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Abstract: Analysis of single-cell multiomics datasets is a novel topic and is considerably challenging
because such datasets contain a large number of features with numerous missing values. In this
study, we implemented a recently proposed tensor-decomposition (TD)-based unsupervised feature
extraction (FE) technique to address this difficult problem. The technique can successfully integrate
single-cell multiomics data composed of gene expression, DNA methylation, and accessibility. Al-
though the last two have large dimensions, as many as ten million, containing only a few percentage
of nonzero values, TD-based unsupervised FE can integrate three omics datasets without filling in
missing values. Together with UMAP, which is used frequently when embedding single-cell mea-
surements into two-dimensional space, TD-based unsupervised FE can produce two-dimensional
embedding coincident with classification when integrating single-cell omics datasets. Genes selected
based on TD-based unsupervised FE are also significantly related to reasonable biological roles.

Keywords: tensor decomposition; feature extraction; single-cell; multiomics data

1. Introduction

Single-cell multiomics data analysis is challenging [1]. There are multiple reasons
for this issue. First, it inevitably includes too many missing values. In the usual high-
throughput sequencing (HTS), the so-called depth can compensate for this problem. Nev-
ertheless, because of the very limited amount of RNA retrieved from individual cells
available, “depth” cannot resolve this missing value problem. Second, too many missing
values result in apparent diversity. The primary purpose of single-cell analysis is to identify
the diversity of individual cells that cannot be recognized by the tissue-level HTS. Although
missing values are random, apparently very variant profiles appear from a single profile,
which can be recognized if there is a large enough number of reads available. This compels
researchers to distinguish between true biological diversity and apparent diversity caused
by missing values [2].

Finally, single-cell analysis is computationally challenging. Because there are not
many samples in the standard HTS, even if the number of features is large, the overall
required computational resources decided by the product between the number of features
and the number of samples are very limited. Nonetheless, since the number of samples
that is the same as that of cells can be huge in single-cell analysis, single-cell analysis can
be computationally very challenging.

To resolve these difficulties, we employed tensor-decomposition (TD)-based unsuper-
vised feature extraction (FE) [3]. Prior to applying TD to multiomics datasets, singular-value
decomposition (SVD) was applied to individual omics profiles such that individual omics
profiles have common L singular-value vectors. Then, K omics profiles are formatted as an
L×M× K-dimensional tensor, where M is the number of single cells. Then, higher-order
singular-value decomposition (HOSVD), which is a type of TD, is applied to the tensor.
UMAP applied to singular-value vectors attributed to single cells by HOSVD success-
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fully generated two-dimensional embedding, coincident with the known classification of
single cells.

2. Materials and Methods
2.1. Gene Expression Profiles

Two single-cell multiomics datasets were downloaded from GEO using the following
two GEO IDs.

2.1.1. GSE154762: Dataset 1

The multiomics dataset [4] retrieved from GEO ID GSE154762, which is denoted as
Dataset 1 in this study, is composed of 899 single cells for which gene expression, DNA
methylation, and DNA accessibility were measured. These single cells represent human
oocyte maturation (Table 1). For gene expression, the file “GSE154762_hO_scChaRM_count
_matix.txt.gz” was downloaded from the supplementary file of GEO and was loaded into
R [5] using the read.table function in R. For DNA methylation and DNA accessibility,
899 files with the extensions “WCG.bw” and “GCH.bw” were downloaded from the
supplementary files of GEO and were loaded into R using the import function in the
rtracklayer [6] package in R.

Table 1. The number of single cells within individual cell types included in Dataset 1.

FGO GO1 GO2 Granulosa Immune MI MII StromaC1 StromaC2

81 40 46 93 20 155 90 189 185

2.1.2. GSE121708: Dataset 2

The multiomics dataset [7] retrieved from GEO ID GSE154762, which is denoted as
Dataset 2 in this study, is composed of 852 single cells for which DNA methylation and
DNA accessibility were measured, as well as 758 single cells for which gene expression was
measured. These single cells represent the four time points of the mouse embryo (Table 2).
For gene expression, the file “GSE121650_rna_counts.tsv.gz” was downloaded from the
supplementary file of GEO and was loaded into R using the read.table function in R. For
DNA methylation and DNA accessibility, 852 files with the extensions “met.tsv.gz” and
“acc.tsv.gz” were downloaded from the supplementary file of GEO and were loaded into R
using the read.table function in R.

