
genes
G C A T

T A C G

G C A T

Article

Improved Large-Scale Homology Search by Two-Step Seed
Search Using Multiple Reduced Amino Acid Alphabets

Kazuki Takabatake , Kazuki Izawa , Motohiro Akikawa , Keisuke Yanagisawa , Masahito Ohue
and Yutaka Akiyama *

����������
�������

Citation: Takabatake, K.; Izawa, K.;

Akikawa, M.; Yanagisawa, K.; Ohue,

M.; Akiyama, Y. Improved

Large-Scale Homology Search by

Two-Step Seed Search Using Multiple

Reduced Amino Acid Alphabets.

Genes 2021, 12, 1455. https://doi.org/

10.3390/genes12091455

Academic Editors: Kenta Nakai and

Tun-Wen Pai

Received: 19 July 2021

Accepted: 18 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
takabatake@bi.c.titech.ac.jp (K.T.); izawa@bi.c.titech.ac.jp (K.I.); akikawa@bi.c.titech.ac.jp (M.A.);
yanagisawa@c.titech.ac.jp (K.Y.); ohue@c.titech.ac.jp (M.O.)
* Correspondence: akiyama@c.titech.ac.jp

Abstract: Metagenomic analysis, a technique used to comprehensively analyze microorganisms
present in the environment, requires performing high-precision homology searches on large amounts
of sequencing data, the size of which has increased dramatically with the development of next-
generation sequencing. NCBI BLAST is the most widely used software for performing homology
searches, but its speed is insufficient for the throughput of current DNA sequencers. In this paper,
we propose a new, high-performance homology search algorithm that employs a two-step seed
search strategy using multiple reduced amino acid alphabets to identify highly similar subsequences.
Additionally, we evaluated the validity of the proposed method against several existing tools. Our
method was faster than any other existing program for ≤120,000 queries, while DIAMOND, an
existing tool, was the fastest method for >120,000 queries.

Keywords: homology search; genome sequence; metagenomic analysis; reduced amino acid

1. Introduction

Metagenomics is the study of microorganism genomes in the environment, such as the
soil, ocean, and living organisms, achieved by extracting and sequencing DNA. This method
can reveal the existence and ratio of microorganisms in a specific clade within an environment,
and also provide genomic information of unknown and uncultured microorganisms.

The DNA sequences of most microorganisms in the environment are unknown; thus,
metagenomic analysis refers to the genomic information of not only the same species, but
also that of closely related organisms. A homology search must be performed against
enormous databases to identify sequences that are similar to those obtained by DNA
sequencing. Since changes in genomic information occur at the amino acid level, a six-
frame translation of the DNA sequence is performed prior to the homology search, focusing
only on the coding region. While DNA sequences are represented by four letters (A, T,
G, and C), protein sequences are represented by 20 standard amino acid letters. Further,
while comparisons between DNA sequences often distinguish only two states of each base
(match or mismatch), similarities between protein sequences are based on a substitution
matrix that represents the likelihood of each amino acid being substituted with another
amino acid [1]. Therefore, performing a homology search on protein sequences is more
challenging than on DNA sequences.

The Smith–Waterman algorithm [2] is the most rigorous method to obtain optimal
sequence alignment by means of dynamic programming during a homology search. This
algorithm is implemented in SSEARCH [3] and other software; however, SSEARCH is
too slow to search against a large number of sequences within a realistic execution time.
For this reason, programs that perform fast homology searches are now widely used,
such as BLAST [4,5]. Nevertheless, the amount of data has drastically increased with

Genes 2021, 12, 1455. https://doi.org/10.3390/genes12091455 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-1138-2599
https://orcid.org/0000-0003-2509-5563
https://orcid.org/0000-0002-3428-0640
https://orcid.org/0000-0003-0224-0035
https://orcid.org/0000-0002-0120-1643
https://orcid.org/0000-0003-2863-8703
https://doi.org/10.3390/genes12091455
https://doi.org/10.3390/genes12091455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12091455
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12091455?type=check_update&version=2

Genes 2021, 12, 1455 2 of 12

the advent of high-throughput next-generation DNA sequencers. For example, the Illu-
mina NovaSeq6000 DNA sequencer can output up to 6T bases in a single run of a few
days, requiring hundreds of thousands of CPU days for BLAST to process that volume of
data. Thus, faster homology search programs such as RAPSearch2 [6], GHOSTZ [7], and
DIAMOND [8] have been proposed. While there is a tradeoff between search speed and ac-
curacy, further acceleration while maintaining high accuracy is required for comprehensive
metagenomic analyses.

