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Abstract: MicroRNAs (miRNAs) are a kind of short non-coding ribonucleic acid molecules that can
regulate gene expression. The computational identification of plant miRNAs is of great significance
to understanding biological functions. In our previous studies, we have put firstly forward and
further developed a set of knowledge-based energy features to construct two plant pre-miRNA
prediction tools (plantMirP and riceMirP). However, these two tools cannot be used for miRNA
prediction from NGS (Next-Generation Sequencing) data. In addition, for further improving the
prediction performance and accessibility, plantMirP2 has been developed. Based on the latest dataset,
plantMirP2 achieves a promising performance: 0.9968 (Area Under Curve, AUC), 0.9754 (accuracy),
0.9675 (sensitivity) and 0.9876 (specificity). Additionally, the comparisons with other plant pre-
miRNA tools show that plantMirP2 performs better. Finally, the webserver and stand-alone version
of plantMirP2 are available.

Keywords: microRNA; pre-miRNA; support vector machine; knowledge-based energy feature

1. Introduction

MicroRNAs (miRNAs) are small noncoding RNAs with a length of about 20–24 nu-
cleotides [1]. Plant miRNAs play important functions in plant growth, development and
responses to abiotic and biotic stresses [2]. For example, MdmiR285N microRNA is in-
volved in the biotic stress response, plant growth and reproductive development in apple
(Malus × domestica) and Arabidopsis thaliana [3]. The miR396–GRF/GIF system can effec-
tively regulate plant growth, and is a promising target for increasing plant yield [4]. Under
drought conditions, the miR156/157 and miR399 families can regulate the expression of
transcription factor to enhance the viability of plants [5].

Accurate detection and identification of plant miRNAs are the basis of understand-
ing miRNA biological functions. Therefore, many methods have been developed to this
area. These methods are roughly divided into two categories: One is based on biological
experiments [6–9], and the other is based on computational prediction. Traditional exper-
imental methods are usually time-consuming, laborious and inefficient, and may even
miss miRNAs with low expression levels. Computational methods can make up for these
shortages of traditional experimental methods, and thus attract more and more attention.
Computational methods for miRNA identification can be classified into the following cate-
gories: Homology comparison-based [10,11], high-throughput sequencing-based [12,13]
and machine learning-based methods. Machine learning-based methods are the most
popular microRNA prediction methods and have shown superior performance.

In 2005, Xue et al. used 32 local structural features to build an SVM (Support Vector
Machine) model (triplet-SVM) for predicting human pre-miRNA [14]. In 2007, based on
the same data source with triplet-SVM, Ng et al. extracted 29 features and constructed the
classifier miPred [15]. Based on miPred, Batuwita et al. constructed 19 structure-related
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novel features, and optimized the negative sample set to train the classifier microPred [16].
These methods are specifically designed to predict animal pre-miRNAs rather than plant
pre-miRNAs. In fact, the number of tools for specifically predicting plant pre-miRNA is
relatively few. One possible reason is that the secondary structure of plant pre-miRNAs
is more complex than that of animals so that plant pre-miRNAs are more difficult to be
predicted. In 2011, Ping et al. constructed the an SVM-based PlantMiRNAPred for plant pre-
miRNA [17]. In addition, there are some typical tools used specifically for plant pre-miRNA
detection, such as random forest-based HuntMi [18], SVM-based miPlantPreMat [19]
and semi-supervised learning-based MiRNAss [20]. Especially, we have constructed
a set of novel knowledge-based energy features that combine the k-mer scheme with
knowledge-based potentials derived from Boltzmann formulations, and developed SVM-
based plantMirP for predicting plant pre-miRNAs [21]. Additionally, plantMirP performs
superiorly to existing tools at that time. However, the above-mentioned methods are tools
for predicting pre-miRNA rather that miRNA. More importantly, these tools cannot directly
deal with NGS (Next-Generation Sequencing) data from small RNA sequencing.