Table 2. The number of single cells at four embryonic time points included in Dataset 2. For E7.5, the
gene expression profiles of 296 single cells were measured.

E4.5-5.5 E6.5 E6.75 E7.5

267 98 97 390 (296)

2.2. Preprocessing of DNA Methylation Profiles

First, we collected genomic positions for which at least one measurement was per-
formed for at least one single cell (i.e., union). Then, for each genomic position, three
integers, −1, 0, and 1, were assigned. When the genomic position was measured in a single
cell and its state was methylated (nonmethylated), we attributed 1 (−1) to the genomic
position of the single cell. Otherwise (i.e., missing observation), we attributed 0 to the
genomic transition in a single cell. xij2 ∈ RN2×M was stored as a sparse matrix object using
the Matrix [8] package in R because of the large N2.

2.3. Preprocessing of DNA Accessibility

First, we divided the whole genome into 200 nucleotide regions, and DNA accessibility
was summed up within individual regions. These values, which show the summation
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of DNA accessibility within individual regions, are regarded as DNA accessibility at the
individual 200 nucleotide regions, each of which is supposed to approximately correspond
to a single nucleosome that is composed of 140-length DNA that wraps around histones and
80-length linker DNA. In this study, these 200 nucleotide regions are called “nucleosome
regions”. xij3 ∈ RN3×M was stored as a sparse matrix object using the Matrix package in R
because of the large N3.

2.4. TD-Based Unsupervised FE
2.4.1. Reduction of Feature Dimensions

Here, feature denotes gene expression, DNA methylation, or DNA accessibility. Be-
cause the features of these three datasets differ from one another, we first applied SVD to
these features. Suppose xijk ∈ RNk×M×K represents the value of the ith feature (expression
of the ith gene, methylation of the ith genomic location, or DNA accessibility of the ith
nucleosome region) at the kth single cell of the kth omics data (1 ≤ k ≤ K = 3, k = 1: gene
expression, k = 2: DNA methylation, and k = 3: DNA accessibility). Applying SVD to xijk,
we obtain:

xijk =
L

∑
`=1

λ`u`ikv`jk (1)

where λ` is the `th singular value and u`ik and v`jk are the ith and jth components of
the `th left and right singular-value vectors, respectively. Then, xijk is transformed to
x`jk ∈ RL×M×K to have the same (common) feature dimension, L, independent of k, as:

x`jk =
Nk

∑
i=1

u`ikxijk (2)

2.4.2. Data Normalization

Prior to applying SVD to the individual omics profiles in these two datasets, xijk, (k = 2, 3),
that is DNA methylation and accessibility, of Dataset 1 was normalized such that:

Nk

∑
i=1
|xijk| = Nk (3)

whereas xij1, i.e., gene expression, was normalized such that:

NK

∑
i=1

xij1 = 0 (4)

Nk

∑
i=1

x2
ij1 = Nk (5)

for Datasets 1 and 2. The reason why DNA methylation and the accessibility of Dataset
2 were not normalized is because ∑i |xijk|, (k = 2, 3) is very small in some single cells in
Dataset 2. Thus, applying normalization adds significant weight to these single cells with
fewer observations and drastically skewed outcomes. To avoid this problem, xijk, (k = 2, 3)
of Dataset 2 was not normalized.

