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Abstract: Functional annotation allows adding biologically relevant information to predicted fea-

tures in genomic sequences, and it is, therefore, an important procedure of any de novo genome 

sequencing project. It is also useful for proofreading and improving gene structural annotation. 

Here, we introduce FA-nf, a pipeline implemented in Nextflow, a versatile computational work-

flow management engine. The pipeline integrates different annotation approaches, such as NCBI 

BLAST+, DIAMOND, InterProScan, and KEGG. It starts from a protein sequence FASTA file and, 

optionally, a structural annotation file in GFF format, and produces several files, such as GO as-

signments, output summaries of the abovementioned programs and final annotation reports. The 

pipeline can be broken easily into smaller processes for the purpose of parallelization and easily 

deployed in a Linux computational environment, thanks to software containerization, thus helping 

to ensure full reproducibility.  
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1. Introduction 

The recent development of sequencing technologies allows researchers to obtain fast 

and relatively cheap assemblies of the genomes of many organisms, which has led to a 

significant increase in available genomes from all kingdoms of life [1,2]. However, the 

assembly of the genome and its structural gene annotation (the gene and transcript map) is 

just an initial step in answering some biological questions. Yet, annotated features repre-

sent only a list with coordinates in the genome and its corresponding sequence with some 

abbreviation instead of the name, in particular, for the de novo gene annotation. To add 

biologically meaningful value to those features, such as putative function, presence of 

specific domains, cellular localization, metabolic pathways, GO terms, and gene descrip-

tions, the researcher needs to perform so-called functional annotation [3]. If features are 

predicted protein coding genes, their function can be automatically assigned, based on 

sequence and/or 3D structural similarity to proteins in available databases. 

The typical functional annotation workflow involves combining different methods 

that analyze a protein sequence from different angles and integrating results into a con-

sensus annotation (Figure 1a). The simplest approach to an annotation relies on perform-

ing a homology search against a set of representative sequences, such as a BLAST search 

against the UniProt or NCBI NR (non-redundant) protein databases [4–6]. Because the 

sequence similarity might occur between two evolutionarily unrelated sequences, due to 
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the presence of common domains [7], it is also essential to assign a predicted protein to 

one of the known orthologous groups and infer functional annotation from these 

orthologs [8–10]. Another approach implies finding known protein signatures by using 

diagnostic models, such as hidden Markov models (HMM), or searching for regular ex-

pressions against specialized databases, such as InterPro [11], which in turn, contains 

PANTHER [12], Pfam [13], and SUPERFAMILY [14] databases, among many others. 

 

Figure 1. (a) A typical functional annotation workflow; (b) simplified flowchart of FA-nf pipeline. 

There are already existing frameworks for the functional annotation of genomes. 

Some of them are accessible online with an easy-to-use web interface [9,15–17], while 

others require a local installation [16,18–20] (Table 1). Tools that are solely available 

online can have a limitation on the number of sequences that can be annotated in one run, 

and therefore, cannot always be used for high-throughput analysis. On the other hand, 

those pipelines that can be run locally often require specialized computational 

knowledge, as they depend on the installation of external programs and databases. Fur-

thermore, it may also be important to optimize parallelization processes for speeding up 

the annotation. 
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Table 1. Non-exhaustive summary table of existing functional annotation programs or pipelines. 

Program/Pipeline Installation Used Software Datasets Comments 

Blast2GO [20] 

Local installation 

and web/cloud ser-

vices 

BLAST+, Interproscan, 

BLAST2GO specific 

software, etc. 

Custom, 

Normally, NCBI 

BLAST DBs, InterPro, 

GO 

Subscription tool. Vis-

ualization dashboard. 

Gene structural anno-

tation options. Newer 

versions integrated into 

other toolboxes.  

eggNOG mapper [9] 
Web service and 

local installation 
DIAMOND, HMMER 

eggNOGdb (from sev-

eral sources), GO, 

PFAM, SMART, COG 

Available com-

mand-line tool and 

REST API for querying 

the service. Gene 

structural annotation 

options. 

FA-nf Local installation 

BLAST+, DIAMOND, 

Interproscan, KOFAM, 

CDD, SignalP, TargetP, 

etc. 