In 2012, based on a probability model, Friedlaender et al. exploited a probability
model to comprehensively score the coincidence degree between sequencing fragments
and microRNA production process, and proposed miRDeep [12] to directly predict miR-
NAs from NGS data. After that, some miRDeep-based tools came out, such as miRDeep2
(the updated version of miRDeep) [13], miRDeep* [22], miRDeep-P [23] and miRDeep-P2
(the updated version of miRDeep-P) [24]. Note that miRDeep-P [23] is the first compu-
tational tool for specifically retrieving plant miRNAs from sequencing data. In 2018, by
introducing new plant miRNA annotation standards, Zheng et al. improved the strategies
and algorithms of miRDeep-P, and proposed miRDeep-P2, which shows higher accuracy
and is less time-consuming. Additionally, there are also some other methods, such as
MIReNA [25], miRPlant [26], miR-PERFeR [27] and miRA [28].

These high-throughput sequencing-based miRNA prediction tools share a familiar
flowchart. Firstly, sequence alignment tools are used to align sequencing fragments (i.e.,
reads) to reference genomes. Then, candidate regions are selected and further labeled as
known microRNA precursors according to genome annotation data or nominated precur-
sors according to sequence and structure-related characteristics. Based on the model of
miRNA biogenesis, the compatibility of the position and frequency of the aligned reads
with the microRNA precursors is evaluated in virtue of various different methods. These
tools are not taking full advantage of sequence and structure features of miRNA precur-
sors. Moreover, high-throughput sequencing-based methods usually predict superfluous
miRNAs. However, the follow-up researchers usually select a few miRNAs to conduct
verification of biological functions. Therefore, how to pick these miRNAs is a practical
and thorny problem. In addition, those predicted miRNAs are not all genuine. How
to control false positive rate is an important problem. We argue that the combination of
high-throughput sequencing-based (which is based mainly on model of miRNA biogenesis)
with machine learning-based methods (which is based on local structure-sequence features)
will further boost the performance of miRNA prediction, narrow the range of selection and
reduce the false-positive rate.

To do this, we developed plantMirP into plantMirP2. Firstly, we incorporated and
optimized knowledge-based energy features, which are firstly proposed in plantMirP and
further developed in our recent studies (i.e., riceMirP [29] and milRNApredictor [30]).
Secondly, the parameters of the SVM model and the algorithm are optimized, and the
independent dataset is updated according to the latest version of the miRBase database.
The performance of plantMirP2 is obviously improved. Meanwhile, plantMirP2 runs
significantly faster than the previous version. Based on 10-fold cross-validation (CV),
plantMirP2 exhibits a promising performance: An accuracy of 97.55%, a sensitivity of
95.22%, a specificity of 99.00%, Mathew’s correlation coefficient of 0.9482 and an area under
receiver operating characteristic curve (AUC) of 0.9930. This tool performs superiorly to
existing plant pre-miRNA prediction tools. Then, we combined machine learning-based
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methods with high-throughput sequencing-based methods to further improve prediction
performance, narrow the range of selection and reduce the false-positive rate. Finally, for
the convenience of users, plantMirP2 is available as a stand-alone package (https://github.
com/wuqiansibai/plantMiRP2/releases/tag/v1.0/, accessed on 16 August 2021) and a
Dockerfile (https://github.com/wuqiansibai/plantMiRP2/releases/tag/Dockerfile/, ac-
cessed on 16 August 2021) alongside the web-server version (http://plantmi.top/, accessed
on 16 August 2021), which is able to directly receive and process NGS data.

2. Materials and Methods
2.1. Datasets and Feature Set

Plant pre-miRNA sequence data (positive dataset) used in plantMirP was extracted
from the miRBase [31] database (release 21), and now plant pre-miRNA sequence data
used in plantMirP2 is extracted from the miRBase database (release 22.1). The method
and standard, which are used here to generate positive and negative datasets, are the
same as the old version. To be specific, after removing sequences containing non-AUCG
characters, 3223 pre-miRNAs from 9 major plants (Arabidopsis thaliana, Glycine max, Oryza
sativa, Physcomitrella patens, Medicago Truncatula, Sorghum bicolor, Arabidopsis lyrata, Zea
mays and Solanum lycopersicum) were used as the positive training dataset, while 5323 pre-
miRNAs from the remaining plants were used as the positive testing dataset. On the other
hand, pseudo pre-miRNA fragments were extracted from CDS (Coding Sequence) data
under the constraint that there are sufficient similarities between pseudo and genuine
pre-miRNAs. Then, 8652 pseudo pre-miRNAs were randomly selected as the negative
dataset including 5186 negative training dataset and 3466 negative testing dataset. The
differences in positive datasets of both tools are shown in Table 1.