2.4.3. TD Applied to Dimension-Reduced Multiomics Datasets

HOSVD [3] was applied to the tensor, x`jk, and we obtained:

x`jk =
L

∑
`1=1

M

∑
`2=1

K

∑
`3=1

G(`1`2`3)u`1`u`2 ju`3k (6)
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where G ∈ RL×M×K is the core tensor that represents the contribution of u`1`u`2 ju`3k

to x`jk. u`1` ∈ RL×L, u`2 j ∈ RM×M, u`3k ∈ RK×K are singular-value matrices and are
orthogonal matrices.

2.5. Categorical Regression

For categorical regression to test the coincidence between classification shown in
Table 1 or Table 2 and singular-value vectors attributed to the jth single cells, we performed
categorical regression:

v`jk = a`ksδjs + b`k (7)

u`2 j = a`2sδjs + b`2 (8)

where s denotes one of the classifications shown in Table 1 or Table 2, a`ks, b`k, a`2s, b`2
are regression coefficients, and δjs takes the value of 1 when the jth single cell belongs to
the sth classification and 0 otherwise. Categorical regression was performed using the ls
function in R. The obtained p-values were corrected using the Benjamini-Hochberg (BH)
criterion [3]. `s or `2s associated with adjusted p-values less than 0.01 were regarded to be
coincident with classification.

2.6. UMAP

Two-dimensional embedding was performed by UMAP [9]. The umap function imple-
mented in R was used.

2.7. Gene Selection

After identifying which u`2 j coincided with the classification, we needed to identify
which u`1` was associated with the selected u`2 j by investigating |G(`1`2`3)|; `1s with a
larger |G| with the selected `2 were regarded to be coincident with the classification. Then,
the selected u`1` was converted back to u`1i1 attributed to genes as:

u`1i =
L

∑
`=1

u`1`u`i1 (9)

p-values can be attributed to genes, i, assuming u`1i obeys a multiple Gaussian distribution
(null hypothesis) as:

Pi = Pχ2

[
> ∑

`1

(
u`1i

σ`1

)2
]

(10)

where the summation is taken over only the selected `1s, Pχ2 [> x] is the cumulative χ2

distribution, where the argument is larger than x, and σ`1 is the standard deviation. Pis
were corrected by the BH criterion [3], and is associated with adjusted Pi less than 0.01
were selected.

3. Results
3.1. Dataset 1

We obtained xij1 ∈ R26500×899, xij2 ∈ R26438807×899, and xij3 ∈ R15478375×899. SVD was
applied to xijk with L = 10, as in Equation (1). For xijk, k = 2, 3, SVD was performed using
the irlba function in the irlba package [10] in R because of the large Nk, k = 2, 3, as many
as ten million. Then, HOSVD was applied to x`jk, as in Equation (2).

One possible validation to check whether the above procedure works properly is to
check whether v`jk and u`2 j are coincident with the classification shown in Table 1. Because
the above procedure is fully unsupervised, it is unlikely that v`jk and u`2 j are accidentally
coincident with the classification. To quantitatively validate the coincidence between the
classification and v`jk or u`2 j, we applied categorical regression (see Section 2.5).
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Table 3 shows the number of singular-value vectors coincident with the classification
shown in Table 1. When SVD was applied to individual omics data, because L = 10, the
number of singular-value vectors was 10 as well. When K omics datasets were integrated
and HOSVD was applied, the number of singular-value vectors was KL = 10K. Thus,
when DNA methylation and accessibility were integrated, 20 singular-value vectors were
available. When all three omics data were integrated, 30 singular-value vectors were
available. It is obvious that for all five cases, at least one singular-value vector was
coincident with the classification. Thus, our strategy was essentially successful.

Table 3. Number of singular-value vectors coincident with classification shown in Table 1.

SVD (v`jk) HOSVD (u`2 j)
Adjusted Gene DNA DNA DNA Methylation
p-Value Expression Methylation Accessibility and Accessibility All

<0.01 10 7 1 10 18
≥0.01 0 3 9 10 12

To further validate the successful integration of singular-value vectors, we applied
UMAP to 20 or 30 singular-value vectors obtained by HOSVD (Figure 1).