In general, homology search tools identify subsequences (seeds) that have a high
degree of similarity between database and query sequences, thereby substantially reducing
the number of candidate sequences in the database. This is called a seed search strategy.
RAPSearch2, GHOSTZ, and DIAMOND achieve highly efficient and accurate searches by
employing reduced amino acid alphabets in their seed search strategies. These reduced
amino acid alphabets cluster the 20 standard amino acids according to the scores between
them, yielding an alphabet with a smaller number of representative characters. The reduced
amino acid alphabets proposed by Murphy et al. [9] are commonly used in existing methods.
Performing a seed search based on a sequence converted to a reduced amino acid alphabet
enables treating similar amino acids, such as Asp and Glu, as the same character. As a result,
database sequences similar to the query sequence can be quickly detected by exact-match
search. Existing methods have used single patterns of reduced alphabets. However, the
amino acids that constitute the functional sites of proteins are strongly conserved, whereas
the peripheral amino acids that maintain the structure are loosely conserved. Therefore,
we hypothesized that significant seed hits could be identified more rapidly by searching
for exact matches in the center of the seed using a less compressed amino acid alphabet,
while searching at both ends of the seed using a more compressed amino acid alphabet.

In this study, we proposed a new seed search algorithm that employs multiple reduced
amino acid alphabets with different numbers of characters to search for similar subsequences
in a two-step seed search (TSSS) strategy, with the aim of implementing a faster but accurate
homology search program. The implementation is open-sourced at https://github.com/
akiyamalab/tsss (accessed on 17 September 2021) under the MIT license.

2. Methods
2.1. Reduced Amino Acid Alphabets

A reduced amino acid character represents a cluster of standard amino acids, as shown
in Figure 1. Treating a match of amino acids represented by the same reduced amino acid
alphabet as a perfect match provides a fast relaxed search that allows the substitution of
an amino acid with a similar amino acid. In this study, we used the reduced amino acid
alphabets generated using the method proposed by Murphy et al., based on the BLOSUM62
substitution matrix, which describes the similarity score between each of the 20 standard
amino acids. First, correlation coefficients were calculated for all pairs of amino acids based
on the BLOSUM62, and then the amino acids were grouped by hierarchical clustering. The
size of the reduced amino acid alphabet was user-defined, ranging from 4 to 18 characters
in the current study. The maximum score obtained by a perfect match of any standard
amino acid in the group was used to define the match score for a matching reduced amino
acid alphabet character in an identical group, as an example is shown in the bottom part of
Figure 1.

https://github.com/akiyamalab/tsss
https://github.com/akiyamalab/tsss

Genes 2021, 12, 1455 3 of 12
Genes 2021, 12, x FOR PEER REVIEW 3 of 12

Figure 1. Reduced amino acid alphabet generated using the method proposed by Murphy et al. [9].

2.2. Two-Step Seed Search (TSSS)
In TSSS, the seed search was divided into two steps employing different reduced

amino acid alphabets, as shown in Figure 2. In the first step, the database and query se-
quences were converted into the first reduced amino acid alphabet, A1. Subsequences
starting from all possible positions of the query sequence were enumerated (referred to as
seed1) with a residue length of L1. Then, matching portions were searched against the da-
tabase where seed1 matched, with a Hamming distance ≤ H1.

In the second step, the seed1 hits obtained in the first step were extended in both di-
rections with a residue length of L2. Each extended area at both ends was named seed2.
The seed2 subsequences were converted into the second reduced amino acid alphabet, A2,
and Hamming distances between the query and database sequences were calculated in-
dividually for both seed2 areas. If the Hamming distances of both seed2 areas were less
than or equal to threshold H2, the whole region (seed1 plus both seed2 areas) was treated
as a final seed hit for the following alignment calculation.

In the case of H1 > 0 (or H2 > 0), we generated all words within the designated Ham-
ming distance for the query seed and then searched database positions that exactly
matched with one of the words.

Larger values of A1, A2, L1, or L2 corresponded with smaller numbers of obtained seed
hits for the alignment step, which resulted in faster processing but degraded sensitivity.
Similarly, smaller values of H1 or H2 resulted in faster and less sensitive processing. There-
fore, the combination of values greatly affected the specifications of TSSS, necessitating
optimization of these parameters.

There is a possible alternative searching strategy where the seed1 plus both seed2 areas
are at first searched with a small (loose) reduced amino acid alphabet, and then candidates
are narrowed down by searching the seed1 area with a large (tight) reduced amino acid
alphabet. Nevertheless, this approach might not be so efficient with the current TSSS pro-
cedure because enumerating all patterns within a Hamming distance requires high com-
putational cost in the first step for a longer seed.

Figure 1. Reduced amino acid alphabet generated using the method proposed by Murphy et al. [9].

