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Abstract: Diabetic kidney disease (DKD) has been pointed out as a prominent cause of chronic and
end-stage renal disease (ESRD). There is a genetic predisposition to DKD, although clinically relevant
loci are yet to be identified. We utilized a custom target next-generation sequencing 70-gene panel
to screen a discovery cohort of 150 controls, DKD and DKD-ESRD patients. Relevant SNPs for the
susceptibility and clinical evolution of DKD were replicated in an independent validation cohort
of 824 controls and patients. A network analysis aiming to assess the impact of variability along
specific pathways was also conducted. Forty-eight SNPs displayed significantly different frequencies
in the study groups. Of these, 28 with p-values lower than 0.01 were selected for replication. MYH9
rs710181 was inversely associated with the risk of DKD (OR = 0.52 (0.28–0.97), p = 0.033), whilst
SOWAHB rs13140552 and CNDP1 rs4891564 were not carried by cases or controls, respectively
(p = 0.044 and 0.023). In addition, the RGMA rs1969589 CC genotype was significantly correlated
with lower albumin-to-creatinine ratios in the DKD patients (711.8 ± 113.0 vs. 1375.9 ± 474.1 mg/g
for TC/TT; mean difference = 823.5 (84.46–1563.0); p = 0.030). No biological pathway stood out as
more significantly affected by genetic variability. Our findings reveal new variants that could be
useful as biomarkers of DKD onset and/or evolution.

Keywords: chronic kidney disease; diabetes kidney disease; single nucleotide polymorphisms

1. Introduction

The total number of patients with chronic kidney disease (CKD) in the world has been
estimated to be as high as 850 million. Among the pathologies leading to this condition,
diabetic kidney disease (DKD), a serious kidney-related complication of type 1 and 2
diabetes that is present in up to 40% of diabetic individuals, has been pointed out as the
most prominent [1]. In addition, DKD is also the leading cause of end-stage renal disease
(ESRD), accounting for about half of incident dialysis patients in the United States. Given
the rising global burden of diabetes, the incidence of DKD and therefore that of ESRD is
bound to increase.

The facts that only a subset of diabetic patients develop DKD, that its prevalence
varies across ethnicities and that DKD and ESRD both cluster in families strongly suggest
an inherited genetic predisposition to this condition [2]. Accordingly, there has been a great
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number of candidate gene association studies in DKD, but unfortunately, to date, reported
results have been mostly inconclusive [3]. The main reason for these inconsistencies is
explained by the fact that there are still large knowledge gaps regarding the exact molecular
mechanisms responsible for DKD [4], even though accumulating evidence indicates that
podocyte loss, epithelial dysfunction and inflammation must play significant roles in DKD
pathogenesis and progression.

Next-generation sequencing (NGS) is a massively parallel sequencing technology that
offers ultra-high throughput, scalability and speed. This technique is becoming increasingly
utilized in genetic association studies because it is less expensive and less time-consuming
than conventional sequencing and allows for large numbers of reads. Indeed, this technique
has been regarded as exceptionally promising for upgrading the management of kidney
diseases [5]. It could help reduce therapeutic inertia, a prevalent problem in type 2 diabetes
(T2D) that affects clinical outcomes [6], improve the quality of the therapy in subjects with
youth-onset T2D, who may have been receiving treatment for decades [7], or even unveil
reasons for the reported sex differences in DKD phenotypes [8]. To date, however, NGS
has been barely used to assess the role of genetic variability in this disease.

In the present work, we have aimed to design a custom panel containing 70 candidate
genes previously associated with DN in the literature. This panel was utilized to analyze
samples in a discovery cohort with three groups: non-diabetic individuals, DKD patients
and DKD patients with ESRD. An independent, larger validation cohort of cases and
controls was later analyzed to confirm the relevance of the variants identified in the
first stage.