Custom. Normally, 

NCBI BLAST DBs, In-

terPro and Uni-

Prot-GOA 

Based on Nextflow 

pipeline framework 

and software contain-

ers. 

GenSAS [15] Web service 

BLAST+, DIAMOND, 

Interproscan, SignalP, 

TargetP, etc. 

SwissProt/TrEMBL, 

RefSeq, RepBase 

No installation needed. 

Requires web user reg-

istration. Includes gene 

structural annotation 

and visualization. 

There can be resources 

and usage restrictions. 

MicrobeAnnotator [18] Local installation 
BLAST+, DIAMOND, 

KOFAM.  

SwissProt/TrEMBL, 

RefSeq, KEGG 

Focused on microbi-

omes. Conda/Python 

based. 

PANNZER2 [17] Web service  SANSparallel 
UniProt, UniProt-GOA, 

GO, KEGG 

Available com-

mand-line tool for 

querying the service. 

Sma3s [19] Local installation BLAST+ 

Reference datasets 

generated from Uni-

Prot, GO 

A Perl script. Simple 

installation.  

Here, we present a scalable and parallelizable workflow for functional annotation, 

named FA-nf, implemented in the Nextflow framework [21] with Docker container im-

ages generated for every process. The pipeline requires, as input, protein sequences in the 

standard FASTA format and, optionally, a gene structural annotation encoded in GFF3 

format. The output of the pipeline consists of several annotation files in the plain text 

format, with a consensus annotation in GFF3 format and a final HTML report. The results 

from the different processes are stored in a relational database upon process completion 

and retrieved at the end of the annotation process. The FA-nf pipeline integrates tools 

that are widely used in the community and includes all important steps of protein an-

notation. Importantly, the Nextflow framework also avoids the problem of installing 

software dependencies by the user and can, therefore, be used by researchers with less 

bioinformatic expertise [22] than is required by other existing pipelines (Figure 1). 
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2. Materials and Methods 

2.1. Overview of the Pipeline 

The usage of a workflow management engine can simplify the development and 

maintenance of pipelines [23]. During recent years, the bioinformatics community has 

been progressively adopting various management systems, such as Snakemake [24], 

Galaxy [25], Nextflow [21]. For the FA-nf pipeline, we selected Nextflow because it has 

provided support for container technologies, different HPC queue schedulers and cloud 

providers from its inception. This eases the portability to different environments and has 

already become the choice of both specific and wide-reach projects [26,27].  

Every Nextflow process (that is, a pipeline step) is associated with a specific con-

tainer image. Whenever possible, if common software (such as NCBI Blast+ [28]) is al-

ready available and fits our requirements, container images from official sources and 

Biocontainers.pro initiative are preferred [29]. Otherwise, if images are either modified in 

order to work with the pipeline (e.g., with InterProscan) or based on software that does 

not comply with Open Source Initiative licenses [30] (e.g., with SignalP [31]), associated 

recipes are published in a public Git repository [32]. This way, container images can be 

generated in advance and placed in a suitable location of the HPC environment, where 

the pipeline is executed. 

Some steps in the pipeline consist of scripts for processing, gathering and merging 

the outputs of the different applications involved (e.g., NCBI BLAST+ or Interproscan 

[33]), executed in either parallel or preceding steps. These are mostly programmed in Perl 

and kept in a specific and separate container in order to warrant code reproducibility. 

Data from the different analyses steps are retrieved and stored in a relational data-

base to simplify the gathering of information and predictions for every protein entry 

(Figure 1b,2). This also substantially speeds up the generation of statistics reports and 

final results. Support for two relational database management systems is provided: 

SQLite and MySQL/MariaDB. The former, which stores the database in a single file, re-

quires little initial configuration from the user side and allows major portability. How-

ever, SQLite is far less performant in environments where shared file systems are in-

volved (quite common in most HPC setups) [34]. For that latter case, the 

MySQL/MariaDB option is provided. Users need to point to an accessible database server 

instance that will receive data uploads from the ongoing processes. For the sake of con-

venience, a wrapper script that launches a MariaDB Singularity container instance is also 

provided [35]. At the time of writing, this was tested on the SGE-compatible queue sys-

tems and thus, can be easily adapted to other systems as far as proper intercommunica-

tion among the involved nodes is warranted. 
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Figure 2. Automatically generated schema from Nextflow output. 