2.2. Two-Step Seed Search (TSSS)

In TSSS, the seed search was divided into two steps employing different reduced
amino acid alphabets, as shown in Figure 2. In the first step, the database and query
sequences were converted into the first reduced amino acid alphabet, A1. Subsequences
starting from all possible positions of the query sequence were enumerated (referred to
as seed1) with a residue length of L1. Then, matching portions were searched against the
database where seed1 matched, with a Hamming distance ≤ H1.

Genes 2021, 12, x FOR PEER REVIEW 4 of 12

Figure 2. Seed search steps of TSSS.

2.3. TSSS Procedure
Figure 3 displays a flowchart of TSSS. First, (1) indices of the seed1 and seed2 subse-

quences in the database were constructed with the corresponding reduced amino acid
alphabets A1 and A2. Once the homology search was initiated, (2) the DNA query sequence
was translated into a protein sequence, followed by conversion of the translated sequence
to both the first and second reduced amino acid alphabets A1 and A2. Then, seeds of the
query were enumerated and translated with the same reduced amino acid alphabets.
Next, (3) the seed was searched against the database to find positions (seed hits) with high
similarity between the database and query sequences. Finally, (4–6) the identified seeds
were extended (ungapped and gapped seed extensions) with alignment, and the score
was calculated. The details of each process are described in the following sections.

Figure 3. TSSS flowchart.

2.3.1. Building a Database Subsequence Index (1)
First, all protein sequences in the database were concatenated by inserting a prede-

termined delimiter character such as ‘#’. All subsequences with the lengths of the two
seeds, seed1 L1 and seed2 L2, were obtained by repeatedly shifting one character at a time
in the concatenated sequence. Subsequences containing the delimiter were discarded.
Then, depending on parameters A1, A2, L1, and L2, the seed1 and seed2 areas were enumer-
ated and indices were generated that mapped each subsequence to a position in the data-
base.

Figure 2. Seed search steps of TSSS.

In the second step, the seed1 hits obtained in the first step were extended in both
directions with a residue length of L2. Each extended area at both ends was named seed2.
The seed2 subsequences were converted into the second reduced amino acid alphabet,
A2, and Hamming distances between the query and database sequences were calculated
individually for both seed2 areas. If the Hamming distances of both seed2 areas were less

Genes 2021, 12, 1455 4 of 12

than or equal to threshold H2, the whole region (seed1 plus both seed2 areas) was treated as
a final seed hit for the following alignment calculation.

In the case of H1 > 0 (or H2 > 0), we generated all words within the designated
Hamming distance for the query seed and then searched database positions that exactly
matched with one of the words.

Larger values of A1, A2, L1, or L2 corresponded with smaller numbers of obtained seed
hits for the alignment step, which resulted in faster processing but degraded sensitivity.
Similarly, smaller values of H1 or H2 resulted in faster and less sensitive processing. There-
fore, the combination of values greatly affected the specifications of TSSS, necessitating
optimization of these parameters.

There is a possible alternative searching strategy where the seed1 plus both seed2 areas
are at first searched with a small (loose) reduced amino acid alphabet, and then candidates
are narrowed down by searching the seed1 area with a large (tight) reduced amino acid
alphabet. Nevertheless, this approach might not be so efficient with the current TSSS
procedure because enumerating all patterns within a Hamming distance requires high
computational cost in the first step for a longer seed.

2.3. TSSS Procedure

Figure 3 displays a flowchart of TSSS. First, (1) indices of the seed1 and seed2 subse-
quences in the database were constructed with the corresponding reduced amino acid
alphabets A1 and A2. Once the homology search was initiated, (2) the DNA query sequence
was translated into a protein sequence, followed by conversion of the translated sequence
to both the first and second reduced amino acid alphabets A1 and A2. Then, seeds of
the query were enumerated and translated with the same reduced amino acid alphabets.
Next, (3) the seed was searched against the database to find positions (seed hits) with high
similarity between the database and query sequences. Finally, (4–6) the identified seeds
were extended (ungapped and gapped seed extensions) with alignment, and the score was
calculated. The details of each process are described in the following sections.

Genes 2021, 12, x FOR PEER REVIEW 4 of 12

Figure 2. Seed search steps of TSSS.

2.3. TSSS Procedure
Figure 3 displays a flowchart of TSSS. First, (1) indices of the seed1 and seed2 subse-

quences in the database were constructed with the corresponding reduced amino acid
alphabets A1 and A2. Once the homology search was initiated, (2) the DNA query sequence
was translated into a protein sequence, followed by conversion of the translated sequence
to both the first and second reduced amino acid alphabets A1 and A2. Then, seeds of the
query were enumerated and translated with the same reduced amino acid alphabets.
Next, (3) the seed was searched against the database to find positions (seed hits) with high
similarity between the database and query sequences. Finally, (4–6) the identified seeds
were extended (ungapped and gapped seed extensions) with alignment, and the score
was calculated. The details of each process are described in the following sections.