2. Materials and Methods
2.1. Study Design

The first phase of the study consisted of a discovery cohort of 150 Caucasian subjects
recruited from three different hospitals in Badajoz (Spain) over a 30-month period (June
2017 to December 2019). These 150 individuals were grouped into three cohorts of 50 par-
ticipants each, namely non-diabetic individuals, DKD patients and DKD patients who, at
the time of the study, had ESRD and were on dialysis. Participants in the three groups were
matched by sex and age. In addition, selected diabetic patients on dialysis had a similar
duration of T2D as compared with the DKD patients.

A 10 mL blood sample was collected at the time of the participants’ visit to the
hospital and stored at −80 ◦C until analysis. All participants had to be over 18 years of
age to be included in the study. DKD patients all had T2D prior to the presence of kidney
disease, defined as albuminuria or estimated glomerular filtration rate (eGFR) <60 mL/min.
According to the American Diabetes Association diagnostic criteria, T2D was defined as
fasting glucose ≥126 mg/dL (7.0 mmol/L) or a 2-hour plasma glucose level ≥200 mg/dL
(11.1 mmol/L) during a glucose tolerance test with an oral administration of 75 g. DKD
was diagnosed by biopsy (performed when proteinuria was greater than 1 g/day) and/or
by clinical criteria (presence of both retinopathy and albuminuria after excluding other
possible causes).

In the second phase of the study, an independent validation cohort was analyzed to
test the association of the SNPs whose frequencies were significantly different between
the three groups of the discovery cohort. DNA samples of 506 controls and 318 DKD
Caucasian patients were obtained from the repository created by the NEFRONA project, an
observational, prospective and multicenter study of cardiovascular morbidity and mortality
in patients at different stages of CKD distributed throughout the Spanish territory [9].
Diagnosis criteria for DKD were the same as those used in the discovery cohort.

Written informed consent was obtained from all the participants. The study protocol
was approved by the Ethics Committee of the Badajoz University Hospital and was carried
out in accordance with the Declaration of Helsinki and its subsequent revisions.
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2.2. Targeted Next-Generation Sequencing

DNA purification from blood samples was conducted with a standard phenol–chloroform
extraction and ethanol precipitation. DNA samples were then stored at 4 ◦C in sterile plastic
vials. In the case of participants recruited in the NEFRONA study, genetic material was obtained
from biological samples stored at the REDinREN biobank [10] using QIAamp DNA Blood Kits
(Qiagen, Hilden, Germany).

Targeted NGS was applied to a custom-made panel of 70 genes in the discovery
cohort. These genes were selected using online queries of GeneCards (www.genecards.org;
accessed on 14 July 2020), Ensemble (www.ensemble.org; accessed on 11 July 2020), Online
Mendelian Inheritance in Man (OMIM; www.omim.org; accessed on 10 July 2020) and a
thorough review of the literature that identified reports of their putative involvement in
DKD. We also included a group of 16 genes whose participation in DN has been suggested
by different GWAS [8]. The DNA corresponding to the 150 participants in this phase was
purified from whole blood samples using a standard phenol–chloroform extraction method.
The NGS panel was designed with the Ion AmpliSeq On-Demand Panels for targeted
sequencing (Thermo Fisher Scientific, Waltham, MA, USA). We used the Ion AmpliSeq
Designer tool (Thermo Fisher Scientific, Waltham, MA, USA) to construct oligonucleotide
pairs that covered the sequence of the 70 candidate genes (coding and regulatory regions as
well as intron–exon boundaries). These oligos generated a total of 1527 amplicons offering
a 97.2% coverage of the regions of interest. The oligos were divided into 2 pools to carry
out the amplifications. The total sequenced area spanned 264 kb, consisting of 970 exons
plus the 5′ and 3′ regulatory areas of each gene.