Table 1. The differences in positive datasets of both tools.

Positive Dataset Species PlantMirP (Release 21) PlantMirP2 (Release 22.1)

Training

Arabidopsis thaliana 325 326
Glycine max 573 684
Oryza sativa 592 604

Physcomitrella patens 229 247
Medicago truncatula 672 672

Sorghum bicolor 205 205
Arabidopsis lyrata 205 205

Zea mays 166 168
Solanum lycopersicum 77 112

Testing Remaining plant species 3865 5323

In plantMirP, we firstly designed knowledge-based energy features by combining
the k-mer scheme in bioinformatics and the distance-specific pair potential in statistical
physics. The recognition characteristic of k-mer and the advantages of distance-specific pair
potential distinguishing between natural and non-natural structures were well combined.
Furthermore, knowledge-based energy features have been firmly demonstrated to have
very high discriminatory power [21,29,30]. Most recently, knowledge-based energy features
have been further optimized and developed to consider position-specific information. All
193 features used in plantMirP2 are listed in Table 2.

https://github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/
https://github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/
https://github.com/wuqiansibai/plantMiRP2/releases/tag/Dockerfile/
http://plantmi.top/
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Table 2. Full features used in plantMirP2.

NO. Features Description Origin

1–34 Knowledge-based energy score1 Calculated using the position-specific contact
potentials of 2-mer pairs. riceMirP

35–39 Knowledge-based energy score2 Calculated using the distance-specific contact
potentials of k-mer pairs (k = 1~5). plantMirP

40–49 The ratio of unpaired nucleotide in
sub-region 1–10

The secondary structure was divided into 10
parts and the ratio of unpaired nucleotide in

each part was calculated.
plantMirP

50 the size of biggest bulge
The size of biggest bulge in secondary

structure. A bugle contains at least three
adjacent unpaired nucleotides.

plantMirP

51 n_stems/L
n_stems denotes the number of stems. A

stem contains at least three continuous base
pairs. L is the length of sequence.

plantMirP

52 n_loops/L n_loops denotes the number of loops. plantMirP

53 %(|G| + |C|) (|G| + |C|)/L × 100. Here |X| denotes the
number of base X in sequence. miPred

54–69 %XY |XY|/(L − 1) × 100. |XY| is number of
dinucleotide XY in sequence. miPred

70 dG = MFE/L MFE is minimum of free energy of the
secondary structure. miPred

71 MFE1 (MFE/L)/%(|G| + |C|) miPred
72 MFE2 (MFE/L)/n_stems miPred

73 dP = tot_bases/L tot_bases is number of base pairs in the
secondary structure. miPred

74 MFE3 (MFE/L)/n_loops microPred

75–77 |X − Y|/L |X − Y| is the number of base pairs, (X −
Y)∈[(A − U), (G − C), (G − U)] microPred

78–80 %(X − Y)/n_stems %(X − Y) = |X − Y|/n_stems × 100 microPred
81 Avg_bp_stem1 tot_bases/n_stems microPred
82 pb/nb paired nucleotide/unpaired nucleotide miRD
83 MCPN Maximum of consecutive paired nucleotides. ZmirP

84 n_bugles/L n_bulges is the total number of bulges in the
secondary structure. ZmirP

85 Avg_bp_stem2 The ratio of number of base pairs to n_stems ZmirP
86 MFE4 dG/tot_bases ZmirP
87 MFE5 dG/n_bugles ZmirP

88–167 k-mer features k-mer features (k = 2 & 3). milRP

168–193 Knowledge-based energy score3 Calculated using the distance-dependent
k-mer pair potential (k = 1–3 and Nbins = 20). milRP

2.2. Performance Evaluation

The AUC value under the ROC (Receiver Operating Characteristic) curve is a global
measure for evaluating classification performance. A larger AUC value means a better
classification performance. Accuracy (Ac), sensitivity (Se), specificity (Sp) and Matthew’s
correlation coefficient (MCC) are widely used in the binary classifier. Their definitions are
defined as follows:

Ac =
TP + TN

TP + FP + TN + FN
(1)

Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

MCC =
(TP× TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(4)
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Here TP (True Positive) and FP (False Positive) represent the number of real positives
and false positives, respectively, while TN (True Negative) and FN (False Negative) indicate
the number of true negatives and false negatives.