Figure 3. TSSS flowchart.

2.3.1. Building a Database Subsequence Index (1)
First, all protein sequences in the database were concatenated by inserting a prede-

termined delimiter character such as ‘#’. All subsequences with the lengths of the two
seeds, seed1 L1 and seed2 L2, were obtained by repeatedly shifting one character at a time
in the concatenated sequence. Subsequences containing the delimiter were discarded.
Then, depending on parameters A1, A2, L1, and L2, the seed1 and seed2 areas were enumer-
ated and indices were generated that mapped each subsequence to a position in the data-
base.

Figure 3. TSSS flowchart.

2.3.1. Building a Database Subsequence Index (1)

First, all protein sequences in the database were concatenated by inserting a prede-
termined delimiter character such as ‘#’. All subsequences with the lengths of the two
seeds, seed1 L1 and seed2 L2, were obtained by repeatedly shifting one character at a time in
the concatenated sequence. Subsequences containing the delimiter were discarded. Then,

Genes 2021, 12, 1455 5 of 12

depending on parameters A1, A2, L1, and L2, the seed1 and seed2 areas were enumerated
and indices were generated that mapped each subsequence to a position in the database.

2.3.2. Generating Keys for Query (2) and Searching for Seeds (3)

DNA sequence reads obtained by a DNA sequencer were translated into six frames
and concatenated using the delimiter. The same operation described in Section 2.3.1
was performed on the concatenated query to enumerate keys of the subsequence. Keys
containing the termination codon were discarded.

In the seed search, parameters H1 and H2 (described in Section 2.2) were used to
search for database positions of the seed hits. An identified seed hit was recorded as a
candidate for alignment, and the next operation was executed.

2.3.3. Ungapped Extension (4) and Chain Filtering (5)

In the extension step, an ungapped extension procedure was performed around
the seed hit to further narrow down significant database positions. Although the seed
search used reduced amino acid alphabets, the process after the ungapped extension step
calculated an alignment score including the seed region based on the 20 standard amino
acids. Termination codons were not discarded in the ungapped and gapped extension
procedures, and were regarded as a single virtual amino acid. The similarity score between
a termination codon and each amino acid was defined by the BLOSUM62 matrix. In the
ungapped extension step, as in BLAST, X-dropoff [4] was used to terminate the extension
when the score decrease from the peak value was greater than the value determined by the
score matrix and user-defined parameter. Only subsequences with scores exceeding the
threshold were recorded as candidates for the next gapped extension step.

Where a long region in the database matched the query, many subsequences had
almost the same results in the gapped extension. For this reason, TSSS used chain filtering
to eliminate redundant gapped extension trials by combining subsequences located in
neighboring positions into one subsequence [5]. Subsequences were combined into one
longer subsequence when subsequences of the ungapped extension overlapped, or when
the ungapped extension score between two subsequences was greater than or equal to
the threshold.

2.3.4. Gapped Extension (6)

The gapped extension in TSSS used the same method as BLAST. As in the ungapped
extension, we employed X-dropoff to terminate the extension when the score decrease from
the peak value was greater than the threshold. We also used a Gotoh algorithm [10] that
considered affine gaps, which reduced the penalty for consecutive gaps in alignment.

2.4. Evaluation Procedure
2.4.1. Computing Environment and Comparison Programs

We evaluated the computational speed and accuracy of TSSS using the f_node of
the TSUBAME3.0 supercomputer at Tokyo Institute of Technology. This computing envi-
ronment consisted of two Intel Xeon E5-2680 v4 (14 cores, 2.4 GHz) CPUs and 256 GB of
memory. We used GCC (version 4.8.5) as the compiler, with the optimization option -O3.

BLAST [4,5] (version 2.7.1), RAPSearch2 [6] (version 2.22), GHOSTZ [7] (version 1.0.2),
and DIAMOND [8] (version 0.9.14.115) were used as comparison programs. The following
options for all programs were employed: BLOSUM62 for the substitution matrix, no SEG
filter to ignore low-complexity regions of sequences, and 10 alignments per query. Each
program supported multi-thread operations, but was executed with a single thread unless
otherwise noted. The detailed options for each program are presented in Table 1.

Genes 2021, 12, 1455 6 of 12

Table 1. Options for comparison programs.