Sequencing was carried out by the Ion Torrent method in an Ion S5-Xl sequencer
(Thermo Fisher Scientific, Waltham, MA, USA), which measures changes in pH resulting
from hydrogen ions released by the addition of dNTPs to DNA polymers. The chosen
NGS approach introduces a PCR-based sequence enrichment step using Ion AmpliSeq
technology that targets genes of interest. The sequencer utilizes the Ion 530 Chip Kit-4
Reactions, which processes 16 samples for a total of 24,432 amplicons and generates up to
12 million reads, thus resulting in an estimated 500× coverage for each amplicon.

2.3. Bioinformatic Analyses

First, a quality control of the reads in FASTQ format that were generated by the
sequencer was performed with the FastQC tool v0.11.4 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/; accessed on 12 October 2020). Next, in order to obtain a
good alignment of the sequences, the adapters generated by the creation of the libraries,
primers, poly-A tails and other unwanted sequences were removed with Cutadapt v1.13
(https://cutadapt.readthedocs.io/en/stable/; accessed on 12 October 2020). Reads were
aligned against the sequence of the GRCH37 genome assembly using the Burrows–Wheeler
Aligner (BWA-MEM 0.7.15-r1140, http://bio-bwa.sourceforge.net/bwa.shtml; accessed
on 12 October 2020), which uses an algorithm to map slightly divergent sequences against
a large reference genome. The output files (in SAM format) were then processed to
eliminate duplicate readings, and the sequences were ordered to obtain a BAM format
file. Then, VCF files including all the variants found were generated with BCFtools v1.6
(http://samtools.github.io/bcftools/bcftools.html; accessed on 12 October 2020). Finally,
the variants contained in the VCF files were annotated with a number of human databases
using the ANNOVAR tool (http://annovar.openbioinformatics.org; accessed on 12 Octo-
ber 2020).

2.4. Selection of Variants

DKD patients and controls were compared to identify genetic variants displaying
significantly different frequencies. In addition, we also compared DKD patients with and
without ESRD sharing a similar duration of diabetes to identify additional relevant SNPs
for the disease. Finally, we also identified SNPs that displayed a significant effect on the
eGFR and proteinuria values of the DKD patients. Variants were selected for subsequent
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replication analysis when they had a p-value < 0.01 in the aforementioned analyses and a
MAF <0.05 in any of the comparison groups (to avoid the inclusion of frequent variants
that were potentially less clinically relevant).

2.5. Gene–Gene Interaction Analysis

Interactions between the 70 candidate genes were evaluated with the GeneMANIA
plugin in Cytoscape [11]. The genes were added to the query box of the search engine and
the max resultant genes function (inclusion of other related genes) was set to zero. Network
weighting was created based on the Gene Ontology (GO) biological processes database
(www.geneontology.org, accessed on 12 June 2021). GeneMANIA assigns weights by linear
regression to maximize connectivity between all input genes. Each network data source
is represented as a weighted interaction network where each pair of genes is assigned
an association weight; the higher the weight, the thicker the link appears in the figure.
Two genes appear linked when there are data on co-expression, physical interaction or
co-localization; there are predicted functional relationships; they participate in the same
reaction within a pathway; they share protein domains; or if the effects of perturbing one
gene have been found to be modified by perturbations to a second gene. A list of databases
from where these data are retrieved can be found in www.genemania.org (accessed on 12
June 2021).

2.6. In Silico Study

Four different bioinformatics tools were utilized to predict functional effects of the SNPs
that were found to be relevant both in the discovery and validation cohorts. These included:
SIFT—Sorting Intolerant From Tolerant [http://sift.jcvi.org/www/SIFT_seq_submit2.html;
accessed on 29 July 2021], PROVEAN—Protein Variation Effect Analyzer [http://provean.
jcvi.org/index.php; accessed on 29 July 2021], PolyPhen-2—PolymorphismPhenotyping v2
[http://genetics.bwh.harvard.edu/pph2; accessed on 29 July 2021] and SNPs&GO [http://
snps.biofold.org/snps-and-go/snps-and-go.html; accessed on 29 July 2021].