It is obvious that the integration of all three omics datasets (lower) was more coincident
with classification than that of the integration of the two omics datasets, DNA methylation,
and accessibility (upper). This suggests the usefulness of integrating the three omics
datasets. In fact, single omics data cannot provide two-dimensional embedding coinciding
with classification (Figure S1).

We also attempted to validate biological outcomes when all three omics datasets were
integrated. We selected 47 genes associated with adjusted Pi less than 0.01, as described in
Section 2.7 using u1i because u1i is associated with the largest:

∑
`2

3

∑
`3=1

G2(`1`2`3), (11)

where the summation of `2 is taken over only 18 `2s coincident with the classification
(Table 3). The selected 47 genes (Data S1) were uploaded to Enrichr [11].

Forty-seven genes were enriched by H3K36me3 based on “ENCODE Histone Mod-
ifications 2015”; H3K36m3 is known to play critical roles during oocyte maturation [12].
Forty-seven genes were also targeted by MYC based on “ENCODE and ChEA Consensus
TFs from ChIP-X”; Myc is known to play critical roles in oogenesis [13]. Forty-seven genes
were also targeted by TAF7 based on “ENCODE and ChEA Consensus TFs from ChIP-X”
and “ENCODE TF ChIP-seq 2015”; TAF7 is known to play critical roles during oocyte
growth [14]. Forty-seven genes were also targeted by ATF2 based on “ENCODE and ChEA
Consensus TFs from ChIP-X”; the expression of ATF2 is known to be altered during oocyte
development [15]. This suggests that our strategy correctly captures regulation-related
parts (full data of the enrichment analysis are available as Data S1).
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Figure 1. Two-dimensional embedding of singular-value vectors, u`2 j, computed by HOSVD applied
to x`jk in Dataset 1 (Table 3). Upper: u`2 j, 1 ≤ `2 ≤ 20 when only DNA methylation and accessibility
(k = 2, 3) are integrated. Lower: u`2 j, 1 ≤ `2 ≤ 30 when all three omics data points (1 ≤ k ≤ 3) are
integrated. Default settings other than custom.config$n_neighbors = 100 were used.

3.2. Dataset 2

To confirm that the success in the previous section was not accidental, we applied the
same procedure to Dataset 2 as well. We obtained xij1 ∈ R22084×758, xij2 ∈ R20106507×852,
and xij3 ∈ R13627678×852. SVD was applied to xijk with L = 10, as in Equation (1). For
xijk, k = 2, 3, SVD was performed using the irlba function in the irlba package [10] in R
because of the large Nk, k = 2, 3 of as many as ten million. Then, HOSVD was applied to
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x`jk, as in Equation (2). Because N1 = 758 < N2 = N2 = 852, when HOSVD was applied
to x`jk composed of all three omics datasets, only 758 single cells shared with all xijk
were considered. As described in the previous section, we first validated the coincidence
between singular-value vectors attributed to single cells (Table 4), that is v`j and u`2`k, and
the classification in Table 2.

Table 4. Number of singular-value vectors coincident with the classification shown in Table 2.

SVD (v`jk) HOSVD (u`2 j)
Adjusted Gene DNA DNA DNA Methylation
p-Value Expression Methylation Accessibility and Accessibility All

<0.01 10 7 5 10 18
≥0.01 0 3 5 10 12

The coincidence between the singular-value vectors and the classification in Table 4
was even better than that in Table 3. Thus, it is unlikely that the superior outcome in
Table 3 was purely accidental. To further validate the successful integration of singular-
value vectors, we applied UMAP to 20 or 30 singular-value vectors obtained by HOSVD
(Figure 2).

It is obvious that the integration of all three omics datasets (lower) was more co-
incident with classification than that of the integration of the two omics datasets, DNA
methylation, and DNA accessibility (upper), as can be seen in Figure 2. This again confirms
the usefulness of integrating the three omics datasets. In fact, single omics data cannot
provide two-dimensional embedding coinciding with classification (Figure S2).

