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Abstract: Research of inflammatory bowel disease (IBD) has identified numerous molecular players
involved in the disease development. Even so, the understanding of IBD is incomplete, while disease
treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in
IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies
and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns
that could give important insights into IBD pathogenesis and help to address unmet clinical needs.
Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to
learn from existing data in order to predict future outcomes. The scientific community has been
increasingly employing machine learning for the prediction of IBD outcomes from comprehensive
patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD
relevant omics data. This review aims to present fundamental principles behind machine learning
modeling and its current application in IBD research with the focus on studies that explored genomic
and transcriptomic data. We described different strategies used for dealing with omics data and
outlined the best-performing methods. Before being translated into clinical settings, the developed
machine learning models should be tested in independent prospective studies as well as randomized
controlled trials.

Keywords: IBD; artificial intelligence; prediction modeling; genomics; transcriptomics

1. Introduction

Inflammatory bowel disease (IBD) is a complex disease, characterized as chronic,
relapsing and remitting intestinal inflammation, with substantial heterogeneity among
clinical phenotypes with regards to the age at diagnosis, severity of symptoms, response
to therapy and long-term clinical outcomes [1–3]. It has traditionally been considered to
comprise two major subtypes, Crohn’s disease (CD) and ulcerative colitis (UC) [4]. This
classification is mainly based on distinctive parameters primarily related to the location
and behavior of the disease. CD can occur at various parts of the gastrointestinal (GI)
tract-from mouth to anus, and it is patchy, transmural, and may have inflammatory (also
called nonstricturing/nonpenetrating), stricturing or penetrating (fistulating) behavior [5].
UC is typically restricted to the colon and rectal mucosa, without fibrotic strictures [6,7]. In
addition to CD and UC, there are patients whose disease characteristics cannot fit precisely
into either of these two subtypes, which are described as ‘IBD unclassified’ (IBDU), and
they are more common in children [8].

A number of interacting factors are accountable for the pathogenesis of IBD, of which
genetic susceptibility, bacterial recognition and immune response of the host, microbiota
and diet are among the most significant ones [9,10].
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The search for IBD genetic determinants resulted in identification of more than 240
gene loci that have been associated with an increased risk of developing this disease [11–13].
In 2001 the frameshift variant of NOD2 (nucleotide-binding oligomerization domain-
containing protein 2) gene was identified as the first CD susceptibility genetic variant [14].
Currently, IBD is characterized as a polygenic disease, driven by multiple common genetic
variants, of which NOD2 variants have the highest effect size [12,15]. Also, it has been
shown that rare monogenic variants contribute to the IBD risk, and to date, around 50 single
genes are implicated in very-early-onset IBD [12,15,16].

Further studies revealed that the major perturbed molecular processes in IBD are
associated with signaling pathways involved in innate and adaptive immune response,
autophagy and intestinal epithelial barrier function and repair [17–21]. Although the
etiology of IBD still remains undefined, the host-genome association with gut microbiome
is in the focus of the current model of IBD pathogenesis. It is based on the concept of
misdirected response of the host’s immune system to intestinal microbial and immunogenic
factors that involve the inflammation-associated mucosal injury [22]. It is believed that
these are the key steps which promote disease severity, relapse and also its progression to
neoplastic transformation [12,23,24].

Currently, there is no cure for IBD, and in a significant number of cases, applied
therapies are found to be ineffective or lead to a poor/inadequate response [25–27]. In
addition, it is often not possible to establish an accurate diagnosis of IBD since it depends
on a combination of numerous clinical data, including complex image assessments, whose
interpretation is inherently subjective [28]. Altogether, untimely and inaccurate diagnosis
has a great impact on the course of the disease, which usually leads to complications and
thus represents a serious obstacle to achieving and maintaining remission of the disease,
which is the main goal of the IBD treatment [29]. Diagnosis, classification, prognosis and
therapy of IBD still require the detection of accurate and reliable biomarkers and their
translation into clinical practice, with the aim to significantly improve outcomes in patients
with IBD.

Regarding molecular classification of disease subtypes, it has been shown that most
of detected IBD loci confer risk to both CD and UC, typically with distinct effect sizes
in each disorder; whereas the minor number of loci is unique to each subtype [15,30].
In addition to the latter, there are examples, such as variants at the NOD2 and protein
tyrosine phosphatase nonreceptor type 22 (PTPN22) loci, which have been found to be
risk factors for CD, while for UC they have been shown to be variants with a protective
effect [30]. These results provided evidence for fundamental etiological differences between
the two IBD subtypes [21]. In addition, important connections have been found between
molecular and clinical phenotypes, such as the ones related to disease location (associations
of NOD2, MHC and MST1 3p21 variants with ileal vs. colonic CD) and to disease behavior
(associations of NOD2, MHC and MST1 3p21 variants with deep ileal ulcers; NOD2 variants
with fibrostenotic or stricturing ileal CD; miR-215 expression with penetrating CD and
differential DNA methylation with inflammation in CD) [21].

Cumulative evidence suggests that classifying IBD as CD or UC might be oversimpli-
fied and that particular disease phenotypes could also be considered as genetically distinct
entities [11]. Namely, results of the large genotype-subphenotype study performed on the
Immunochip array showed that colonic CD was genetically intermediate between ileal CD
and UC; i.e., predictive models based on genetic risk scores identified that ileal CD and
colonic CD are as different from each other as they are from UC [11]. This finding corrobo-
rated the results of several earlier studies, which have found that NOD2 gene variants are
associated with ileal Crohn’s disease, thus delineating it from colonic CD, with a shorter
time for the onset of stenosing disease and need for surgery [12]. Important additional
evidence is that differential microRNA (miRNA) expression was detected between these
entities [31]. In this sense, it has been suggested recently that ileal and colonic CD could
potentially be regarded as separate diseases and that consideration should be given to a
new classification for CD, which splits it into ileum dominant (isolated ileal and ileocolonic)
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and isolated colonic disease. This may allow for a more optimized approach to clinical care
and scientific research for CD [32].

The integration of data from expression (mRNA, miRNA and protein) and epige-
netic (DNA methylation and histone modifications) examinations is progressively more
present in IBD studies, which significantly contribute to the improvement of IBD classifica-
tion, reduce misdiagnoses and assist clinical decisions regarding the choice of adequate
therapies [21,33–36]. The emergence of new high-throughput technologies enabled the
usage of genomic, transcriptomic, epigenomic, proteomic, metabolomic, metagenomic,
in general—omics data, for the purpose of achieving the goals of precision medicine.
The clinical diagnostics based on omics analysis using next generation sequencing are
applicable, especially in the fields of inherited disease diagnosis and oncology. Several
omics-based tests have been FDA (Food and Drug Administration) approved for the clinical
application in the USA, as well as certified with CE (Conformitè Europëenne) marking for
clinicians in Europe. Most of the tests comprise genome analysis, but there are also tests
using RNA whole-transcriptome sequencing (https://www.clinicalomics.com, accessed
on 25 November 2020).

The analysis of omics big data demands the usage of powerful bioinformatics tools and
application of advanced statistics such as artificial intelligence (AI). Machine learning (ML),
a subset of AI, is the most promising tool nowadays in search of new clinically relevant
patterns and reliable predictive markers of complex diseases [28,37]. The underlying genetic
predisposition to IBD has not been completely revealed employing only the candidate
gene approach or genome wide association studies (GWAS). For that reason, there is
great interest in the application of AI in IBD research with the goal to improve: patient
identification, differential diagnosis, disease risk prediction and clinical outcomes and
classification of disease subtypes, as well as identification of disease biomarkers that could
be targeted for advancing therapeutic management (Figure 1) [1,28,38,39].
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Figure 1. Machine learning using omics data for prediction of clinically relevant IBD outcomes.
Omics data from patients with known clinical outcomes (exploratory cohort) can be used as input
data in machine learning algorithms during the prediction model training. Performance of the
designed model is further assessed on an independent group with unknown outcomes (testing
cohort). Machine learning models that have high prediction performance on the testing cohort are
well fitted and could be employed for future improved patients’ diagnosis, classification, prognosis
and prediction of drug response. ML—machine learning, CD—Crohn’s disease, UC—ulcerative
colitis, and IBD—inflammatory bowel disease.

Besides omics, different clinical measurements used for IBD diagnosis and tracking of
the disease status, such as fecal calprotectin, blood parameters, serum C-reactive protein,
endoscopic and/or medical imaging, possess a large potential that could be exploited in
machine learning modeling. A number of studies analyzed usage of clinically valuable
traits in IBD diagnostic, prognostic and therapeutic outcome predictions [40–45]. For
instance, it has been demonstrated that machine learning algorithms employing laboratory
and age data outperformed drug metabolic measurements in predicting the response of
IBD patients to thiopurines [41]. A promising machine learning utility in IBD is expected
for artificial-intelligence-assisted medical images analysis, which is a more objective and

https://www.clinicalomics.com
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computable technique that can automate and improve intrinsically subjective endoscopic
evaluations [46,47]. This could help less experienced endoscopists and reduce interobserver
variability. Essentially, the real potential of personalized medicine lies in integration of
clinical and multiomics data.

This review discusses machine learning application in IBD with the focus on studies
that explored genomic and transcriptomic data. First, the basic concepts of machine
learning and the foundation of the most used algorithms were explained. Then, we
evaluated the representative studies that employed machine learning on genomic and
transcriptomic datasets for predicting IBD clinical outcomes or identification of novel risk
genes. Finally, we argued the future perspectives of AI in IBD research and prerequisites
for its successful translation into clinical practice.

2. Machine Learning Approaches

Machine learning is an important area of AI that provides a machine with an ability to
learn from experience or find patterns in the data without being explicitly programmed.
ML employs self-learning algorithms (set of rules) to solve classification and regression
problems (supervised learning) or to find hidden patterns (unsupervised learning) in data.
Short descriptions of the common terms related to machine learning used in this review
are summarized in Table 1.

Table 1. Glossary of common terms in machine learning.

Instance An entity (human subject in healthcare applications) which features are used as inputs for
prediction modeling.

Feature An explanatory variable, such as genetic variant, gene expression, etc.
Features are used as input data for prediction.

Machine learning algorithm Procedure that is run on data to create a machine learning model. It is a set of mathematical
optimization functions that minimizes the error of the model function.

Iterations Machine learning algorithm’s parameters are updated number of times until model reaches
desired performance

Classification Supervised learning technique used to predict a discrete class or category of an instance
(disease or healthy subject, good or poor drug responder, etc.).

Regression Supervised learning technique in which the predicted variable is continuous.

Model fitting Measure of how well a machine learning model generalizes to data not used for model
training.

Penalized regression method
A method used to reduce overfitting of a model. The penalty causes the regression
coefficients of less contributive variables to shrink toward zero therefore reducing the
number of variables in the model.

Sparse model A predictive model that includes only the most informative features.

Clustering Unsupervised learning technique that groups instances by their similarity. The groups are
called clusters.

Black box model Model that is built on complex functions that are not easily interpreted (such as neural
networks). Input and output are clear, but the process between is not explainable.

Effect size A biological measure of the difference or relationship between variables.
An OR << 1 or OR >> 1 is indicative of a large effect size.

AUC value Evaluation metric of a model that ranges from 0.5 (poor classifier) to 1 (perfect classifier).