The FA-nf pipeline also allows to fine-tune the resources assigned to its different 

processes. Within a configuration file, customarily named nextflow.config, as long as 

processes are properly labelled, the user can adjust the minimum assigned CPU cores 

and available memory to be demanded from a computation node. Likewise, for the node 

queue, the user can specify where to submit the processes and the maximum amount of 

time each process is allowed to be kept running in the node. Additionally, with FA-nf, it 

is possible to specify (in params.config file) the number of sequences (chunk size) that are 

going to be processed, depending on the type of process. 

The pipeline is defined by default in a debug mode with a limited number of chunks 

to be processed, which can also be specified with a debugSize parameter.  

By adjusting the different size-related parameters in the params.config file, and 

taking into consideration the number, but also the length, of the analyzed protein se-

quences, the underlying HPC infrastructure (e.g., batch queue systems, number of nodes, 

long/short queues or disk access) and the methods used in the process (e.g., web services 

vs local applications), the user can improve the performance and reduce the execution 

time of the entire annotation process. Once parameters are proven to be good enough, 

they can be reused in other annotation efforts using the same methods with genomes of 

similar sizes under the same computational environment. 

2.2. Preprocessing 

The minimum input of the pipeline is a FASTA file with protein sequences. A GFF 

file, either retrieved from public resources or from a gene structural annotation work-

flow, is normally expected as well. If a GFF file is provided, the same protein IDs in the 

FASTA file should be used in the corresponding entries of the GFF. 

Despite existing GFF3 recommendations, there is a large diversity of GFF formats. In 

order to ensure that input GFF files can go through downstream processes and no pre-

diction is lost, an initial automatic verification and cleaning step with AGAT Toolkit is 
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introduced [36]. Common GFF3 formats retrieved from ENSEMBL, NCBI and also gen-

erated with PASA and TransDecoder pipelines are successfully tested [37,38]. 

Once this previous verification is performed, entries from GFF and FASTA files are 

further checked and imported into a database, which will act as a central reference point 

for the upstream processes.  

2.3. Analysis 

Once protein sequence IDs are recorded in the central FA-nf database, their se-

quences are grouped in chunks and distributed in different parallel computation pro-

cesses. This stage represents the main bulk of the pipeline, and it is actually the one that 

benefits the most from using a workflow engine and the HPC infrastructure. We discuss 

some of the involved applications below. 

2.4. NCBI BLAST+ and DIAMOND as Annotation Sources 

At the time of writing, users could choose either NCBI BLAST+ or DIAMOND [39] 

as annotation sources based on the sequence homology. As a rule of thumb, when using 

the same FA-nf parameters, NCBI BLAST+ provides slightly more potential results from 

hits, but with substantially more computation time. In that case, when NCBI BLAST+ is 

used, it is preferable to run workload tasks that contain fewer sequences than when 

DIAMOND is used. 

Instead of a BLAST2GO file, the BLAST annotator service is available as a down-

stream step from the processes above. This is used for retrieving GO correspondences 

extracted from the highest hits of the sequence homology results. However, for using it, a 

web service accessible by the pipeline needs to be set up in advance. In our case, this web 

service is fed by using a database populated by the UniProt to GO (GOA) correspond-

ences [40] and UniProt Idmapping file [5]. Therefore, even if the used BLAST database is 

not made of UniProt entries (e.g., of NCBI GenBank sequences), as long as the Idmapping 

file contains correspondences to actual UniProt entries, the database can be safely used. If 

suitable input files are employed, different BLAST annotator services could also be de-

signed, using other sources instead. 

The service uses the hits that fit the given Blast e-value threshold and provides dif-

ferent GO retrieval approaches. By default, it uses a “common” mode, which, in a con-

servative fashion, retrieves only those GO codes that are common in all selected hits. 

Alternatively, at the time of writing, we could choose an “all” mode, that retrieves all 

available GO codes from the hits, or, instead, a “most” mode, which picks up GO codes if 

present in more than half of the hits. 