2.7. Statistical Analysis

Quantitative variables are shown as median and interquartile range values, and their
comparison was carried out with Mann–Whitney/Student’s t-test or Kruskal–Wallis/ANOVA
tests, depending on the normality of the data and the number of groups. Chi-square or Fisher’s
tests were performed to detect differences between categorical variables and the frequency of the
identified variants across the different cohorts. Data on proteinuria and estimated glomerular
filtration rate (eGFR) were converted to binary variables, and sex- and age-adjusted logistic
regression models were then used to assess the association between these parameters and
the considered SNPs. Statistical analyses were performed using the SNPassoc package in the
R environment.

3. Results
3.1. Discovery Cohorts

Table 1 shows the demographic and clinical characteristics of the three study groups,
namely controls and DKD patients with and without ESRD. Age and sex were similar across
the three groups (p > 0.05). Statistically significant differences were observed between the
three groups for the incidence of smoking, hypertension and hyperlipidemia (p < 0.05).
The duration of the disease was not significantly different between DKD patients with and
without ESRD (p > 0.05; Table 1).

www.geneontology.org
www.genemania.org
http://sift.jcvi.org/www/SIFT_seq_submit2.html
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
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Table 1. Demographic and clinical characteristics of the discovery cohort. Data are shown as median
(interquartile range), mean ± standard deviation or count (percentages).

Controls DKD DKD-ESRD

N 50 50 50
Age (years) 70 (7) 69 (13) 70 (16)
Sex

Women 16 (32.0) 15 (30.0) 13 (26.0)
Men 34 (68.0) 35 (70.0) 37 (74.0)

Weight (kg) 78 (18.45) 82.5 (20.25) 72.5 (23.5)
Proteinuria (mg/24 h) 92.4 (135.3) 390 (888.71)
Albuminuria (mg/24 h)

<30 28 (59.6) 10 (21.7)
30–300 13 (27.7) 18 (39.1)
>300 6 (12.8) 18 (391)

Serum creatinine (mg/mL) 0.72 (0.38) 0.61 (0.30)
Albumin/Creatinine
(mg/g) 13.16 (80.96) 168.17 (594.99)

Creatinine clearance
(mL/min) 89.42 (67.97) 57.18 (38.60)

eGFR (mL/min) 69.2 (62.5) 43.7 (33.7)
Glucose (mg/dL) 101 (13) 137 (61) 178 (123)
HbA1c (%) 6 (1.3) 7.1 (1.3) 7.6 (1.5)
Smoking

No 31(62.0) 16 (32.0) 24 (48.0)
Yes (including

former smokers) 19 (38.0) 34 (68.0) 26 (52.0)

Systolic blood pressure
(mmHg) 133.0 ± 28.9 144.1 ± 22 140.1 ± 28

Diastolic blood pressure
(mmHg) 70.9 ± 11.2 79.0 ± 11 69 ± 12.1

Pulse pressure (mmHg) 62.1 ± 22.2 65.0 ± 19.1 71.1 ± 19.9
Hypertension

No 11 (22.0) 12 (24.0) 2 (4.0)
Yes 39 (78.0) 38 (76.0) 48 (96.0)

Hyperlipidemia
No 35 (70.0) 36 (72.0) 21 (42.0)
Yes 15 (30.0) 14 (28.0) 29 (58.0)

Evolution of DM (years) a

0–10 - 11 (22.4) 4 (8.2)
10–20 - 21 (42.9) 22 (44.9)
>20 - 17 (34.7) 23 (46.9)

DKD, diabetic kidney disease; ESRD, end-stage renal disease; eGFR, estimated glomerular filtration rate; Hb1Ac,
glycosylated hemoglobin. a Data were missing for two subjects.

A total of 1941 genetic variants were detected in the study population. Distribution of
the variants in the three cohorts is depicted in Figure 1.

Figure 2 shows the 70 candidate genes included in the panel and their biological
interactions. The gene that presented a higher degree of variability in the population of
study was PTGER3 followed by AFF3 and CCR5. The least polymorphic genes were PTGES
and APOE, which harbored less than 10 variants each for the entire population. Figure 3
depicts the network of genes with node sizes according to the number of variants with
a p-value < 0.05 in the comparison between controls and DKD patients. CNKSR3 had
four of these relevant SNPs, whilst GREM1, EPO, ENTPD8 and SP3 had three relevant
variants each (Figure 3). The complete set of SNPs achieving a significant p-value is listed
in Supplementary Table S1.
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Figure 1. Venn diagram showing the distribution of identified genetic variants in controls and DKD
patients with and without end-stage renal disease (ESRD).

Figure 2. Seventy candidate genes included in the study. Each node corresponds to a gene. Their sizes
are related to the number of variants harbored in the gene locus identified in the entire population.
The more variants, the larger the size. The color of the node corresponds to the number of major
biological pathways in which the gene participates; the darker the color, the more pathways are
involved. White nodes represent genes that did not participate in any of the most common biological
routes observed for the 70 genes according to the GO annotation for biological processes. The
different color-coded interactions are specified in the inset.
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Figure 3. Candidate genes included in the study. The size of each node (gene) corresponds with the
number of variants harbored in the gene locus, whose frequencies were significantly different between
controls and patients. The more variants, the larger the size. The color of the node corresponds to
the number of major biological pathways in which the gene participates; the darker the color, the
more pathways are involved. White nodes represent genes that did not participate in any of the most
common biological routes observed for the 70 genes according to the GO annotation for biological
processes. The different color-coded interactions are specified in the inset.

According to the GO annotation, the most common biological pathways in which the
70 candidate genes were involved were lipid metabolic process, inflammatory response,
cell migration, circulatory system process, cell differentiation, cell death, arachidonic acid
metabolism, steroid metabolic process, renal system development, response to oxidative
stress and angiogenesis. ADIPOQ and PTGS2 were the genes involved in more pathways
(seven). Twenty genes had no GO annotation or did not participate in the most frequent
pathways observed. Supplementary Figure S1 shows the number of variants detected for
each cohort in the 11 main biological routes involved. No statistically significant differences
between the study groups were found for any of the pathways.

Table 2 shows the list of 28 gene variants found that displayed relevant associations
in the discovery cohorts (p-values < 0.01) and were therefore subsequently subjected to
validation in an independent study group. Six of these SNPs could not be included in
the array design for technical reasons and hence we had to include six variants with p-
values between 0.01 and 0.05 instead. Twenty-two out of the 28 variants were significantly
associated with the risk of DKD, with p-values for the association ranging from 3.82× 10−6

to 0.04. Most notably, a T>A substitution in the 77300435 position of the AQP11 gene (no rs
number assigned) showed more consistent association with increased DKD risk (OR = 4.33
(2.21–8.57; p = 3.82 × 10−6). Two other SNPs, rs13140552 and rs41380244, displayed higher
OR values of 11.00 and 12.23, respectively, but confidence intervals were very wide because
of the low allele frequency in the limited size of the discovery cohort. In contrast, several
other variants displayed a solid association with lower susceptibility to DKD (Table 2).
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Two additional SNPs were inversely associated with the onset of ESRD, namely rs470558
(OR = 0.15 (0.03–0.69), p = 0.010) and rs1969589 (OR = 0.08 (0.01–0.64), p = 0.005). Finally,
four variants were associated with a higher risk of worse renal function or damage, as
indicated by eGFR and proteinuria values with p-values for the association ranging from
0.004 to 0.026 (Table 2).

Table 2. List of gene variants found to be relevant in the discovery cohort and that were subsequently tested in the
replication cohort. Rs number is shown when available.

Chromosome Position Gene Reference
Allele

Alternate
Allele rs

Highest
Population

MAF
OR CI p-Value

Controls vs. DKD groups

11 77300435 AQP11 T A 4.33 (2.21–8.57) 3.82 × 10−6

1 22206942 HSPG2 G G rs1874793 0.035 0.05 (0.007–0.4) 1.5 × 10−4

4 103538411 NFKB1 T A 0.06 (0.007–0.44) 3.1 × 10−4

1 230841687 AGT T C rs7080 0.14 0.17 (0.05–0.51) 7.7 × 10−4

18 72252086 CNDP1 A C rs4891564 0.06 0.11 (0.02–0.48) 7.9 × 10−4

1 186946912 PLA2G4A G A rs2307198 0.05 0.11 (0.01–0.48) 7.9 × 10−4

4 103538177 NFKB1 A T 13.5 (1.72–105.93) 0.002
16 24230479 PRKCB A T 0.07 (0.009–0.58) 0.002
9 130889841 PTGES2 A T 0.16 (0.04–0.57) 0.003
4 175598334 GLRA3 T C rs6812439 0.12 0.13 (0.03–0.57) 0.003
9 130883511 PTGES2 C T rs2040004 0.33 0.13 (0.03–0.57) 0.003
9 130890281 PTGES2 C G rs6478820 0.16 0.13 (0.03–0.57) 0.003
22 36691607 MYH9 A C rs710181 0.06 0.22 (0.08–0.63) 0.004
11 102713447 MMP3 G C rs41380244 0.14 12.23 (1.54–96.68) 0.005
15 93587438 RGMA A G rs3752103 0.49 0.18 (0.05–0.62) 0.005
7 29394249 CHN2 G T 7.25 (1.59–33.02) 0.005
18 72188371 CNDP2 A G rs890334 0.22 0.19 (0.05–0.68) 0.009
2 174820817 SP3 A G 5.26 (1.46–18.94) 0.009
4 77818132 SOWAHB G C rs13140552 0.16 11.00 (1.38–87.64) 0.009
4 175565010 GLRA3 A C 9.79 (1.22–78.81) 0.018
15 93588336 RGMA A C rs4238485 3.62 (1.27–10.3) 0.019
7 29513367 CHN2 T C rs1059185 0.49 2.15 (1.14–4.08) 0.04

DKD vs. DKD with ESRD groups

11 102795585 MMP1 T C rs470558 0.21 0.15 (0.03–0.69) 0.01
15 93044800 RGMA T C rs1969589 0.48 0.08 (0.01–0.64) 0.005

Renal function and damage *

1 186672494 PTGS2 A C rs2853805 5.53 (1.55–9.2) 0.019
9 35161846 UNC13B T G 11.00 (1.23–83.40) 0.004
15 94946287 MCTP2 C A rs16949097 0.22 8.70 (1.33–7.45) 0.013
15 93588309 RGMA C G rs62021480 0.27 5.91 (1.13–25.57) 0.026

DKD, diabetic kidney disease; ESRD, end-stage renal disease; MAF, minor allele frequency; OR, odds ratio; CI, 95% confidence intervals.
* As estimated by glomerular filtration rate and proteinuria (albumin-to-creatinine ratio) values.

3.2. Validation Study

Information on the clinical and demographic parameters of the 824 controls and DKD
patients included in the replication cohort is shown in Table 3. The control group was
younger on average (p < 0.01) and included a higher percentage of females (p < 0.01)
than the group of DKD patients. Statistically significant differences were also seen for
hypertension and hyperlipidemia (p < 0.00001; Table 3).
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Table 3. Demographic and clinical characteristics of the replication cohort. Data are shown as median
(interquartile range) or count (percentages).

Controls DKD

N 506 318
Age (years) 57 (17) 63 (18)
Sex

Women 232 (45.8) 110 (34.6)
Men 274 (54.2) 208 (65.4)

Weight (kg) 76 (20.3) 78.3 (20.3)
HbA1c (%) 5.6 (0.9) 7.1 (1.8)
Proteinuria (mg/24 h) 95.1 (140.1) 1612 (2872.5)
Glucose (mg/dL) 102 (20) 139.5 (80)
Albumin/Creatinine (mg/g) 7.2(45.1) 186.4 (841.6)
eGFR (mL/min) 89.2 (21.8) 29.4 (21.2)
Smoking

No 195 (38.5) 123 (38.7)
Yes (including former smokers) 311 (61.5) 195 (61.3)

Systolic blood pressure (mmHg) 133.7 ± 17.8 144.9 ± 24.0
Diastolic blood pressure (mmHg) 80.04 ± 9.7 79.2 ± 11.8
Pulse pressure (mmHg) 53.6 ± 13.2 71.5 ± 20.1
Hypertension

No 325 (64.2) 4 (1.3)
Yes 181 (35.8) 314 (98.7)

Hyperlipidemia
No 327 (64.6) 58 (18.2)
Yes 179 (35.4) 260 (81.8)

DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate.

Of the total of 28 SNPs studied in the replication cohort, three of them, namely
rs13140552 in the SOWAHB (also known as ANKRD56) gene, rs4891564 located in the
3′UTR region of CNDP1 and rs710181 in MYH9, still displayed a significant influence on
the risk of DKD, as calculated by logistic regression adjusting for sex and age. Table 4
shows genotype distributions between controls and patients. Odds ratio (OR) values for
rs13140552 and rs4891564 could not be calculated, as the variant was not present in one of
the study groups. MYH9 rs710181 was found to be inversely associated with the risk of
DKD (OR = 0.52 (0.28–0.97), p = 0.033; Table 4). In addition, one last SNP, RGMA rs1969589
T/C, significantly correlated with lower proteinuria values. Carriers of the homozygous CC
genotype had albumin-to-creatinine ratios of 711.8 ± 113.0 mg/g vs. 1375.9 ± 474.1 mg/g
for TC/TT carriers (mean difference = 823.5 (84.46–1563.0); p = 0.030).

Table 4. Adjusted risk analysis of replicated genetic variants with diabetic kidney disease.

SNP Gene Genotype Control % DKD % OR CI p-Value

rs13140552 SOWAHB G/G-
C/G 498 99.0 318 100.0 Ref.

0.044
C/C 5 1.0 0 0 -

rs4891564 CNDP1 C/C 504 100.0 316 99.4 Ref.
0.023A/C 0 0 2 0.6 -

rs710181 MYH9 C/C 464 91.9 303 95.3 Ref.
0.033A/C-

A/A 41 8.1 15 4.7 0.52 (0.28–0.97)

DKD, diabetic kidney disease; OR, odds ratio; CI, 95% confidence intervals.

Only two of these four relevant SNPs were recognized by the function predicting tools
utilized (SIFT, PROVEAN, SNPs&GO and PolyPhen-2). These were rs13140552 (Pro291Ser)
and rs710181 (Ala1143Ala), which were both tagged as Tolerated/Neutral/Benign.
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4. Discussion

Genetic testing has been proved useful in a variety of heritable kidney diseases; how-
ever, its application in DKD, with the exception of some studies on African American
populations [12,13], has been very limited. In this work, we conducted a massive par-
allel sequencing of 70 candidate genes for DKD and replicated significant results in an
independent cohort in order to identify genetic biomarkers of the disease.

The results of our replication study confirm that three genetic variants identified
in the discovery cohort, namely rs13140552, rs4891564 and rs710181, could constitute
susceptibility loci for DKD. Of these, rs710181 in the MYH9 gene was found to be carried
by a relatively significant percentage of the study population (8.1 and 4.7% of controls and
cases, respectively). The non-muscle myosin heavy chain IIA protein encoded by MHY9
is highly expressed in podocytes. Precisely, injury to podocytes leading to proteinuria
and glomerulosclerosis is considered to be a major contributor to DKD [14]. Indeed, