped using spot sizes V-4e, III-4e, and I-4e at a speed of 4◦/s.
The Electro-Oculogram (EOG) was acquired using the UTAS SunBurst (LKC Technologies;
Gaithersburg, MD, USA) according to ISCEV recommendations [11] and compared to the
normal Arden ratios provided with the software.

Genetic testing was performed by a CLIA-certified genetic laboratory (Molecular
Vision Laboratory, Hillsboro, OR, USA). Sequencing results were aligned to the reference
transcript (Table S1), with the first nucleotide position corresponding to the A of the ATG
translation initiation codon. Variant nomenclature was reported in accordance with the
recommendations of the Human Genome Variation Society [12] and interpreted according
to the American College of Medical Genetics and Genomics (ACMG) and the Association
for Molecular Pathology (AMP) [13,14]. In silico prediction of the functional consequence
of the VUS was evaluated with four different algorithms embedded in the Alamut Visual
version 2.15 (SOPHiA GENETICS, Lausanne, Switzerland) using default settings. The VUS
were chosen for analysis because they were detected in our patient population and there
was no functional evidence in ClinVar for these VUS. In vitro splice assays were performed
following the previously described protocol [2,15]. Briefly, a genomic segment encompass-
ing the variant of interest, along with flanking sequences, was PCR-amplified from patient
genomic DNA (gDNA) and was cloned into the exon-trapping vector pSPL3. The primers
(Table S1) were designed [16] to encompass the region of interest along with ~150 base
pairs (bp) upstream and downstream of the exon containing the VUS or away from the
intronic variant and the nearest exon (Table S1). The pSPL3 vector encoded two vector
exons (V1 and V2) with functional splice sites. The amplicon was cloned between the
vector exons at a multiple cloning site. Subjects were heterozygous for the splice VUS of
interest and used for co-amplification of the wild-type (WT) and mutant (MUT) alleles.
The resultant constructs in their WT and MUT versions were used to transfect eukaryotic
cells (COS-7). Transfections were done using the Lipofectamine 3000 transfection reagent
(Invitrogen, Waltham, MA, USA). A 1:2 ratio of plasmid DNA to Lipofectamine was used.
COS-7 cells were incubated with a DNA plasmid-Lipofectamine complex for 6 h in an
Opti-MEM® Reduced-Serum Medium (Gibco-ThermoFisher, Waltham, MA, USA). After
6 h, the media was changed to DMEM (Dulbecco’s Modified Eagle’s Medium), supple-
mented with 10% FBS and a 1% antibiotic. Cells were collected 48 h after transfection.
After transfection, the RNA was isolated, and cDNA was created. RT-PCR was performed
with pSPL3 vector-specific primers [15] to ensure selective amplification of vector-derived
transcripts. The minigene-derived transcripts were visualized by agarose gel electrophore-
sis. Subsequently, transcripts were isolated from the agarose gel and Sanger sequenced to
delineate the exact splicing defect.
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To quantify transcripts, a modified vector was created by subcloning an mCherry/ Blas-
ticidin sequence driven by the CMV (Cytomegalovirus) promoter between the pBR322_origin
and the SV40_promoter of the pSPL3 vector. This vector was called mCherry_pSPL3.
Transfected cells were positively selected by incubating cells with Blasticidin (5 µg/mL).
Transfected cells were collected after 48 h in regular DMEM supplemented with 10% FBS
and 1% antibiotic and plated at ~20% confluency in DMEM supplemented with 10% FBS
and 7 ug/mL blasticidin. COS-7 cells treated with Lipofectamine 3000 but not plasmid
were used as a control to follow cell viability with blasticidin. An equal number (1 × 105)
of cells per sample was used to make cDNA and perform RT-PCR. PCR products were
visualized by agarose gel electrophoresis and images were analyzed with ImageJ [17].

Three different transformation clones (technical replicates) with WT or MUT plas-
mids were used for transfections, cDNA synthesis, and RT-PCR analysis. When possible,
constructs from different individuals with the same VUS were used (biological replicates).
Assays were performed two to three times with similar results for verification. Densitome-
try was used to measure band intensity and quantify transcripts made by the minigene
assays. The percentage of transcripts was determined after subtracting the background on
the images [18]. The value for the transcript of interest was divided by the total amount of
transcripts (sum of all expressed transcripts) and multiplied by 100 to get the percentage.
Measurements were repeated three different times by two individuals (MMH and LDB).
Values were averaged (±SEM) and compared between WT and MUT using the paired
two-tailed Student’s t-test. Significance was given as a p-value of less than 0.05.

3. Results

Patient #1 was diagnosed with an IRD at age 46. An ophthalmic exam at age 56
revealed symmetrical pathology between the eyes by imaging, psychophysical testing,
and ophthalmic examination. The representative fundus photo of the right eye showed
pigmentary and degenerative changes in the macula (Figure 1A). Geographic atrophy,
which was observed on the FAF image of the right eye (Figure 1B), was indicated by
hypo-AF in the macula. The visual field of the right eye was full with a minor deficit in
detection of the IVe stimulus (green line, Figure 1C), and an enlarged blind spot scotoma
(green with underlay) was detected that reflected the peripapillary atrophy (PPA), visible
on the FAF image (Figure 1B). The right (top) eye, though not the left (bottom) eye, showed
cystoid macular edema (CME); however, both eyes had an epiretinal membrane (ERM;
Figure 1D).
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Figure 1. Analysis of OPA1 VUS c.2797G > T in a patient with (A) RPE and degenerative changes,
arteriole narrowing, and (B) hypo-AF in the macula and around the optic nerve head, illustrated in
the right-eye images. (C) The visual field of the right eye was full with minor decreased detection of
the IVe stimulus (green line) and an enlarged scotoma (green with underlay) at the area corresponding
to the peripapillary atrophy (B). (D) The right (top) eye showed cystoid macular edema on SD-OCT.
(E) Schematic illustrations of the pSPL3-OPA1 minigene. The OPA1 exon 28, with wild-type (WT)
or mutant (MUT) alleles, was cloned between vector exons (V1 and V2). (F) Representative gel
electrophoresis of RT-PCR products from transfected COS-7 cells. (G) WT and MUT transcript
content, determined by Sanger sequencing.
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Genetic testing found two potential VUS for patient #1 (BEST1 c.1003G > C, p.Gly335Arg
and OPA1 c.2797G > T, p.Val933Phe). The BEST1 missense variant c.1003G > C in exon 9 re-
sulted in change from glycine at position 335 to arginine within the cytoplasmic topological
domain (residues 292–585) of the protein. This change was in a highly conserved amino acid
(considering 12 species) and was predicted to be pathogenic in 9 out of 10 in silico models.
This variant was present in a population study with relatively low frequency (0.0012% in
gnomAD). The clinical significance of the identified variant was unknown. Other variants
in the same protein domain, p.Thr277Met, p.Asn296Lys, and p.Asp304Asn have been
reported in patients affected with best vitelliform macular dystrophy (BVMD) [19]. How-
ever, EOG testing resulted in a normal (>2) Arden ratio for the right (2.94) and left (3.04)
eyes, suggesting that the heterozygous BEST1 VUS was not deleterious to RPE function in
this patient.

The second VUS identified for patient #1 was in the gene OPA1 (c.2797G > T; Table 1).
The missense substitution occurred at a highly conserved nucleotide (phyloP: 10.00 (−20.0;10.0))
but the amino acid residue was moderately conserved (considering 13 species). There was
a small physicochemical difference between valine and phenylalanine (Grantham dist.:
50 (0–215)). These VUS occurred in the protein domains of the Dynamin superfamily and
mitochondrial Dynamin-like 120 kDa protein. The VUS affected the 7th amino acid of
exon 28. Three algorithms (NNSplice, GeneSplicer, EX-SKIP) observed significant (red)
changes for the MUT 3′ splice site of exon 28 as well as an increased likelihood of exon
skipping, compared to the WT allele (Table S2). For these reasons, we hypothesized that
the c.2797G > T VUS in OPA1 would result in altered splicing mechanisms.

Table 1. Patient VUS and splice assay outcome.

Patient # Clinical Diagnosis Gene Variant Outcome

1 Pattern dystrophy OPA1 c.2797G > T (p.Val933Phe) exon skipping, intron retention, and
normal splicing

2 arRP CNGB1 c.2492 + 1G > A (p.?) exon skipping
3 arRP CNGB1 c.2492 + 1G > A (p.?) exon skipping

4 arRP CNGB1 c.583 + 2T > C(p.?)/c.2305-34G > A exon skipping/transcript abundance
changed

5 Leber congenital
amaurosis CLUAP1 c. c.929-142G > A/c.930T > A

(p.Ser310Arg)

transcript abundance
changed/intron retention and

normal splicing

autosomal recessive retinitis pigmentosa, arRP.