2.3. SVMs

Here we use the algorithms associated with the sklearn package [32] in python to
build the SVM model with kernel function:

K
(
Xi, Xj

)
= e−γ|Xi−Xj |2 (5)

and
γ =

1
n× σ2 (6)

where n is the number of features and σ2 is the generalized variance. Then, through the
grid search strategy, the parameters of the kernel function and the penalty parameter C
(which is used to reduce the degree of overfitting) are adjusted based on the results of
cross-validation.

When training the SVM model, the input is the 193 feature values of training sequences,
and these feature values are normalized using the following formula:

x∗ =
x− µ

σ
(7)

The training scalers are saved for processing the feature values of testing sequences.
During training the SVM model, the provided target variable y is true (1) or false (0) and
this is also the target output during testing.

2.4. Implementation of PlantMirP2 Stand-Alone and Web-Server

PlantMirP2 was constructed in python and Perl according to the flowchart (Figure 1).
Fundamental packages from the python and perl library were also used. More details
can be seen in the links below. The local package of plantMirP2 is provided at https:
//github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/ (accessed on 16 August 2021)
and the related Dockerfile is provided at https://github.com/wuqiansibai/plantMiRP2
/releases/tag/Dockerfile/ (accessed on 16 August 2021). All scripts have been tested
on CentOS. For the convenience of users, we also provide the webserver of plantMirP2
(http://plantmi.top/, accessed on 16 August 2021) for pre-miRNA prediction, and direct
miRNA prediction (Figure 2) from NGS data based on miRDeep-P2 [24], which used an a
priori probability model specifically designed to overcome more variations in the length of
pre-miRNAs and problems of more prevalent large paralogous families in plant NGS data.

https://github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/
https://github.com/wuqiansibai/plantMiRP2/releases/tag/v1.0/
https://github.com/wuqiansibai/plantMiRP2/releases/tag/Dockerfile/
https://github.com/wuqiansibai/plantMiRP2/releases/tag/Dockerfile/
http://plantmi.top/
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3. Results
3.1. An Improved Algorithm for the Prediction of Plant Pre-miRNAs

PlantMirP2 models were trained using 3044 positive training data and 5186 negative
training data and tested using 3865 positive testing data and 3466 negative testing data.
To evaluate the performance and robustness of the plantMirP2, 4-, 6-, 8- and 10-fold CVs
were performed based on the training dataset. The AUC values under the ROC curve
are 0.9919 (4-fold CVs), 0.9930 (6-fold CVs), 0.9930 (8-fold CVs) and 0.9930 (10-fold CVs),
respectively (Figure 3). The ROC curves of 4-, 6-, 8- and 10-fold CVs are very close to each
other, indicating that plantMirP2 is very robust. The values of AUC, Ac, Se, Sp and MCC
of 10-fold CVs are 0.9930, 0.9755, 0.9522, 0.9900 and 0.9482, respectively. On the other hand,
based on the independent (unseen) testing dataset, plantMirP2 also performs excellently
and the values of AUC, Ac, Se, Sp and MCC are 0.9968, 0.9754, 0.9675, 0.9876 and 0.9493,
respectively. Considering the importance of the top predictions and that the overall AUC
value cannot reflect the top prediction results well, we conducted a consistency test to verify
the top 100 prediction results. Based on the above training and independent testing dataset,
the top 100 prediction results of plantMirP2, plantMirP and riceMirP were compared
(Figure 4). The comparison results show the consistent effectiveness of plantMirP2. All
in all, the results obtained above show that plantMirP2 is a promising predictor for plant
pre-miRNAs.
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PlantMirP is the first plant pre-miRNA tool with knowledge-based energy features
calculated from distance-specific k-mer pair potentials. In plantMirP, knowledge-based
energy features show very high discriminatory power. Recently, we further developed
k-mer pair potentials, and put forward diverse knowledge-based energy features based on
position-dependent k-mer pair potentials. Then, riceMirP was implemented specifically
for rice pre-miRNAs. Numerous comparisons also demonstrate that riceMirP performs
better than existing tools for other plant prediction. In order for performance improvement,
we compared plantMirP2 with plantMirP and riceMirP based on the training and testing
dataset of plantMirP2. The training dataset was used to train the prediction model for
three tools, and the independent testing dataset was used for performance evaluation.
The values of Ac, Se, Sp and AUC are displayed in Figures 5 and 6. It is very clear that
plantMirP2 is slightly superior to the other two tools.
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and plantMirP2 were compared.