2.5. KAAS and KOFAM 

In order to take advantage of the capacity of annotation from KEGG from which, so 

far, we retrieve notably KO (KEGG orthology) codes and their GO codes correspond-

ences, it is possible to use either the KAAS web service [41] or the KofamKOALA 

standalone program [42]. In the first case, the output file of KAAS service, which needs to 

be manually retrieved in advance, must be provided as a parameter (keggFile) in the 

config file. This KAAS output file must be generated from the same input FASTA file that 

is used in the pipeline. Alternatively, if no file generated from KAAS is provided, 

KofamKOALA will be used to generate a similar file that also contains sequence IDs 

matching KO codes. 
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2.6. Other Programs 

One of the main chosen tools, InterProScan, is actually a portmanteau of several 

applications and reference datasets (PFAM, PANTHER, etc.), that provide essential do-

main and functional site information on protein sequences. Moreover, most of the re-

trieved matches normally provide GO code correspondences that can be summed up to 

those coming from other methods used in the pipeline. 

SignalP and targetP as standalone programs [43] and CD-search [44] as an executed 

web service also provide sequence, domain and cellular information. However, at the 

time of writing, they did not deliver the GO mappings. 

2.7. Integration and Reports 

The results of the different analysis steps described above are uploaded into a cen-

tral database that already keeps track of the sequence identifiers uploaded during the 

preprocessing part.  

Pipeline output and report files are stored in a user-defined results directory, being 

placed in that location as soon as involved processes are completed. This allows users to 

inspect the pipeline progress and to stop it and resume it at any moment, if needed.  

As last steps of the pipeline, a summary text file (total_stats.txt) and an image PNG 

file (annotatedVsnot.png) are generated with some statistics and the coverage of the an-

notation. These are produced along with the GFF file (its name is the same as the one 

chosen for the database in the configuration file) with protein information on all the 

matches and functional assignments. Text tab-separated files of GO matches by protein 

(go_terms.tsv) and by gene (go_terms_byGene.tsv), along with related source methods 

used from the previous stage of the pipeline, are also available, thus enabling the user to 

perform subsequent GO-based enrichment analyses [45]. 

Moreover, other convenient TSV files are also produced with extensive detail of the 

matches from the involved application (interProScan.res.tsv, signalP.res.tsv and tar-

getP.res.tsv). Likewise, a protein_definition.tsv file is provided with suggested descrip-

tions of candidate proteins, normally derived from the first hits of BLAST applications, 

which can be convenient for rapid inspection by curators.  

In addition, different files from the GFF cleaning and verification preprocessing part 

of the pipeline can be found in the same location, that is, the cleaned GFF input file (an-

not.gff), a log of the cleaning process (annot.gff.clean.txt) and some stats associated with 

it (annot.gff.stats.txt). 

3. Results 

3.1. Running FA-nf 

Next, we detail the steps to run the pipeline. 

● Ensure you have a recent version of Git software and clone the FA-nf repository. 

This will create a FA-nf folder with the pipeline contents. 

o $ git clone --recursive https://github.com/guigolab/FA-nf 

● You can otherwise download and extract a specific release version from the follow-

ing: 

o https://github.com/guigolab/FA-nf/releases 

● Ensure you have either Docker (at least 19.x version) or, preferably, Singularity (at 

least 3.2.x version) installed. 

o Docker installation details: https://docs.docker.com/install/ (accessed on 19 

October 2021). 

o Singularity installation details: 

https://singularity.hpcng.org/admin-docs/3.7/installation.html (accessed on 19 

October 2021). 
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● Install Nextflow (version 20.10.0 tested). In this example, we keep it in the same di-

rectory as the pipeline. Otherwise, you would normally place it somewhere in the 

PATH of your system. Java 8 or later must be available in the system. 

o $ cd FA-nf; export NXF_VER=20.10.0; curl -s https://get.nextflow.io | bash 

● If you plan to use Interproscan with private software, follow the container image 

generation instructions that can be found under the containers/interproscan direc-

tory of the repository. 