Supervised machine learning algorithms are used to solve classification problems or
predict response value (regression) based on historical, example data. Example data (the
training set) contains labeled instances (usually human subjects in healthcare applications),
which means that both input (features or explanatory variables) and output, which is
the phenotype of interest (the response variable), are known. Using ML, researchers can
obtain an approximate function or a model that successfully differentiates between classes
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or predicts the numerical value of the response variable. In the designed model, the
underlying codependency between the input and output variables often is mathematically
complex and not easily interpreted. Successful models should give accurate predictions
when applied to novel instances which have not been used for model training. In practice,
different types of algorithms are used to learn the model function [48]. The most commonly
used classification and/or regression algorithms in IBD research are linear algorithms,
support vector machines (SVM), k-nearest neighbors, decision trees, Bayesian algorithms
and artificial neural networks [37,49–51] (Figure 2).
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Unsupervised learning deals with unlabeled data, and the aim is to group instances
according to similarity and to find structures within the data. This approach is particularly
useful when multiple input variables are included because researchers are unable to
visualize and find patterns in hyper-dimensional space. Also, these methodologies are
also used for anomaly detection and dimensionality reduction. In life science and IBD
research, unsupervised learning algorithms such as hierarchical clustering and the principal
component analysis are commonly used [52,53] (Figure 2).

2.1. Fitting the Model

In supervised learning, a model represents a function that captures codependency
between input variables and the known outputs in order to predict the future unknown
outputs of novel instances. Usually, several models are developed in an attempt to obtain a
well-fitted model using different algorithms. Algorithms often use iterative protocols to fit
a model function to the data. For example, the gradient descent protocol tunes parameters
of the model function in small steps toward (local) minimum of the error function, which
represents the measure of deviation of the model function from the example data [48]. A
model should ideally capture a general trend within the data but not random noise and
erroneous measurements. If a model is trained too long (too many iterations) or if it is too
complex, the model captures irrelevant details of the example data and does not generalize
well when exposed to new data. This leads to overfitting of the model. This problem
could be mitigated by limiting the number of iterations or by penalizing the complexity of
the model. The commonly used method to assess the (over)fitting of a model is based on
splitting the data into training, validation (or development) and testing sets. The training
set (exemplary data) is used to fit a model function. The validation set is used to tune
the parameters toward a less complex model that would generalize better. Finally, the
testing set is used to make the final assessment of predictive performance of the model.
Resampling-based techniques such as bootstrap resampling and cross-validation provide
an opportunity to use a single dataset for both training and validations. Here, a model is
trained of the majority of instances, and only a small part is randomly chosen and set aside
for validation. This procedure is usually iteratively performed to obtain robust assessment
of the error function. Resampling-based techniques are useful when only a small number
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of instances is available [54]. Another problem with predictive modeling occurs when
neither the training nor validation set is well fitted by a model function, which is called
underfitting. This problem is easily noticed by examining predictive performance of the
model on the training set. In case of underfitting, other model functions and algorithms
should be tried in order to develop a well-fitted model.

Classification model is evaluated according to its accuracy, which is the percentage
of correct predictions. Another popular metric used to assess and visualize the predictive
performance of classification models is area under the receiver operating characteristic
(ROC) curve or AUC. The curve captures codependency between true positive rate and
false positive rate of the model. A similar metric, area under the precision-recall curve or
AUPRC, captures codependency between precision (or positive predictive value) and recall
(or sensitivity). Both AUC and AUPRC provide a single-value metric to evaluate predictive
performance of a classification model, which normally ranges between 0.5 (poor predictive
performance) and 1 (perfect classifier) [55].

Different algorithms are used to fit a model function to the data. The choice of an
algorithm depends on the problem (classification, regression, clustering, etc.) and the
dataset (number of features, number of instances, codependency between features, etc.).

2.2. Linear Algorithms

Linear algorithms assume linear dependency between input variable(s) and the output.
Assumed linear dependency provides a more straightforward interpretation, because the
contribution, both the sign and the effect-size, of each input variable to the model is known.
Another advantage of linear models is that they are computationally less expensive to
develop. On the other hand, linear models might perform poorly if dependency between
input variables and the output is not linear, which would lead to underfitting. In the case
of IBD research, there is still no strong evidence that nonlinear models outperform linear
ones [37,51,56].

Linear regression is one of the most understood machine learning algorithms used
to predict continuous output variables. The algorithm develops a linear model function
that best fits the data around a straight line (or a hyperplane). Logistic regression, on the
other hand, is not a regression instrument; instead, it is used for classification into distinct
categories. Here, a linear function is transformed into a sigmoid-shaped line (the logistic
function) which best differentiate between categories. Both linear regression and logistic
regression suffer from overfitting and challenging interpretation if multiple input variables
are included into the model. To deal with these issues, the modified linear algorithms based
on regularization, such as the ridge regression (L2), least absolute shrinkage and selection
operator (LASSO/L1) and elastic net (both L1 and L2) can be employed (Table 1). These
algorithms penalize the complexity of the model function by shrinking coefficients coupled
with input variables toward zero. The coefficients of less predictive input variables can
shrink exactly to zero (often encountered with L1 regularization), which would effectively
exclude those variables from the model. Another regularization strategy is to shrink all
coefficients more evenly (L2 regularization), which effectively deals with codependent
features [57].

2.3. Nonlinear Algorithms

Nonlinear algorithms do not assume the shape of model function and provide more
flexibility and, therefore, better opportunity to develop a well-fitted model. However,
they are often more computationally expensive to develop, more prone to overfitting and
harder to interpret than the linear models. In addition, these algorithms usually require
many instances to provide optimal results [48]. Commonly used nonlinear algorithms
include decision trees, k-nearest neighbors, support vector machines, naïve Bayes and
neural networks (Table 2). Deep learning is a very popular extension of neural network
algorithms which employs multiple hidden layers of interconnected artificial neurons
stacked between the input and the output [58].
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Table 2. Classification and regression machine learning algorithms employed in IBD research.

Algorithm Principle Usage Pros and Cons

Logistic regression
Linear model transformed into

sigmoid function used as a binary
classifier

Classification
Fast to develop; easily

interpretable; limited by strong
assumptions; prone to overfitting

Linear regression Classical linear model that employs
linear codependency for prediction

Regression (can also be
used for classification)

Fast to develop; easily
interpretable; limited by strong

assumptions; prone to overfitting

Ridge regression Linear model with L2 regularization Classification and
regression

Linear model with enhanced
interpretability and reduced

overfitting

LASSO Linear model with L1 regularization Classification and
regression

Linear model with enhanced
interpretability and reduced

overfitting

Elastic net Linear model with both L1 and L2
regularization

Classification and
regression

Linear model with enhanced
interpretability and reduced

overfitting

Decision trees

Prediction based on a tree-like
model. Nodes are splitting points of
a dataset based on most informative
features; leaves are output values.

Classification and
regression

Prone to overfitting but can be
improved with ensemble

methods; interpretable outputs

Random forest

An ensemble method (modified
bootstrap aggregation) applied to
decision trees. It grows multiple

decision trees; output is the average
prediction of individual trees.

Classification and
regression

High prediction performance;
deals with overfitting; requires a

large dataset for optimal learning.

Gradient boosted trees
(GBT)

An ensemble method (gradient
boosting) applied to decision trees

Classification and
regression

High prediction performance;
hard-to-tune parameters of the

algorithm

K nearest neighbors
(KNN)

Predicts an output taking into
account (k) most similar instances

(nearest neighbors)

Classification and
regression

Requires a lot of memory to store
all the instances; cannot deal with
a large number of input variables.

Support vector machines
(SVM)

classifier

Maximizes margin (decision
boundary) between different classes
supported by instances that lie near

the margin (support vectors)

Classification

Works well with high number of
input variables; flexible (allow

curved margin by using nonlinear
kernels); computationally

expensive; limited interpretability

Naïve Bayes

Employs Bayesian posterior
probability theorem but assume

nondependency between features
given the output

Classification

Fast to develop; suitable for large
datasets and for making real time

predictions; limited by strong
assumptions; requires feature
selection and transformation

Neural networks

Network of interconnected units
resembling the nervous system

which renders input information to
produce an output.

Classification and
regression

High performance; limited
interpretability; requires very
large dataset; computationally

expensive

LASSO—least absolute shrinkage and selection operator.

Classification and regression models often suffer from a poor prediction performance
either because of overfitting or underfitting the training data. The so-called “ensemble
methods” can address these issues by combining predictions from multiple (usually weak)
models, which delivers better predictive performance [48]. Among the commonly used
ensemble methods are random forest and gradient boosted trees (GBT), both enabling
higher prediction performance of decision tree algorithms [37,49] (Table 2).
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2.4. Clustering Algorithms

Clustering algorithms group instances based on similarities or distance in feature
space. As it is an unsupervised ML approach, the number of clusters is not predetermined.
Hierarchical clustering iteratively groups instances into larger clusters until being merged
into a single cluster. The clustering process is captured in a tree-like structure which expec-
tantly reflects the underlying organization of the data. Bayesian hierarchical clustering is
also a bottom-up approach in which statistical testing guides grouping of the clusters [59].

3. Machine Learning in IBD Research

ML methods are currently the best tools for dealing with complex omics data in IBD
prediction. The main issue in standard association genotype–phenotype studies using
omics data is the large number of multiple comparisons that require rigorous statistical
methods for avoiding false positive results. Because of that, many potential causal variants
with usually small effect sizes are being neglected. By contrast, ML approach is more
flexible in recognizing disease patterns regardless of the statistical level of the associated
variants [60]. Only a small percent of IBD heritability is currently explained by identified
risk loci [12]. The genetic architecture of IBD is polygenic, with both rare and common
variants contributing to disease risk. The large effect sizes have single causal variants
(IL10 and XIAP), followed by high-risk variants (odds ratio [OR] > 2) (NOD2 fs1007insC,
CARD9 c.1434+1G>C, HLA-DRB1, etc.), then medium-risk variants (OR 1.2–2) (NOD2
Asn289Ser, IL23R Val362Ile, etc.), to the common disease susceptibility loci, which have
small effect sizes (OR < 1.2), collectively accounting for only a fraction of variance in disease
liability [12]. ML has the ability to select predictor genes with small contributions and
to capture effects of epistasis (interactions between genes) which is very important for
complex diseases. Thus, ML may further resolve genetics of IBD and indicate new relevant
pathways, undiscovered before by standard statistics.

There has been an increased interest in recent years in using AI to explore omics
data for IBD risk prediction and classification [37,49,51,61]. The designed ML models
had variable prediction performance, with AUC ranging from 0.7 to 0.95, depending
on the used dataset and applied method (Table 3). The most frequently employed ML
methods included penalized regression models, random forest, support vector machines,
Bayesian approach and neural networks (Table 3). Even though ML models are often “black
boxes”, they could be used for identifying potentially causal molecular patterns of IBD
by evaluating the most significant genes/features selected during the process of model
training [52,53,62–64].

ML algorithms are data hungry and need large sample sizes to obtain the best perfor-
mance. The whole process of ML assumes iterative steps of model training with validation
followed by model testing on the independent dataset. The common practice in the majority
of ML studies performed on IBD is to prefilter variants for subsequent modeling [51,65,66].
In this way, high computational costs caused by high-dimensional input data can be re-
duced while the overfitting problem is avoided. Even so, the best strategy for detecting all
causal variants of complex diseases might be the application of sparse penalized models
on the whole set of genotyped variants [60].

Taking into account the price of genome and transcriptome analysis, prediction mod-
eling using omics data on large cohorts could be expensive. However, as the price of the
NGS and other high-throughput techniques decreases over time, more frequent application
of ML using omics data in IBD risk predictions is expected. Still, beside the greater avail-
ability of the high-throughput techniques, achieving good predictive results is often limited
due to widespread presence of confounding effects, relatively low prevalence of IBD and
high heterogeneity of the disease phenotypes [63]. These issues often limit the analyzed
sample size or make the dataset less uniform. Large IBD consortiums having collected
and analyzed tens of thousands of samples along with promoting open-access data are an
extremely valuable source of omics datasets which could be extensively explored in IBD
prediction modeling.
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Table 3. Studies that explored machine learning for designing IBD prediction models using genomic and transcriptomic data.

First Author and Year [ref] Machine Learning Algorithm Predictors/Prediction Performance
Tested on

Independent
Cohort

Subjects

Chen 2017 [65] Bayesian mixture approach GWAS or Immunochip SNPs data/IBD
risk score CD AUC: 0.75, UC AUC: 0.70 yes

The IIBDGC) cohort—over 68,000 IBD
patients and 29,000 healthy controls

(4:5 ratio for training and testing,
respectively)

Wei 2013 [66] L1 penalized logistic regression, SVM,
gradient boosted trees

Immunochip SNPs data/CD and UC
distinction from healthy controls

CD AUC 0.86,
UC AUC 0.83 yes

The IIBDGC cohort—~17,000 CD,
~13,000 UC, and ~22,000 controls

(randomly divided into 3 folds of equal
size for preselection, training and testing,

respectively)

Romagnoni 2019 [37]
Logistic regression, gradient boosted
trees, neural network and ensemble

method

Immunochip SNPs data/probability of
CD AUC 0.8 yes

The IIBDGC cohort—train dataset
(34,634 samples), test dataset

(17,317 samples)

Pal 2017 [51] Naïve Bayes Exome data/CD status AUC 0.81 yes
Training set: 64 CD and 47 controls

(CAGI4); Testing set: 51 CD and
15 controls (CAGI3)

Raimondi 2020 [63] Neural network Whole exomes/to distinguish between
CD and healthy controls AUC 0.74–0.83 AUPRC 0.81–0.93 yes CAGI2, CAGI3, CAGI4 datasets (training

and testing)

Wang 2019 [64] SVM Whole exomes/to distinguish between
CD and healthy controls AUC 0.7–0.75 AUPRC 0.73–0.80 yes CAGI4 (training set), CAGI3 (testing set)

Isakov 2017 [49]
Random forest, SVM with polynomial

kernel, extreme gradient boosting,
elastic net and ensemble method

Data from 2050 genes annotated by the
expression (array and RNAseq) and

pathway information (categorical
terms)/IBD-risk gene prioritization

AUC 0.775–0.829 yes

Intestinal biopsies of 180 CD, 149 UC,
94 colorectal neoplasms, 90 normal tissue

(75:25 ratio for training and testing set,
respectively)

Cushing 2018 [52] Unsupervised hierarchical clustering,
random forest

Whole transcriptome/identification of
markers that could predict

postoperative disease activity

92–93% of correct estimates in
random forest no 24 anti-TNFα-naïve

patients, 30 anti-TNFα-exposed

Khorasani 2020 [53]
Feature selection algorithm

(based on dimension reduction)
combined with SVM classifier

Wide expression array data/UC and
healthy subjects classification

Active UC AUPRC 1,
Inactive UC AUPRC 0.68 yes

Training set: 39 UC samples (active and
inactive) and 38 controls; testing set:

97 UC samples (active and inactive) and
22 controls
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Table 3. Cont.

First Author and Year [ref] Machine Learning Algorithm Predictors/Prediction Performance
Tested on

Independent
Cohort

Subjects

Yuan 2017 [62]

Feature selection (minimum
redundancy maximum relevance and

incremental
feature selection), SVM-based
algorithm (sequential minimal

optimization)

Wide expression array data from PBMC
samples/CD, UC and normal subject

discrimination and candidate gene
selection

Accuracy 0.94 no 59 Crohn’s disease, 26 ulcerative colitis,
and 42 normal samples

Hubenthal 2015 [67] Penalized SVM, random forest miRNAs in whole-blood samples/IBD
and control subject distinction AUC 0.75-1.0 no

40 CD, 36 UC, 38 healthy controls and
other inflammation controls (24 chronic

obstructive pulmonary disease,
23 multiple sclerosis, 38 pancreatitis and

45 sarcoidosis cases)

Zarringhalam 2014 [68]

Differential expression profile was used
to infer upstream regulators using

Bayesian approach; posterior
probabilities of regulators’ activities

were then used in a regularized
regression framework to predict

outcome

Genome wide expression
data/response to infliximab in UC Accuracy 0.79 yes

Training set: 22 active UC patients
(12 responders and 10 nonresponders);

Testing set: 24 active UC patients
(8 responders and 16 nonresponders)

Li 2020 [50] Random forest, neural network

RNAseq and microarray expression
data/identification of susceptibility

genes and establishing
predictive model of UC

AUC 0.95; AUPRC 0.97 yes Training set: 206 UC, 20 normal; Testing
set: 53 UC and 21 normal

Martin 2019 [69] Hierarchical clustering, principal
component analysis

Single-cell RNA sequencing data/cell
type classification in inflamed and

uninflamed tissues

Inflamed tissue (r = 0.96)
Uninflamed tissue (r = 0.93) * no 11 ileal CD patients; samples taken from

inflamed and uninflamed tissues

GWAS—genome-wide association study, IBD—inflammatory bowel disease, CD—Crohn’s disease, UC—ulcerative colitis, SVM—support vector machine, AUC—area under the receiver operating curve,
AUPRC—area under the precision-recall curve, IIBDGC—The International Inflammatory Bowel Disease Genetics Consortium, *—correlation of cell type frequencies between hieratical clustering analysis
applied to RNA profile of a cell and cytometry results referring to that cell.
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3.1. Machine Learning Using Genomic Data