To assess whether the OPA1 VUS results in exon skipping, minigenes containing the
WT or the MUT VUS were transiently transfected to COS-7 cells (Figure 1E). RT-PCR
analysis for the WT minigene detected the correctly spliced transcript (b) that contained
exon 28 (Figure 1F). Splicing of the MUT construct with the c.2797G > T VUS (lanes 2 and 3)
resulted in additional bands (a and c) besides the correctly spliced band (b), indicating
aberrant splicing (Figure 1F). Sequencing of the band corresponding to the WT product
(b) verified that the spliced product included exon 28, whereas the c.2797G > T minigene
produced bands at 260 bp (a), 354 bp (b) and ~360 bp (c) (Figure 1F). The MUT mini-
gene products sequenced revealed transcripts with exon skipping (transcript a = 260 bp),
inclusion of exon 28 (transcript b = 354 bp), or inclusion of exon 28 with an additional
sequence of undetermined origin (Figure 1G), indicating aberrant splicing associated with
the OPA1 VUS (Table 1). If included into the major OPA1 isoform, the inclusion of extra
nucleotides will likely create a frameshift or an unstable transcript predicted to be subject
to nonsense-mediated decay (NMD). We concluded that the OPA1 c.2797G > T variant was
likely pathogenic for patient #1.

Patients #2–4 were recently characterized clinically in association with mutations
or VUS in the gene CNGB1 associated with autosomal recessive retinitis pigmentosa
(arRP) [20]. SD-OCT imaging was previously presented, which showed that patients
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#2 and #3 had typical retinal degeneration for patients with RP. Specifically, there was
peripheral thinning of the retina with a loss of the inner segment ellipsoid (ISe) band
(representing photoreceptors) that were retained in the fovea. Patient #4 displayed only
foveal ISe band and CME in the right eye, whereas the left eye SD-OCT image appeared
relatively normal, as the degenerative changes were restricted to the inferonasal retina.
We also reported the in silico modeling of the VUS [20]. Here we tested three of the VUS
(c.2492 + 1G > A, c. 583+2T > C, and c.2305-34G > A; Table 1) that were predicted to affect
splicing of the CNGB1 gene. The CNGB1 VUS c.2492+1G > A (Figure 2A) was expected
(MaxEnt, NNSPLICE, and SSF) to remove (−100%) the donor site for exon 25 (Table S2).
The VUS was known as dbSNP (rs530551814) and had a minor allele frequency (MAF)
of 0.000% (1000GENOMES:phase3 frequencies). The consequence of this change was not
predictable, but we hypothesized that a skip of exon 25 was prone to be associated with
the c.2492+1G > A VUS in the CNGB1 gene.
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Figure 2. Exon skipping due to CNGB1 VUS. (A) Schematic illustrations of the pSPL3-CNGB1
c.2492 + 1G > A and (B) c.583 + 2T > C minigenes. CNGB1 exons (white) and flanking introns (thick
black lines) were cloned into the pSPL3 vector (black) with a wildtype (WT) or mutant (MUT) alleles
between two pSPL3 exons (V1 and V2). (C) Representative gel electrophoresis of RT-PCR products
from transfected COS-7 cells. pSPL3 indicates cells that were transfected with a vector containing no
gDNA insert. (D) WT and MUT transcript content, determined by Sanger sequencing (E) a = 260 bp,
b = 383 bp, c = 309 bp, d = 563 bp, e = 487 bp, f = 438 bp, g = 514 bp. bp: base pairs.

The CNGB1 VUS c.583 + 2T > C substitution was located at the donor site of intron 9.
In silico modeling revealed that the VUS abolished the 5′ splice site of exon 9 (SSF,
MaxEntScan, NNSPLICE, and GeneSplicer; Table S2). The VUS was found in dbSNP
(rs755036276) and gnomAD (ALL: 0.0012%). The consequence of this change was not
predictable, but a skip of exon 9 was likely. We hypothesized that the VUS would result
in no splicing (intron inclusion) or if splicing did occur, an alternate donor sight would
be used.

The VUS c.2305-34G > A was located 34 bp upstream of exon 24 in the 23rd intron
of CNGB1. This variant was known as gnomAD (2.1) and dbSNP (rs370223084) with
frequencies reported at 0.0097% (ALL) and 0.0001%, respectively. There were several
changes predicted by splice algorithms (Table S2). Notably, the VUS created a new acceptor
in intron 23. For these reasons, we hypothesized that the c.2305-34G > A VUS in CNGB1
would result in intron retention with the 5′ end of exon 23 spliced to the newly created
acceptor splice site in the 23rd intron.