Program Options

BLAST -outfmt 6 -comp_based_stats 0 -seg no
RAPSearch2 fast -b 0 -t n -a t
RAPSearch2 -b 0 -t n
GHOSTZ -q d -F
DIAMOND -f 6 -e 10 -p 1 –masking 0 –comp-based-stats 0
DIAMOND-sensitive -f 6 -e 10 -p 1 –sensitive –masking 0 –comp-based-stats 0
DIAMOND-more sensitive -f 6 -e 10 -p 1 –more-sensitive –masking 0 –comp-based-stats 0

The sizes of the reduced amino acid alphabets used in the comparison programs are
listed in Table 2. Although most alphabets were 10 characters in size, the seed search
algorithms of each program differed, making a simple comparison difficult. For example,
DIAMOND used multiple patterns of spaced seeds that do not necessarily require an exact
match of contiguous subsequences.

Table 2. Reduced amino acid alphabets used in comparison programs.

Program Size of Reduced Amino Acid Alphabet

RAPSearch2 10
GHOSTZ 10
DIAMOND 11

2.4.2. Datasets

We employed the KEGG GENES prokaryotes database (acquired in February 2019) [11,12]
as the protein sequence database. This database consists of approximately 17.7 mil-
lion protein sequences, with a total residue length of approximately 5.6 billion residues.
SRR5788325 [13], a set of DNA sequences obtained from the NCBI Sequence Read Archive,
was used as the query data. The DNA sequences were quality controlled using PRINSEQ-
lite [14] (version 0.20.4) prior to the experiments.

2.4.3. Calculation of Accuracy

To evaluate the search accuracy of each program, the optimal hits with the Smith–
Waterman algorithm were needed for each query sequence. We used SSEARCH with the
E-value threshold of 10−5 to obtain them. Reference hits used in the evaluation consisted
of up to 10 optimal hits, and thus, the maximum number of reference hits was 10 for each
query. Then, the top 10 hits of each homology search program were retained, and the
obtained hits resulting in the same sequences as the reference hits were counted as matches.
The accuracy of the search program was measured as the ratio of the number of matches
to the number of reference hits (≤10). The E-value of the alignment was based on the
output value of each program, although a previous study suggests that for a more precise
calculation, the E-value should consider frameshift alignment [15].

3. Results and Discussion
3.1. TSSS Performance with Various Parameters

We evaluated all 1344 combinations of TSSS parameters listed in Table 3. The values
were manually selected from the appropriate ranges for each parameter. As for the sizes
of the reduced amino acid alphabets A1 and A2, we expected TSSS to be effective when
A1 > A2. However, we also examined TSSS performance when the same-sized reduced
amino acid alphabet was used for the entire seed (A1 = A2), and when a larger reduced
amino acid alphabet was used at both ends of the seed compared with that used in the
center of the seed (A1 < A2).

Genes 2021, 12, 1455 7 of 12

Table 3. TSSS parameter ranges.

Parameter Description Range

(H1, H2) Hamming distances allowed for seed1 and seed2 {(0, 0), (0, 1), (1, 1)}
L1 Length of seed1 {2, 4, 6, 8}
A1 Size of reduced amino acid alphabet for seed1 {6, 8, 10, 12, 14, 16, 18}
L2 Length of seed2 {2, 3, 4, 5}
A2 Size of reduced amino acid alphabet for seed2 {4, 6, 8, 10}

The results of TSSS with 1344 different parameter sets (with 50,000 queries) are pre-
sented in Figure 4. A unique Pareto surface existed for each combination of H1 and H2.
When (H1, H2) = (0, 0), the program searched only for seeds that exactly matched in total
length. In the range where the accuracy ≤ 0.7, this parameter set resulted in shorter CPU
times than other parameter sets, and the search was performed at a higher speed rather
than improved accuracy. When (H1, H2) = (1, 1), the search speed was improved in the
range where accuracy ≥ 0.95, resulting in one of the best parameter sets that emphasized
accuracy. This parameter set allowed up to three Hamming distances for the entire seed,
and the program was able to search for seeds with high similarity while allowing mis-
matches. When (H1, H2) = (0, 1), speed and accuracy were balanced. In particular, this
parameter set outperformed other parameter sets with an accuracy range of 0.7 to 0.9.

1

4

5

Figure 4. TSSS results.

Figure S1 in the Supplementary Materials illustrates the results of TSSS for the mag-
nitude relationship between A1 and A2. The settings of A1 = A2, the same settings as the
one-step seed search, is not the worst among all settings; however, the figure revealed the
Pareto surfaces were formed by the use of a less compressed amino acid alphabet in the
center of the seed while a more compressed amino acid alphabet at both ends of the seed
(A1 > A2). This result was consistent with the assertion that TSSS can efficiently reduce the
number of alignment candidates by applying strict filtering in the center of the seed and
relatively loose filtering in the periphery of the seed.