We also attempted to validate biological outcomes when all three omics datasets were
integrated. We selected 175 genes associated with adjusted Pi less than 0.01, as described in
Section 2.7 using u1i because u1i is associated with the largest:

∑
`2

3

∑
`3=1

G2(`1`2`3) (12)

where the summation of `2 is taken over only 18 `2s coincident with the classification
(Table 4). The selected 175 genes (Data S2) were converted to gene symbols by the
DAVID [16] gene ID converter and were uploaded to Enrichr.

One-hundred and seventy-five genes were enriched by H3K36me3 based on “EN-
CODE Histone Modifications 2015”; H3K36m3 is known to play critical roles during
gastrulation [17]. One-hundred and seventy-five genes were also targeted by MYC based
on “ENCODE and ChEA Consensus TFs from ChIP-X”; Myc is also known to play critical
roles in gastrulation [18]. One hundred and seventy-five genes were also targeted by TAF7
based on “ENCODE and ChEA Consensus TFs from ChIP-X” and “ENCODE TF ChIP-seq
2015”; TAF7 is known to play critical roles during gastrulation [19]. One-hundred and
seventy-five genes were also targeted by ATF2 based on “ENCODE and ChEA Consensus
TFs from ChIP-X”; the expression of ATF2 is known to be maintained during gastrula-
tion [20]. This suggests that our strategy correctly captured regulation-related parts (full
data of the enrichment analysis are available as Data S2).

These two examples, the application to Datasets 1 and 2, demonstrate the usefulness
of the present strategy to integrate single-cell multiomics datasets composed of gene
expression, DNA methylation, and accessibility.
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Figure 2. Two-dimensional embedding of singular-value vectors, u`2 j, computed by HOSVD applied
to x`jk in Dataset 2 (Table 4). Upper: u`2 j, 1 ≤ `2 ≤ 20 when only DNA methylation and accessibility
(k = 2, 3) are integrated. Lower: u`2 j, 1 ≤ `2 ≤ 30 when all three omics data points (1 ≤ k ≤ 3) are
integrated. Default settings other than custom.config$n_neighbors = 100 were used.

4. Discussion

In this study, we demonstrated the usefulness of our strategy when it was applied to
the integrated analysis of single-cell multiomics datasets composed of gene expression,
DNA methylation, and DNA accessibility. One might wonder if other more popular
methods can achieve similar performance because our strategy is useless if others can
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perform comparably. There are several advantages of our method, which other methods
do not have.

First, we do not have to fill in the missing values with nonzero values. Single-cell
measurements are usually associated with a large number of missing values (Table 5).

Table 5. Number of single cells, features, nonzero components, and their ratios.

Numbers Expression DNA Methylation DNA Accessibility

Dataset 1

single cells 899 899 899
features 26,500 26,438,807 15,478,375

total components 2.38× 107 2.38× 1010 1.39× 1010

nonzero components 6.76× 106 5.50× 108 3.85× 108

the ratio of nonzero components 0.28 0.02 0.03

Data set 2

single cells 758 852 852
features 22,084 20,106,507 13,627,678

total components 1.67× 107 1.71× 1010 1.16× 1010

nonzero components 4.87× 106 6.96× 108 7.87× 108

the ratio of nonzero components 0.29 0.04 0.07

Although gene expression profiles were associated with a relatively small number of
missing components, more than 70 % were missing. For DNA methylation and accessibility,
the situation was very difficult to treat. Only a few percentages of components had
values, while the rest were missing values. To address this problem, especially for DNA
methylation and accessibility, heavy preprocessing is usually required. For example, for
Dataset 1, statistical tests were applied and regions associated with significant p-values
were selected [4], which reduced the number of features attributed to DNA methylation
and accessibility. Because such a statistical test automatically filters out regions filled in
with missing values, the ratio of nonzero components was also reduced as a result. For
Dataset 2, the authors restricted the features to only the most variable ones (typically ∼103)
and occasionally filled in missing components with Bayesian models [7]. These procedures
inevitably introduce arbitrariness to the outcomes, as preprocessing the data might affect
the outcome. In contrast to these arbitrary procedures, our method is almost unsupervised.
We did not select any features or fill in the missing values. Despite these fully unsupervised
strategies, our results were highly coincident with the classification (Tables 3 and 4 and
Figures 1 and 2). From this perspective, our strategy is superior to the other methods.