Currently, the largest available IBD genomic dataset has been provided by the Inter-
national IBD Consortium (IIBDC). The IIBDC dataset was used by Chen and colleagues
to predict IBD risk scores [65]. This dataset consists of GWAS imputed and Immunochip
genotyped SNPs from over 68,000 IBD patients and 29,000 healthy controls that enabled
discovery of more than 200 risk IBD loci [17,30]. Immunochip is a custom Illumina assay
comprising 196,524 SNPs and small indels selected primarily based on GWAS analysis of
12 autoimmune and inflammatory diseases [30]. In their analysis, Chen et al. varied the
methods for estimating IBD risk score, sample size and type of data used for prediction
(GWAS or Immunochip). Their study pointed to Bayesian hierarchical clustering as the
best performance algorithm. In addition, they showed that Immunochip data had similar
prediction performance as GWAS, largely due to the guidance of the initial GWAS for the
Immunochip marker selection. This study indicated that the power of genomic CD and
UC prediction was mainly due to strongly associated SNPs with considerable effect sizes.
Additional SNPs tagged by GWAS arrays and rare variants found on the Immunochip
contributed little to prediction accuracy. Other studies as well came to similar conclusions.
The inclusion of not only a significant but broader set of variants, as well as the addition
of rare alleles in IBD-established genes, did not improve disease risk prediction perfor-
mance [37,51]. These results were in contrast with the expected potential of ML to reveal
genetic variants carrying marginal IBD risk effects.

Wei and coworkers also used the IIBCD dataset [66]. The study yielded an IBD
risk prediction model with high performance (AUC 0.860) using the penalized logistic
regression method. The authors applied a two-step feature selection strategy: first, features
(genetic variants) were filtered after single-association tests by less stringent association
significance cutoff (<10−4) and taking into account the frequency of the minor allele (>0.01),
and then, LASSO (L1) penalization was performed on the remaining variants. Given the
size of the dataset, the LASSO penalization approach was chosen because it requires only
one parameter to be tuned during the process of optimizations, which decreased the high
computational cost of the analysis.

Another study that exploited the IIBDC Immunochip data was conducted by Ro-
magnoni and colleagues [37]. The authors aimed to make predictions of CD probability
employing a set of ML methods: penalized logistic regression, gradient boosted trees and
artificial neural networks. All ML methods showed AUC values in similar ranges. The
slightly increased performance was accomplished using the ensemble method that com-
bines logistic regression, gradient boosted trees and neural network classifiers, indicating
that different models can be seen as partially complementary. This study pointed to several
important conclusions—that quality control, imputing methods for missing genotypes and
coding strategies for input data can affect the performance of the model, inducing artificial
increase in the AUC scores [37].

One great example of the community experiment is the critical assessment of genome
interpretation (CAGI), which aims to advance ML methods for genotype–phenotype
prediction. CAGI provides a platform for assessing training and testing datasets (https:
//genomeinterpretation.org, accessed on 2 April 2021) which participants can use to
make blind predictions. Since 2010, CAGI has presented dozens of datasets, so-called
“challenges”. During each challenge, the CAGI organizers release unpublished data and
formulate a specific task related to it. After the closure, organizers evaluate performances
of submitted predictions, and a conference is organized to discuss results and emerging
ideas. This common task framework led to significant insights into ML-related problems.

In the years 2011 (CAGI2), 2013 (CAGI3) and 2016 (CAGI4), researchers tried to
distinguish between CD and healthy controls based on whole exome data. CAGI 2, 3 and
4 datasets’ sizes were not large, counting 56, 66 and 111 exomes, respectively. The work on
these challenges stressed the critical points of ML application in genomics—discovering
hidden biases in datasets, finding the best strategies to reduce data dimensionality and
dealing with limited sample size [70,71].

https://genomeinterpretation.org
https://genomeinterpretation.org
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One successful submission in CAGI4 was performed by Pal and coworkers [51]. They
reduced the number of predictors by filtering exome data, including only genomic regions
previously associated with CD [30,72]. The authors tested four ML algorithms—logistic
regression, random forest, naïve Bayes and a neural network—and varied the number of
genetic loci incorporated into the model (90 vs. 138). The best performance was achieved
with naïve Bayes. A higher number of included loci improved prediction accuracy.

In a recent study by Raimondi et al., the authors designed a novel neural network
approach model, CDkoma, to classify CD from healthy controls using CAGI 2, 3 and 4 edi-
tions exome data [63]. Initially, the established CD associations were used for selection of
predictor genes using PhenoPedia [73]. The authors further dealt with high-dimensionality
of the dataset applying efficient encoding strategy. Before entering the model neural nodes,
the genetic variants were firstly aggregated at the gene level by counting how many times
each type of variant occurs in each gene. This minimized complexity of the training data
and the issue of overfitting, making this approach particularly suitable for the small size
datasets. Interestingly, this study attempted to “open the neural network black box” and
allow a biological interpretation derived from the ML model, even though the neural
networks are known to be one of the most difficult ML to interpret.

Similar to the Raimondi study, Wang et al. applied gene-level encoding strategy [64].
For each gene in the set, the gene function score was computed on the basis of predicted
functional effects of all its variants. This scoring system was far better compared to the
one that calculated the total number of risk variants per gene [63,64]. Wang analyzed
the performance of SVM model with leave-one-out cross-validation on CAGI4 as CD-
train and CAGI3 as CD-test dataset. Selecting genes in the process of computational
feature selection without any previous knowledge of CD biology gave better results than
choosing predetermined GWAS genes (AUC 0.75 vs. 0.70, respectively). This suggests
that functional effects of variants are more likely to highlight causative signals rather
than association signals. Only a few genes appeared both in the feature selection and
experimentally derived (GWAS) sets, implying that computational feature selection could
identify previously unknown CD-related genes and could be the best choice for analyzing
complex diseases where suspect genes are not established or GWAS studies data are
not available.