Further observations revealed that long seeds with a small reduced amino acid al-
phabet tended to yield worse results because the conversion to a reduced amino acid
alphabet with fewer characters made it difficult to obtain a seed with high similarity. The
distribution of accuracy and computing time for all combinations of A1 and A2 are shown
in Figures S2 and S3.

Genes 2021, 12, 1455 8 of 12

3.2. Comparison with Existing Tools

Comparing TSSS against existing tools, BLAST demonstrated the highest accuracy
but the longest execution time, while DIAMOND-sensitive and DIAMOND-more sensitive
were the next most accurate tools (Figure 5). The results indicated that some parameter sets
in TSSS yielded faster results than existing tools with equivalent accuracy. The parameter
sets that yielded the same accuracy as DIAMOND, GHOSTZ, and DIAMOND-sensitive and
had the shortest CPU times were named TSSS fast, middle, and sensitive. The parameter
details for the three TSSS methods are presented in Table 4.

1

4

5

Figure 5. Accuracy and CPU time for each method.

Table 4. Parameter details of representative TSSS methods.

Name H1 H2 L1 A1 L2 A2

Fast 0 1 4 18 5 6
Middle 0 1 4 16 4 8
Sensitive 0 1 2 18 5 8

Additionally, we also evaluated the change in accuracy for varying E-value thresholds
by SSEARCH when creating the reference hits. The strict E-value threshold (e.g., 10−15)
evaluates the search accuracy of alignments with high identity, whereas a loose E-value
threshold evaluates the search accuracy of alignments likely containing many mismatches
and gaps. Figure 6 illustrates the accuracy order of the methods was almost consistent with
the E-values. Our TSSS fast, middle, and sensitive methods were comparable with those
of the target competitors, DIAMOND, GHOSTZ, and DIAMOND-sensitive, over a wide
E-value range.

Genes 2021, 12, 1455 9 of 12

2

6

7

Figure 6. Accuracy of each method according to E-value.

3.3. Speed Comparison by Query Size

The number of queries greatly affects the calculation time; thus, we tested TSSS and
existing tools with various query sizes. Figure 7 presents the execution times and their
linear extrapolations since calculation time was almost directly proportional to the number
of queries. Interestingly, DIAMOND demonstrated different behavior from the other
programs. This is because the time DIAMOND takes to construct the data structure for
the seed search appeared as the intercept, which then accelerated the calculation per query
time, reflected as the slope inclination. The results demonstrated that the TSSS sensitive
method was faster than DIAMOND-sensitive at the same accuracy when the number of
queries was small, whereas DIAMOND-sensitive had an advantage when the number of
queries was large. DIAMOND-sensitive became faster than the TSSS sensitive method
when the number of queries > 120,000 with a length of 150 bases.

To compare the execution times in detail, we excluded estimated preparation overhead
and calculated the execution time per query in reference to BLAST, as shown in Table 5.
According to the table, DIAMOND was up to 4.9 times faster than the TSSS fast method.
Similarly, DIAMOND-sensitive and DIAMOND-more sensitive were up to 4.9 and 2.2 times
faster than the TSSS sensitive method, respectively. However, the TSSS middle method
was faster than RAPSearch2 and GHOSTZ, which had similar accuracies. The TSSS middle
method was 336.1, 5.0, and 2.2 times faster than BLAST, RAPSearch2, and GHOSTZ,
respectively. Interestingly, TSSS was faster than GHOSTZ even though GHOSTZ accelerates
computation by effectively managing redundancy in the database, which is not performed
by TSSS. These results may indicate that our TSSS strategy is superior to the traditional
one-step seed search algorithm.

Genes 2021, 12, 1455 10 of 12

2

6

7

Figure 7. CPU time according to number of queries for each program.

Table 5. Execution speed ratio against NCBI BLAST.

Program Speed Ratio

BLAST 1.0

RAPSearch2 fast 890.2

DIAMOND 6122.7
TSSS fast 1241.9

RAPSearch2 65.2
GHOSTZ 121.2
TSSS middle 336.1

DIAMOND-sensitive 731.4
DIAMOND-more sensitive 347.0
TSSS sensitive 148.0

3.4. Parallel Efficiency

As described in Section 2.4.1, TSSS and existing tools support multi-thread operation.
Figure 8 presents the strong scaling performance and memory consumption when each
program was executed parallelly for one million query sequences. Furthermore, each
program was executed with 4, 8, 12, 16, 20, 24, and 28 threads, and the speed-up ratio was
calculated based on the CPU time when executed with four threads.