3.2. Prediction for New Plant Pre-miRNAs in miRBase 22.1

In order to further verify the performance of plantMirP2, 6944 pre-miRNA data in
miRbase (release 21) and the corresponding 3472 negative data constructed through CDS
sequences were used to construct the training dataset. The testing dataset consisted of
1639 new plant pre-miRNA data in miRbase (release 22.1) and 820 negative data. Based on
the above datasets, we compared plantMirP2 with plantMirP and riceMirP. PlantMirP2
shows better performance than the other two tools (Figure 7). In addition, we also compared
the top prediction results of the three tools. (Figure 8). All these results show a promising
performance of plantMirP2 in plant pre-miRNA prediction.
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3.3. Comparison with miPlantPreMat Based on Dataset of miPlantPreMat

MiPlantPreMat [19] is a representative computational program developed particu-
larly for predicting plant pre-miRNAs. To avoid any bias in the dataset, the comparison
with miPlantPreMat was carried out based on the training and testing dataset of miPlant-
PreMat. The negative dataset of miPlantPreMat was divided randomly into two parts:
negData_training.txt and negData_testing.txt. The former was used for training and the
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latter was used for testing. We used the miPlantPreMat’s dataset (mirPlantPre19_single.txt
and negData_training.txt) to train the prediction model of plantMirP2. Then, the mi-
PlantPreMat dataset (mirPlantPre20_single.txt) and negative dataset (negData_testing.txt),
which were considered to be the positive testing dataset and negative testing dataset,
respectively, were directly submitted to plantMirP2 with retraining of the prediction model.
Clearly, plantMirP2 shows a higher performance than miPlantPreMat (Figure 9).
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3.4. Comparisons with PlantMiRNAPred, Triplet-SVM and MicroPred Based on Datasets
of PlantMiRNAPred

The training dataset of PlantMiRNAPred, which included 980 real pre-miRNAs and
980 pseudo pre-miRNAs, was applied to training prediction models of plantMirP and
plantMirP2. Then, the testing dataset of PlantMiRNAPred, which consisted of three parts,
known pre-miRNAs from eight species, updated datasets and the negative testing dataset,
was submitted directly into plantMirP and plantMirP2 for prediction with a freshly trained
prediction model. Because PlantMiRNAPred is unavailable, the classification results
of PlantMiRNAPred, triplet-SVM and microPred, which are reported in the article of
PlantMiRNAPred, were used directly for comparisons with results obtained from our tools.
It is very evident that plantMirP2 is superior to other tools in the great majority of datasets
(Figure 10).
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4. Conclusions

In order to predict miRNAs from NGS data, and further improve the prediction
performance, speed and usability, we upgraded plantMirP to plantMirP2. The latest
database data were used to build the prediction model. The optimized knowledge-based
energy features and other effective features were widely combined to further improve the
prediction accuracy. After optimizing the program and parameters of the prediction model,
the prediction accuracy and running speed were also improved. Two prediction functions
can be used through plantMirP2. The first function is pre-miRNA prediction. Users can
use the established plant model based on the miRBase database or provide training data
to establish a new model to predict the sequences. The second is miRNA prediction.
Novel miRNAs can be obtained through NGS data with the help of genome files and
ncRNAs files. By using a formatted GSM (Gene Expression Omnibus Sample) sequencing
file, an Arabidopsis thaliana genome file and a related ncRNAs file for testing, 105 new
high-precision miRNAs were successfully obtained [33]. The extensive comparisons with
existing pre-miRNA prediction methods, such as plantMirP, riceMirP, miPlantPreMat,
PlantMiRNAPred, triplet-SVM and microPred demonstrated that PlantMirP2 exhibits
better performance. Taken together, plantMirP2 could be beneficial to relevant research.
Furthermore, the easy-to-use webserver of plantMirP2 is provided at http://plantmi.top/
(accessed on 16 August 2021).