● If you want to use privative programs, such as signalP and targetP, prepare a con-

tainer image following the instructions under the containers/sigtarp directory of the 

repository. Otherwise, the execution of these applications can be skipped from the 

pipeline configuration. 

● Optionally, you also can set up your custom GOGOApi REST API service from the 

instructions provided under the gogoapi directory of the repository. 

● If your system does not have internet connection, you can generate Singularity files 

in advance and modify accordingly the container tag values in the nextflow.config 

file. Some pregenerated Singularity container images can be found at 

https://biocore.crg.eu/containers/FA-nf/ (accessed on 19 October 2021). 

● Download (and index when necessary) all the datasets used by the pipeline, as de-

tailed in the repository documentation. At least some BLAST, Interproscan and 

KofamKOALA files are needed. 

o A Nextflow pipeline script for downloading necessary datasets (download.nf) 

is available. A sample configuration file (params.download.config) is available 

for convenience. The datasets will be downloaded and indexed using the fol-

lowing command: 

■ $ ./nextflow run -bg download.nf --config params.download.config &> 

download.logfile  

o Alternately, some convenient scripts for setting and indexing the necessary 

datasets can be found at https://github.com/toniher/biomirror/  

o As a last instance, some minimal test datasets can be found here: 

https://biocore.crg.eu/papers/FA-nf-2021/datasets/ (accessed on 19 October 

2021). 

● For sake of information, we provide some indicative space usage numbers below. 

o NCBI databases (update_blastdb.pl) (nr, 349 G index size) 

■ Formatting with Diamond (nr, 187 G index size) 

o Interproscan (5.48-83.0, 89 G) 

o KofamKOALA ftp://ftp.genome.jp/pub/db/kofam/ (202103 > ko_list, profiles, 

KO text files, 13.5 G) 

o Datasets used for GOGOApi retrieval service.  

■ UniProt ID mapping (89 G uncompressed) 

■ GOA. Uniprot proteins and GO accession codes mapping (11 G com-

pressed) 

■ Final database size: ~250 G 

● Check params.config file and adapt its values to your system configuration and to 

work with your input files and datasets locations as defined in previous points 

● Check nextflow.config file and adjust it according to the characteristics of your HPC 

queue system by replacing queue names and increasing or decreasing aspects such 

as CPU or RAM. More details at: https://www.nextflow.io/docs/latest/config.html 

● You can start the execution of the pipeline (normally from the node with access to an 

HPC queue system) with: 

o $ ./nextflow run -bg main.nf --config params.config &> logfile 

● We can check how the pipeline is progressing with: 
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o $ tail -f logfile 

● As the pipeline advances, intermediary and final results are stored in resultPath di-

rectory, as defined in params.config file. More details can be found in the README 

file of the software repository. 

3.2. Example Cases 

As a first example, FA-nf was run against the gene structural annotation of Apis 

dorsata data [46], consisting of 20,508 translated protein sequences from 12,172 associated 

genes described in a FASTA and a GFF file, respectively. The pipeline was run using the 

MySQL engine, opting out external web-based annotation services, against the NCBI NR 

database (202,010) formatted for DIAMOND in default mode, using the E-value thresh-

old of 1 × 10−5, InterproScan 5.48-83, and KOFAMscan with the 202103 dataset. It took less 

than 8 h to run the pipeline on the cluster, for a total of 815 CPU hours. The functional 

annotation was obtained for 19,599 proteins (95.57%) and 11,265 associated genes 

(92.55%). A total of 17,475 GO terms could be retrieved with the “common” BLAST an-

notator service strict method, and up to 17,540 with both “most” and “all” less conserva-

tive approaches. It is worth noting that different tests using NCBI-BLAST+ with the same 

parameters took considerably longer times, up to 2 days, with 19,638 (95.76%), with an 

annotation of 11,304 (92.87%) proteins and genes, respectively, and up to 17,636 GO 

terms retrieved with the BLAST annotator “all” mode (Figure 3). 

 

Figure 3. FA-nf annotation run results on Apis dorsata. (A) Example of NF report; (B) example of annotation summary; (C) 

proteins annotated with GO terms by annotation sources; (D) length distributions for annotated and unannotated pro-

teins. 