Second, our method can deal with massive datasets. For example, although integrated
analysis of multiomics data was performed using multiomics factor analysis (MOFA) [21] in
the original studies [4,7] of Datasets 1 and 2, MOFA cannot accept xijk in this study as inputs
because MOFA does not implement sparse matrix architecture. During the computation
of MOFA, zero values must be filled in with nonzero values to evaluate the convergence;
this results in a dense matrix that cannot be stored in the computer memory because the
number of components of DNA methylation and accessibility is too large to store them as
they are (Table 5). In our computation, we can apply SVD to these large datasets while
keeping them in a sparse matrix format using the irlba package implemented in R. SVD
not only reduces the number of features to L, but also fills in missing values. Thus, we can
manage a large matrix as in our implementation.

Third, our method is free from the dividing weight between multiomics datasets;
how to weigh individual omics data must be decided based on some criteria outside the
datasets available. Nevertheless, in our implementation, the weight of individual omics
data is represented by u`3k, which is automatically decided by simply applying HOSVD to
a multiomics dataset. Thus, from this perspective, our strategy is outstanding.
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Although we showed that the integration of all three omics data was superior to
that of the integration of DNA methylation and accessibility (Figures 1 and 2), one might
wonder if the integration of gene expression and DNA methylation or DNA accessibility
might be comparable to that of all thee omics datasets. In order to deny this possibility,
we also considered these combinations of two of the three omics datasets (Figures S3
and S4). Although the integration of gene expression and DNA accessibility in Dataset
1 (Figure S3B) is comparable to that of all three omics data, neither integration of gene
expression and DNA methylation (Figure S4A) nor that of gene expression and DNA
accessibility (Figure S4B) is comparable to that of all three omics data in Dataset 2. Thus,
it is obvious that only the integration of the three omics datasets can give us UMAP
embedding coincident with the classification regardless of the dataset considered.

As for the comparisons with other methods, as mentioned above, no methods imple-
mented with a sparse matrix architecture and applicable to multiomics datasets exist to
our knowledge. Thus, we could not compare our performance to other methods.

Prospective uses of our methods are as follows. First of all, it can integrate gene ex-
pression profiles, DNA methylation, and accessibility in single-cell measurements without
applying preprocessing; this enables researchers to obtain reasonable results without strug-
gling to convert raw data into treatable formats. In addition to this, since it can save the
memories required for analyzing single-cell multiomics datasets, more researchers who do
not have massive computational facilities can analyze massive single-cell measurements.

5. Conclusions

In this study, we proposed a method for applying TD-based unsupervised FE to
single-cell multiomics datasets composed of gene expression, DNA methylation, and
DNA accessibility. Together with UMAP, the proposed method successfully integrated a
multiomics dataset and generated a two-dimensional embedding of single cells coincident
with the classification. The implementation requires neither filling missing values nor
massive CPU memory to store multiomics datasets of single cells and can deal with DNA
methylation and accessibility with ten million features. The present implementation is
very promising and can be a de facto standard method to integrate single-cell multiomics
datasets composed of gene expression, DNA methylation, and DNA accessibility.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12091442/s1, Figure S1: UMAP embedding of single omics data for data set 1, Figure S2:
UMAP embedding of single omics data for data set 2, Figure S3: UMAP embedding of integration of
two omics data for data set 1, Figure S4: UMAP embedding of integration of two omics data for data
set 2.
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Abbreviations
The following abbreviations are used in this manuscript:

BH Benjamini–Hochberg
FE feature extraction
HOSVD higher-order singular-value decomposition
HTS high-throughput sequencing
MOFA Multi-Omics Factor208Analysis
SVD singular-value decomposition
TD tensor decomposition
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