In the speed-up ratio graph (Figure 8A), DIAMOND and the TSSS fast method over-
lapped and displayed similar parallel efficiency. The TSSS middle method demonstrated
better parallel efficiency than both RAPSearch2 and GHOSTZ. Furthermore, the TSSS sensi-
tive method had higher parallel efficiency than DIAMOND-sensitive and DIAMOND-more
sensitive. Note that the parallel efficiency of GHOSTZ was significantly decreased when
the number of threads was ≥20, which suggests that the seed search was not suitable for
parallelization or there may be a problem in the implementation of parallelization.

In the memory consumption graph (Figure 8B), all programs, excluding GHOSTZ,
was approximately 10 GB with 28 threads, which is acceptable when using large-scale
computing resources such as supercomputers. In contrast, GHOSTZ had a large memory
consumption of approximately 150 GB with 28 threads, which may limit the execution of
this program depending on the computing environment.

Genes 2021, 12, 1455 11 of 12

3

8
Figure 8. Speed-up ratio (A) and memory consumption (B) for parallel execution.

3.5. Removal of Low-Complexity Regions

The low-complexity regions (LCR) should be carefully removed in sequence homology
search. Several filtering approaches have been eagerly studied, including hard masking,
soft masking, and gentle masking [16]. Such an LCR filter is generally used in the prepro-
cessing of database and query sequences. Though many homology search software have
built-in SEG filter options, previous assessments turned off the filtering option because it
sometimes results in missing important homologous sequence and may affect performance
comparison [7,17].

In this study, we did not use built-in SEG filter as described in Section 2.4.1. However,
our quality control procedure described in Section 2.4.2 was not perfect and allowed some
LCR sequences to remain both in the database and query sequences. We investigated and
found that the database sequences that appeared in the top 10 reference hits included
LCR in their whole protein sequence with a modest frequency. Less than about 5% of
the reference hit entries (24,575 of 487,344) had an LCR on their whole sequence. Thus,
the incomplete LCR-filtration may have had moderate but non-ignorable influence on the
results of accuracy assessment. We assume that the influence was not significantly biased
for specific tools. However, it is desirable to achieve more accurate assessment with the
use of a sophisticated LCR-filtration algorithm.

4. Conclusions

Herein, we proposed a homology search algorithm that employed TSSS with dif-
ferent reduced amino acid alphabets and compared the implementation of this method
against several existing homology search tools. TSSS was 5.0 and 2.2 times faster than
RAPSearch2 and GHOSTZ, respectively, using parameters providing the same accuracy.
In addition, the same parameters achieved 336 times faster search than that with BLAST.
These results indicate that the TSSS’s two-step seed search strategy is more effective than
the traditional one-step seed search strategy widely used among homology search tools
such as DIAMOND and GHOSTZ. However, the implementation of TSSS has scope for
improvement in terms of the pre-calculation of the seed search. DIAMOND was faster than
TSSS when the number of queries was sufficiently large and up to 4.9 times faster using the
parameter set providing the same accuracy. The most important reason for its faster speed
is the double indexing technique that DIAMOND uses to construct a data structure for all
query sequences as well as for all database sequences, thereby shortening the execution
time per query. Therefore, double indexing or the construction of a suitable data structure
specialized for TSSS must accelerate our implementation. Furthermore, TSSS combined
with the spaced seed technique utilized in DIAMOND instead of enumeration of all words

Genes 2021, 12, 1455 12 of 12

will enhance the performance. The clustering of database sequences technique utilized in
GHOSTZ is another option to enhance the performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12091455/s1, Figure S1: Results of TSSS for magnitude relationship between A1 and A2,
Figure S2: Boxplots based on accuracy for all combinations of A1 and A2, Figure S3: Boxplots based
on CPU time for all combinations of A1 and A2.

Author Contributions: Conceptualization, K.T.; methodology, K.T.; software, K.T.; validation, K.T.,
K.I. and M.A.; writing—original draft preparation, K.T.; writing—review and editing, K.T., K.I., K.Y.,
Y.A. and M.O.; supervision, Y.A., K.Y. and M.O.; project administration, Y.A.; funding acquisition,
Y.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Program for Building Regional Innovation Ecosys-
tems, “Program to Industrialize an Innovative Middle Molecule Drug Discovery Flow through Fusion
of Computational Drug Design and Chemical Synthesis Technology”, from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The query DNA sequences used in this study are available in SRR5788325
obtained from the NCBI Sequence Read Archive. The KEGG GENES prokaryotes database were
downloaded in February 2019 under the KEGG FTP academic subscription license.

Acknowledgments: The computational experiments were carried out using the TSUBAME3.0 super-
computer at Tokyo Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919.