To analyze how the CNGB1 c.2492 + 1G > A or c.583 + 2T > C VUS affected splicing, WT
and MUT minigenes, covering exon 25 (Figure 2A) or exons 8–10 (Figure 2B), respectively,
and part of the adjacent intron sequences were generated. After transfection into COS-7
cells, the spliced products were analyzed with RT-PCR. The WT CNGB1 (c.2492 + 1G)
minigene resulted in one distinct product of 383 bp (b, Figure 2C; lane 2) and the WT
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CNGB1 (c.583 + 2T) minigene produced three bands at 309 (c), 563 (d), and 487 (e) bp
(Figure 2C; lane 4). By sequencing, the 383 bp product represented correct splicing of exon
25 (Figure 2D) and the products at 309 bp, 563 bp, and 487 bp corresponded to alternatively
spliced transcripts that included exon 9 only (c), exons 9 and 10 (d), or exons 8–10 (e),
respectively (Figure 2E). Transfection of the CNGB1 MUT c.2492 + 1G > A minigene resulted
in a single 260 bp (a) product due to exon 25 skipping (Figure 2C). Transfection of the
MUT CNGB1 c.583 + 2T > C minigene resulted in three products: 260 bp (a), 438 bp (f) and
514 bp (g; Figure 2C). The CNGB1 MUT c.583 + 2T > C minigene products were sequenced,
which revealed that the transcripts contained either no CNGB1 exons (a), only exon 10 (f),
or exons 8 and 10 (g), with exon 9 skipped in all observed transcripts (Figure 2E). Thus,
we observed exon skipping of the nearest exon (25 or 9) when either the c.2492 + 1G > A or
c.583 + 2T > C variants were introduced, respectively (Table 1).

To demonstrate whether the CNGB1 c.2305-34G > A variant affected splicing, WT and
MUT CNGB1 minigenes were generated (Figure 3A). Transfection of the minigenes resulted
in three distinct spliced transcripts of 260 bp (a), 325bp (b) and 412 bp (c) (Figure 3B).
Sequencing revealed that the 260 bp product corresponded to skipping of exons 23 and 24
(Figure 3C). The 325bp band represented transcripts containing exon 24, while the 412bp
fragment was the result of inclusion of exons 23 and 24 (Figure 3C). The assay was repeated
three times using the mCherry-pSPL3 vector and densitometry was performed to quantify
the expressed transcripts. The percentage of transcripts that skipped both exons 23 and
24 (transcript a = 260 bp) were found to be higher for the MUT allele (black bar; p = 0.007)
whereas the products containing either exon 23 only (transcript b = 325 bp) or exons 23
and 24 (transcript c = 412 bp) were lower in the MUT minigene compared with the WT
minigene (white bars; p = 0.012; p = 0.03; Figure 3D, Table 1). These results support a likely
pathogenic classification and were responsible for the patients’ arRP.
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Figure 3. The CNGB1 c.2305-34G>A VUS affected splicing efficiency. (A) Diagram showing
the genomic region amplified from the patient’s genomic DNA, cloned into the pSPL3 vector.
(B) Representative analysis of mRNA from COS7 cells transfected with wild type (WT) or mutant
(MUT) genomic sequences. (C) Products identified with Sanger sequencing. (D) Transcript (%)
relative to total transcripts was significantly different between WT and MUT.

Patient #5 was diagnosed with Leber congenital amaurosis (LCA). However, no clinical
information was available for dissemination. Genetic testing revealed the variants
c.929-142G > A and c.930T > A (p.Ser310Arg) in the gene CLUAP1 (Table 1). The first
VUS were located in intron 9 of CLUAP1 at c.929-142G > A (Figure 4A). These VUS were
known to dbSNP (rs1173776498) but were not found in the ClinVar database. The fre-
quency of the VUS in the TOPMED database was 2/125568 (0.0016%). The consequence of
this change was not predictable but splicing algorithms (SSF and MaxEntScan) indicated
that the c.929-142G > A VUS created a new acceptor splice site (Table S2). Therefore,
we hypothesized that usage of the inappropriate 3′ acceptor splice site would result in the
inclusion of part of intron 9 in the expressed transcripts.
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location of the variants cloned into the pSPL3 vector. (C) Representative RT-PCR analysis from COS-7 cells transi-ently
transfected with the single constructs as indicated. (D) Sanger sequencing showed vector exons only for the empty vector
(V1 + V2), correctly spliced transcripts containing exon 10, and abnormal transcripts that also included ~100 bp of additional
sequences. (E) The percentage of wild-type (WT) transcript was significantly different for both VUS. V1 and V2, and vector
exons 1 and 2, respectively. bp: base pair.