It has been estimated that the prediction of IBD and particularly CD, given its high
heritability, should be able to achieve a maximum AUC between 0.96 and 0.98 by genomic
profiling (assuming that all risk loci and their effect sizes are known) [74–76]. Even though
this number seems to be promising, it should be noted that the low prevalence of the
IBD limits the utility of genetic prediction. If the prevalence of the disease is low, for
instance 1% with theoretic AUC of 0.98, only 12% of individuals who test positive develop
the disease [74]. However, IBD risk prediction is hardly ever required for testing in the
general population. Subjects who have family history of IBD or are at higher risk of having
unresolved gastrointestinal symptoms or undetermined CD or UC diagnosis represent
a distinct population in which the incidence of IBD is much higher. Moreover, genetic
prediction may be used in existing patients to classify them in disease subphenotypes, to
infer course of the disease and treatment response [77]. Therefore, the clinical utility of
these models could be more important for higher risk groups and diagnosed patients than
for the general population.

3.2. Machine Learning Using Transcriptomic Data

Apart from genomics, other fields of omics, such as transcriptomics, have been ex-
plored in IBD risk predictions. The search for reliable IBD biomarkers outside of purely
genetic studies is emphasized by the fact that all IBD-associated genetic factors identified
so far can explain only 20–25% of described cases, a small fraction of IBD variance and
variability within subphenotypes [1,78].

Isakov et al. developed ML-based gene prioritization method to differentiate IBD-
risk genes from non-IBD genes [49]. The supervised method was generated to produce
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two outputs—positive, if the gene had previous GWAS established IBD associations, and
negative, if the gene had no association with IBD. Each gene was characterized with gene
expression data and gene annotation features, which were used to construct the prediction
model. Using the selected features, Isakov et al. trained four different ML models to
produce gene risk scores: random forest, SVM, gradient boosting and elastic net. The range
of each risk score was from 0 to 1, which corresponded with the level of confidence in
which a gene is considered to be an IBD risk gene. The method was then used to assign
the risk scores to the comprehensive list of 16,390 genes. The model has selected 347 genes
with high prediction scores for IBD risk; among which, 163 were already known IBD genes,
117 genes had at least one publication associated with IBD, and for the residual 67, no
existing research was found. This is a good example of how vast data existing in the public
domain may be used to discover novel IBD-associated genes.

A recent study by Smith et al. used comprehensive transcriptomic data from the
recount2 [79] database to address different predictive problems related to phenotype
classification [56]. The recount2 database contains the analysis-ready RNAseq count data
from genotype tissue expression (GTEx) project, the cancer genome atlas (TCGA) and the
sequence read archive (SRA). The aim of the Smith study was to test ML in predicting
numerous binary and multiclass phenotype outcomes; among which, two were related
to IBD. Particularly, they used colon tissue transcriptomic data to classify three types of
CD-B1 (inflammatory), B2 (stricturing) or B3 (penetrating/fistulating) behavior as well
as to predict etrolizumab response in UC patients. The study analyzed the impact of
normalization techniques, different sizes gene sets and ML techniques such as logistic
regression, random forest and k-nearest neighbors. It was demonstrated that multivariate
predictors outperformed predictors based on the single gene and that larger gene sets were
more informative compared to smaller ones. In addition, L2-regularized regression applied
to the centered log-ratio transform of transcript abundances was shown to be the best
choice for predictive analyses using transcriptomic data.

Unsupervised ML methods could be utilized to categorize patients without any
previous assumptions and obtain potently better classifications than existing ones. For
instance, hierarchical clustering has been used to assess the classification of operated TNF-
naïve CD patients using transcriptome signature in ileum mucosa [52]. It has been shown
that patients with a Rutgeerts score of i0 (measure of disease activity at the follow-up
colonoscopy) largely segregate together and are independent of patients with scores i1-4.
Moreover, i0 vs. i1-4 segregation was better than between i0 and i1 vs. all other scores, even
though i0 and i1 are usually considered to be signatures of clinical endoscopic remission.
When this differential classification was further analyzed in a random forest model, a set of
30 transcripts was selected as the most influential in the model. Transcripts involved in
the regularization of Bcl-2 and Bax-mediated apoptosis, a cell process discussed before as
potentially significant for ileal CD subtype categorization [80], were identified among the
significant predictors of postoperative remission. The prediction model demonstrated high
accuracy: 92–93% of estimates in random forest were correct.

Studies performed on IBD suggest that genetic contribution is weaker in UC compared
to CD [81,82]. Thus, using gene expression data for diagnostic, prognostic and classification
purposes might be more appropriate for UC than using genomic data. The recent study by
Khorasani et al. [53] designed a predictive model to discriminate UC and healthy controls
using colonic transcriptome data. Datasets were selected from different studies to reduce
the effect of technical conditions, and the training and validation sets were independent.
Prior to ML modeling, the authors applied a novel feature selection method in order to
reduce input data dimensionality to 32 genes, which were further used in an SVM classifier.
The final model was able to classify active and inactive UC from healthy donors with
average precision of 1 and 0.62, respectively. From the selected 32 genes, most did not have
a direct link with IBD phenotype, and some were related to IBD-associated comorbidities,
such as altered blood pressure, cholesterol level or colorectal cancer. One more example
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where ML modeling with its hypothesis-free approach could be a useful tool to identify
novel risk genes whose role in IBD would be investigated further on.

There are many ways to perform the selection of genes that contribute the most to
disease classification. Yuan and colleagues searched for the genes expressed in IBD blood
samples which could be used to classify CD and UC from non-IBD subjects [62]. They
applied a two-step feature selection method. First, the genes were ranked according to
their relevance to the sample class label and their mutual redundancy. In the second step,
incremental genes/feature selection was used in SVM model with a tenfold cross-validation
to obtain most optimal combination of genes for discrimination of UC, CD and healthy
samples. This approach yielded a set of 21 genes that could predict a diagnosis with high
accuracy (93.7%). The obtained set of genes was extended with an additional 20 genes
after evaluating the interaction network of proteins coded by these genes. Gene ontology
pathways enriched with identified genes have been recognized before as important to IBD,
such as the T-cell receptor signaling pathway, cell activation, and apoptosis.