In another case, using the same configuration parameters and datasets with DIA-

MOND, a genome annotation of Phaseolus vulgaris [47], consisting of 57,327 proteins and 

41,885 genes, took around 1 day and 1604 CPU hours. A total of 54,878 proteins (95.73%) 

and 39,506 genes (94.32%) were annotated with at least one application. A total of 45,428 

and 47,279 GO terms could be retrieved with the BLAST annotator service “common” 

and “all” modes, respectively. 

As a last independent example, the pipeline was also run with the same parameters 

as described above with DIAMOND and the “all” BLAST annotator mode against the 

NCBI available Abscondita terminalis genome 

(https://www.ncbi.nlm.nih.gov/genome/84492) (accessed on 19 October 2021) [48]. From 

20,439 proteins, 20,434 (99.98%) could be annotated with at least one method and 15,628 

GO terms could be retrieved. 

Input, output and configuration files of these examples are linked in the README 

file of the “dataset” folder from the pipeline repository. 
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4. Discussion 

Functional annotation provides two main outcomes: one is the functional elements 

assigned to genes, and another one is an additional quality check of the genome assembly 

and structural annotation. Assigning functional elements—functional domain, GO terms, 

metabolic pathways, and others—allows downstream analysis of specific genome prop-

erties. At the same time, the presence of genes belonging to a different kingdom may in-

dicate contamination from the upstream assembly [49], and the presence of particular 

domains or homology hits may help to separate transposable elements from pro-

tein-coding genes [50]. 

On the other hand, the choice of tools in this process may also pose a dilemma be-

tween sensitivity, that is, how many new sequences are annotated, and the time and 

computing resources the user is willing to invest to retrieve some additional annotated 

sequences, compared to a faster method that might end up not spotting them. This is 

actually the case when searching for orthologs and, accordingly, with annotation pro-

cesses based on orthology methods [51]. 

Another concern for any functional annotation approach is the bias against anno-

tating short sequences [52]. As it seems, short peptides, even those normally assigned to 

non-coding regions [53], might be actually transcribed and translated, thus eluding their 

detection in structural and functional pipelines. This might eventually improve when 

source databases are updated, but it could also require including additional tools apart 

from the ones currently considered in the presented pipeline. We need to emphasize, in 

any case, that FA-nf aims to functionally annotate protein coding genes, and it cannot be 

used to annotate long or short non-coding RNAs. Since these usually lack strong homo-

logues with characterized functions in other species, their functional annotation by 

computational means is extremely challenging, and the approach in FA-nf cannot be 

employed here. 

On the other hand, it is worth recalling that one of the present-day major concerns in 

research revolves around the reproducibility of published experiments. This also applies 

to bioinformatics and computational analyses [54]. In these fields, reproducibility must 

be considered at the level of both data and code [55]. Since functional analyses are de-

pendent on the state of used databases at the time of the execution, care should be taken 

to preserve these datasets along with input and result files [56]. 

As a strong point of FA-nf, if the involved datasets are stored, preserving versions or 

timestamps as presented in previous sections, it becomes possible to reproduce previous 

analyses and compare them to newer ones. This is relevant for the datasets that their 

providers are continuously updating, but not for keeping discrete releases, such as the 

NCBI BLAST ones. The only exception would be for data retrieved by using web services, 

such as CD-Search [44], which can be skipped anyway if desired. Moreover, data ob-

tained from analyses can always be reused from the FA-nf database as text dumps. A 

possibility for helping users to share input, configuration and output data could be inte-

grating programmatic access to public repositories such as Zenodo [57], or data man-

agement systems such as Datalad [58]. 

More specifically, at the level of code, different release versions of the pipeline are 

kept in the Git repository and archived automatically in Zenodo when published. 

Moreover, software is encapsulated within containers and, if using Singularity, users 

may even decide to store software image files along with the code. Indeed, with 

Nextflow, it is possible to define a specific release of its engine with the NXF_VER envi-

ronment variable. Thanks to that, different versions of the pipeline would continue 

working, even if non-backwards compatible syntax changes are introduced in future 

versions of Nextflow software. This enables users to compare and evaluate results based 

on different pipeline and included software container versions. 
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