The second CLUAP1 VUS c.930T > A (p.Ser310Arg) variant changed the acceptor site
of exon 10. This variant was known as dbSNP (rs1373117341) and has been observed in
population databases with a frequency of 0.00040% (gnomAD, 2.1; ALL exomes). The VUS
occurred at a weakly conserved nucleotide (phyloP: 1.26 [−20.0;10.0]) and a weakly con-
served amino acid (considering 12 species). There was a moderate physicochemical differ-
ence between serine and arginine (Grantham dist.: 110 [0–215]). In silico modeling showed
a decrease of 25.1% at the acceptor site 2bps upstream including −8.4% (MaxEnt) and
−41.7% (NNSPLICE) with scores for the 5′ splice site not recognized (Table S2).

To determine if the CLUAP1 c.929-142G > A or c.930T > A VUS affected RNA splicing,
WT and MUT minigenes were generated (Figure 4A,B, respectively). The minigenes were
transfected into COS-7 cells and the splicing outcomes were analyzed. Both VUS were
associated with exon 10 in CLUAP1, therefore the WT was the same minigene for each
VUS (c.929-142G > A or c.930T > A). The WT CLUAP1 and the c.929-142G > A minigenes
resulted in one distinct product at 368 bp (Figure 4C; lanes 2 and 3, respectively) which
corresponded to correct splicing of exon 10 (Figure 4D). Another 442bp fragment was
produced by the c.930T > A minigene (Figure 4C; lane 3). Using BLAST and selecting
the program to optimize for “somewhat similar sequences”, we determined that the
spliced product was the result of using an alternative acceptor site in intron 9 on CLUAP1,
located 102bp upstream of exon 10 (Figure 4D). The mCherry-pSPL3 vector was used and
the transcripts were quantified, which showed a significant increase (>50%) in the WT
transcript for MUT c.929-142G > A (p = 0.009) and a decrease (>50%) in the WT transcript
for MUT c.930T > A (p = 0.002) compared to the CLUAP1 WT minigene (Figure 4E). Thus,
both of the VUS in CLUAP1 identified in a patient with LCA resulted in disruption of
normal splicing mechanisms in our minigene assay (Table 1).

4. Discussion

One of the current challenges in genetic diagnosis is the verification of VUS. Further
measures in genetic diagnosis can be attained when VUS that alter the splicing patterns
are evaluated through functional analysis. Splice assays represent a viable choice to assess
the effect of VUS on splicing mechanisms in the absence of patient cells, or if the gene of
interest is exclusively expressed in the retina.

Pathogenic variations in the BEST1 gene have been shown to be associated with age-
related macular degeneration, BVMD, retinitis pigmentosa, and vitreoretino-choroidopathy
[Genetics Home Reference]. Although patient #1 exhibited similar fundus features asso-
ciated with BVMD, the Arden ratio was within normal limits and the RPE visualized on
SD-OCT (Figure 1D) was atypical of bestrophinopathy [21]. A review of the clinical infor-
mation revealed that the patient had been treated for 20+ years for interstitial cystitis with
the drug Pentosan Polysulfate (Elmiron), which is linked to similar maculopathy [22,23]
observed for patient #1. Dominant optic atrophy is characterized by central vision loss
due to retinal ganglion cell (RGC) degeneration, which typically has an early age of onset
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that results in severe optic atrophy [24]. However, the disease has incomplete penetrance
and variable expression even within families, which ranges from subclinical disease to
blindness. Mild or subclinical dominant optic atrophy due to hypomorphic alleles that
alter splicing has been associated with OPA1 (optic atrophy 1) [25]. Additionally, an atypical
natural history of dominant optic atrophy was recently described in a patient with late
onset (62 years) retinal degeneration characterized by acute loss of vision and associated
with a dominant mutation in OPA1 [26]. It has been suggested that missense mutations
in OPA1 cause a more severe phenotype than mutations that alter splicing [25]. The VUS
that we evaluated here were missense variants that affected splicing (Figure 1). The VUS
segregated with an unaffected daughter, which suggest that the OPA1 c.2797G > T could be
a hypomorphic allele. The daughter (age 35 at genetic testing) may develop optic atrophy
in the future. For these reasons, we conclude that the OPA1 VUS is possibly pathogenic
and that the maculopathy found for patient #1 was the result of Elmiron toxicity [22,23].