Independent validation is a critical step in the development of any biomarker, assay
or prediction model, in which how well they perform on the unseen data can be tested.
The successful validation of IBD biomarkers was demonstrated in Biasci and colleagues’
prospective study [83]. In the previous work of the authors, unsupervised clustering of
CD8 T-cells transcriptome data separated IBD patients into two distinct subgroups, which
subsequently demonstrated contrasting disease courses. To simplify diagnostic procedure
needed for patient stratification, the authors aimed to develop a qPCR test consisting
of several of the most significant classifier genes from the whole-blood transcriptome
using logistic regression with adaptive elastic net penalty. A list of 39 candidate genes
was selected from the top models; however, it was shrunk to 17 genes during the qPCR
validation in repeated penalized regression analysis. The 17 genes set (15 informative
and 2 reference genes) was further validated in the independent, newly diagnosed group
of patients using the qPCR method. The negative predictive value of the established
test was very high, which was important for the identification of patients who do not
need additional therapy [83]. This is an example of good practices in the development of
prediction models that could be easily translated into clinical practice.

Another increasingly explored omics area in IBD is microRNAs [84]. MicroRNAs
are more stable than mRNA and easily accessible in blood or urine, which categorize
them as promising noninvasive markers for IBD diagnosis. Studies by Hübenthal et al.
and Duttagupta et al. used the information on microRNA from peripheral blood to con-
struct prediction models that distinguish between healthy and diseased individuals [67,85].
Hubenthal employed a penalized SVM method for selecting a small set of 16 distinct mi-
croRNAs (from a total of 863) which were sufficient for sensitive and specific classification
between CD, UC and controls [67]. Duttagupta extracted the signatures of 31 differentially
expressed platelet-derived microRNAs that in the SVM model demonstrated high accuracy,
specificity and sensitivity in differentiating UC patients from normal individuals [85]. How-
ever, the limitations of both studies were small sample sizes and lacked proper independent
datasets, which could lead to overfitted models.

Single-cell RNA sequencing technology is increasingly used in IBD research, allowing
the detailed analysis of different phenotypes of each cell type. This is very important in
IBD research because inflammatory phenotypes of immune cells are enriched in inflamed
tissues. In addition, the detection of such cell phenotypes is associated with disease
progression and therapy failure, as shown in a study by Martin et al. [69]. In this study,
the authors used an unsupervised ML approach—hierarchical clustering—to differentiate
between major cell types. The performance of hierarchical clustering using single-cell
RNA sequencing data was compared to cytometry analysis, and the results showed a
strong correlation between the two methodologies, both in inflamed and uninflamed
tissues. Subsequent principal component analysis examined differential cellular subtype
frequencies between paired inflamed and uninflamed tissues. The analysis showed that
the first two principal components can explain around 73% of variance referred to cellular
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subtype composition. This approach can help differentiate the cellular composition of
inflamed and uninflamed tissue, which could have great potential for clinical application
facilitating precise diagnosis, disease localization and therapeutic decisions.

4. Future Perspectives

This review has been focused on machine learning applications in IBD research using
genomic and transcriptomic data. Beside this, there is a vast potential among metagenomic,
proteomic, epigenomic, metabolomic, and even single-cell transcriptomic data that were
and would be explored in machine learning modeling [86–90]. The integration of data
from individual IBD-relevant ‘omes’ is currently considered as the approach that would
significantly improve the understanding of IBD pathogenesis and management [1,13,21].
One of the key challenges in this process is to effectively utilize information obtained in
omics studies with patients’ data stored in electronic medical records (biochemistry tests,
various imaging data, symptoms at diagnosis and lifestyle specifics) [38,91]. Machine
learning approaches offer the ability to effectively deal with the high dimensionality
of these data with the final aim to translate discoveries into clinical practice. Clinical
biobanks that gather the multiomics data together with clinical characteristics of patients,
such as 1000IBD, RISK and PRISM cohorts, are essential for bringing these up-to-date
statistical methodologies to their maximum [92,93]. These synchronized collections of
patient metadata provide the raw material for a future significant improvement of precise
diagnoses, disease monitoring and personalized treatments. However, to reach these
objectives, the prospective validation of AI application should be performed in independent
IBD cohorts. The benefits of such methodology are relatively easily demonstrated within
one study, but it is much harder to replicate these to independent studies due to high
genetic and environmental diversity in human populations [68]. In addition, the variation
in clinical decisions and therapeutic protocols, as well as complex nature and heterogeneity
of IBD, could affect the successful validation of ML in different cohorts. Since the genetic
landscape is population specific, it is particularly important to examine feasibility of omics-
based AI models among different populations. Meta-analyses of the existing omic studies
can aid identification of reliable and replicable IBD classifiers. Selection of the input data in
prediction modelling could be directed by the previous genetic insights and results from
meta-analysis. Beside this, the standardization of machine learning techniques as well
as practicing transparent, open-sourced and easily reproducible computational research
improves the development and replication of the machine learning models in biology. Most
of all, randomized clinical trials are needed to determine if these prediction models truly
improve clinical outcomes, and if they do, cost effectiveness of their usage compared to
standard IBD clinical protocols should be assessed. In addition, the ethical issues that
follow an individual’s disease predictions should be taken into consideration.

5. Conclusions

IBD is a multifactorial, complex and lifelong disease with varying representation in
terms of disease type, age of onset, localization, and severity. Accurate diagnosis and
prognosis of the disease followed by the right treatment is of the essence for controlling the
disease. Emerging technologies provide the means to collect ever more multiomics data
from large cohorts of patients. Instead of relying only on a small number of biomarkers,
ML algorithms can employ the big data collected from multiomics analyses coupled with
electronic health record data to provide more accurate predictions. Large cohorts enable an
opportunity to develop more complex ML models able to capture complex dependencies
between features resulting in better predictions and detection of novel biomarkers. Still,
before being employed in a clinical setting, predictive models should be rigorously tested in
independent cohorts and in the settings of clinical trials to ascertain that this approach can
indeed bring benefits to IBD patients in terms of prevention, timely and accurate diagnosis
and personalized treatment.
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