Author Contributions: Conceptualization, Y.Y. and D.F.; methodology, Y.Y. and D.F.; software, Y.Y.
and D.F.; validation, D.F. and M.Y.; formal analysis, D.F.; data curation, D.F. and Y.Y.; writing—
original draft preparation, D.F.; writing—review and editing, Y.Y. and M.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant nos.
31601071,11675060).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

http://plantmi.top/


Genes 2021, 12, 1280 12 of 13

References
1. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [CrossRef]
2. Teotia, S.; Singh, D.; Tang, G. Technologies to address plant microRNA functions. In Plant microRNAs; Springer: Berlin/Heidelberg,

Germany, 2020; pp. 25–43.
3. Pompili, V.; Piazza, S.; Li, M.; Varotto, C.; Malnoy, M. Transcriptional regulation of MdmiR285N microRNA in apple (Malus x

domestica) and the heterologous plant system Arabidopsis thaliana. Hortic. Res. 2020, 7, 1–14. [CrossRef] [PubMed]
4. Liebsch, D.; Palatnik, J.F. MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth

regulatory module with potential for breeding and biotechnology. Curr. Opin. Plant Biol. 2020, 53, 31–42. [CrossRef] [PubMed]
5. Apostolova, E.; Gozmanova, M.; Nacheva, L.; Ivanova, Z.; Toneva, V.; Minkov, I.; Baev, V.; Yahubyan, G. MicroRNA profiling

the resurrection plant Haberlea rhodopensis unveils essential regulators of survival under severe drought. Biol. Plant. 2020, 64,
541–550. [CrossRef]

6. Niu, Y.; Su, M.; Wu, Y.; Fu, L.; Kang, K.; Li, Q.; Li, L.; Hui, G.; Li, F.; Gou, D. Circulating Plasma miRNAs as Potential Biomarkers
of Non–Small Cell Lung Cancer Obtained by High-Throughput Real-Time PCR Profiling. Cancer Epidemiol. Prev. Biomark. 2019,
28, 327–336. [CrossRef] [PubMed]

7. Yue, S.; Song, X.; Song, W.; Bi, S. An enzyme-free molecular catalytic device: Dynamically self-assembled DNA dendrimers for in
situ imaging of microRNAs in live cells. Chem. Sci. 2019, 10, 1651–1658. [CrossRef]

8. Miller, B.R.; Wei, T.; Fields, C.J.; Sheng, P.; Xie, M. Near-infrared fluorescent northern blot. Rna 2018, 24, 1871–1877. [CrossRef]
9. Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Sensitive and specific detection of microRNAs by

northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004, 32, e175. [CrossRef]
10. Lai, E.C.; Tomancak, P.; Williams, R.W.; Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol.

2003, 4, 1–20. [CrossRef]
11. Lim, L.P.; Lau, N.C.; Weinstein, E.G.; Abdelhakim, A.; Yekta, S.; Rhoades, M.W.; Burge, C.B.; Bartel, D.P. The microRNAs of

Caenorhabditis elegans. Genes Dev. 2003, 17, 991–1008. [CrossRef]
12. Friedlander, M.R.; Chen, W.; Adamidi, C.; Maaskola, J.; Einspanier, R.; Knespel, S.; Rajewsky, N. Discovering microRNAs from

deep sequencing data using miRDeep. Nat. Biotechnol. 2008, 26, 407–415. [CrossRef] [PubMed]
13. Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel

microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [CrossRef]
14. Xue, C.; Li, F.; He, T.; Liu, G.-P.; Li, Y.; Zhang, X. Classification of real and pseudo microRNA precursors using local structure-

sequence features and support vector machine. BMC Bioinform. 2005, 6, 1–7. [CrossRef] [PubMed]
15. Ng, K.L.S.; Mishra, S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and

intrinsic folding measures. Bioinformatics 2007, 23, 1321–1330. [CrossRef] [PubMed]
16. Batuwita, R.; Palade, V. microPred: Effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009,

25, 989–995. [CrossRef]
17. Xuan, P.; Guo, M.; Liu, X.; Huang, Y.; Li, W.; Huang, Y. PlantMiRNAPred: Efficient classification of real and pseudo plant

pre-miRNAs. Bioinformatics 2011, 27, 1368–1376. [CrossRef]
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