In this study, we tested two donor site VUS and one acceptor site VUS in the CNGB1
(cyclic nucleotide gated channel β 1) gene. The donor site VUS c.2492 + 1G > A and c.583 + 2T > C
were located near the 5′ of exons 25 and 9, respectively, resulting in skipping of these exons in
our minigene assay (Figure 2). Exon skipping associated with the c.2492 + 1G > A VUS
may result in an in-frame deletion of exon 25, which encodes part of a transmembrane
domain of CNGB1, thereby destabilizing formation of a functional CNG channel in the
photoreceptor outer segments. Skipping of exon 9 was predicted to result in a frameshift of
the coding region, which may introduce a premature stop codon and the resultant amino
acid nomenclature may be p.Val179Argfs*82. Since mutations resulting in premature stop
codons are known to trigger NMD [27], transcripts in the retina are expected to be affected
by NMD in vivo, which may negatively affect channel expression in patient #4 with the
c.583 + 2T > C variant in CNGB1.

The CLUAP1 (clusterin-associated protein 1) protein plays a central role in photore-
ceptor ciliogenesis in the vertebrate retina. There are only three mutations listed in ClinVar
as pathogenic or likely pathogenic, which include c.817C>T, p.Leu273Phe [28], c.338T > G,
p.Met113Arg [29], and c.688C > T, p.Arg230Ter [30]. However, there are 80 VUS that
have not been verified for pathogenicity. The two VUS, c.929-142G > A and c.930T > A
(p.Ser310Arg), evaluated are located near or in exon 10. Although the c.929-142G > A vari-
ant did not result in different splicing, the affected intronic sequence enhancer (ISE) for the
protein SRp55 can promote transcription which is what we discovered in our minigene as-
say. However, we cannot predict whether this occurred in vivo nor deny that transcription
efficiency associated with the c.929-142G > A variant was specific to our minigene system.
Moreover, due to the limitation of exon trapping experiments, we cannot completely ex-
clude the possibility that in photoreceptors, the VUS may have other effects on splicing.
Skipping of exon 10 was found for the c.930T > A variant (Figure 4) which may result in
an in-frame loss of 37 residues and an insertion of arginine (p.Ser310_Gly346delinsArg).
The consequence of this change on photoreceptors is unknown but it is expected that a sig-
nificant change in protein folding and tertiary structure to the CLUAP1 protein may occur.

The main strength of the minigene assay is the ability to demonstrate that specific
nucleotide changes affect splicing efficiency and mechanisms. However, it is important to
note that mutations that affect splicing of an exon in one cell type may not affect splicing
in a different cell type because different cell lines can exhibit different alternative splicing
patterns due to expression of specific regulatory element proteins needed for the tissue of
interest. Additionally, minigene vectors are limited in the size of DNA segments that they
can accommodate. The maximum insert size for the pSPL3 vector was reported in a study
evaluating an 8 kb insert from the CNGB3 gene [30]. When analyzing larger segments
such as in the ABCA4 gene, bacterial artificial chromosome clones can accommodate large,
multiexon vectors (midigene) to analyze splice variants [31]. The maximum insert size of
segments that were cloned into the midigene vector was 11.7 kb. Due to our insert segments
being relatively small, we decided to use the minigene assay. Although our minigene assay
was appropriate for the analysis of our VUS, a limitation to our study was that we only used
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one cell line to test our constructs. As more VUS are discovered in our patient population,
we will use multiple cell lines, including 661W and ARP19 cells to compare potential
splicing defects between cell types. Because most IRD genes are specifically expressed
in the retina, a photoreceptor-like cell line may yield a different outcome than what we
observed using COS7 cells. Nevertheless, our minigene assay effectively demonstrated
that particular nucleotide changes resulted in altered splicing patterns.

In vitro evaluation of six novel VUS in OPA1, CNGB1, and CLUAP1 highlights the
relevance of pathogenic splicing and increases the genetic diagnostic yield for patients
with IRD. Due to emerging gene and cell therapies, the results shown here expand the
genotype-phenotype correlations in IRD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12070993/s1, Table S1: Primers for isolating minigene constructs, Table S2: In silico
analysis of VUS.
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