[CrossRef] [PubMed]
2. Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [CrossRef]
3. Pearson, W.R. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and

FASTA algorithms. Genomics 1991, 11, 635–650. [CrossRef]
4. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

[CrossRef]
5. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new

generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef] [PubMed]
6. Zhao, Y.; Tang, H.; Ye, Y. RAPSearch2: A fast and memory-efficient protein similarity search tool for next-generation sequencing

data. Bioinformatics 2012, 28, 125–126. [CrossRef] [PubMed]
7. Suzuki, S.; Kakuta, M.; Ishida, T.; Akiyama, Y. Faster sequence homology searches by clustering subsequences. Bioinformatics

2015, 31, 1183–1190. [CrossRef] [PubMed]
8. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2016, 12, 59–60. [CrossRef]

[PubMed]
9. Murphy, L.R.; Wallqvist, A.; Levy, R.M. Simplified amino acid alphabets for protein fold recognition and implications for folding.

Protein Eng. 2000, 13, 149–152. [CrossRef] [PubMed]
10. Gotoh, O. An improved algorithm for matching biological sequences. J. Mol. Biol. 1982, 162, 705–708. [CrossRef]
11. Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furuchimi, M.; Tanabe, M. Data, information, knowledge and principle: Back to

metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [CrossRef] [PubMed]
12. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
13. Biller, S.J.; Berube, P.M.; Dooley, K.; Williams, M.; Satinsky, B.M.; Hackl, T.; Hogle, S.L.; Coe, A.; Bergauer, K.; Bouman, H.A.; et al.

Marine microbial metagenomes sampled across space and time. Sci. Data 2018, 5, 180176. [CrossRef] [PubMed]
14. Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864.

[CrossRef] [PubMed]
15. Sheetlin, S.L.; Park, Y.; Frith, M.C.; Spouge, J.L. Frameshift alignment: Statistics and post-genomic applications. Bioinformatics

2014, 30, 3575–3582. [CrossRef] [PubMed]
16. Frith, M.C. Gentle masking of low-complexity sequences improves homology search. PLoS ONE 2011, 6, e28819. [CrossRef] [PubMed]
17. Suzuki, S.; Kakuta, M.; Ishida, T.; Akiyama, Y. GHOSTX: An improved sequence homology search algorithm using a query suffix

array and a database suffix array. PLoS ONE 2014, 9, e103833. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/genes12091455/s1
https://www.mdpi.com/article/10.3390/genes12091455/s1
http://doi.org/10.1073/pnas.89.22.10915
http://www.ncbi.nlm.nih.gov/pubmed/1438297
http://doi.org/10.1016/0022-2836(81)90087-5
http://doi.org/10.1016/0888-7543(91)90071-L
http://doi.org/10.1016/S0022-2836(05)80360-2
http://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://doi.org/10.1093/bioinformatics/btr595
http://www.ncbi.nlm.nih.gov/pubmed/22039206
http://doi.org/10.1093/bioinformatics/btu780
http://www.ncbi.nlm.nih.gov/pubmed/25432166
http://doi.org/10.1038/nmeth.3176
http://www.ncbi.nlm.nih.gov/pubmed/25402007
http://doi.org/10.1093/protein/13.3.149
http://www.ncbi.nlm.nih.gov/pubmed/10775656
http://doi.org/10.1016/0022-2836(82)90398-9
http://doi.org/10.1093/nar/gkt1076
http://www.ncbi.nlm.nih.gov/pubmed/24214961
http://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://doi.org/10.1038/sdata.2018.176
http://www.ncbi.nlm.nih.gov/pubmed/30179232
http://doi.org/10.1093/bioinformatics/btr026
http://www.ncbi.nlm.nih.gov/pubmed/21278185
http://doi.org/10.1093/bioinformatics/btu576
http://www.ncbi.nlm.nih.gov/pubmed/25172925
http://doi.org/10.1371/journal.pone.0028819
http://www.ncbi.nlm.nih.gov/pubmed/22205972
http://doi.org/10.1371/journal.pone.0103833
http://www.ncbi.nlm.nih.gov/pubmed/25099887

	Introduction
	Methods
	Reduced Amino Acid Alphabets
	Two-Step Seed Search (TSSS)
	TSSS Procedure
	Building a Database Subsequence Index (1)
	Generating Keys for Query (2) and Searching for Seeds (3)
	Ungapped Extension (4) and Chain Filtering (5)
	Gapped Extension (6)

	Evaluation Procedure
	Computing Environment and Comparison Programs
	Datasets
	Calculation of Accuracy

	Results and Discussion
	TSSS Performance with Various Parameters
	Comparison with Existing Tools
	Speed Comparison by Query Size
	Parallel Efficiency
	Removal of Low-Complexity Regions

	Conclusions
	References

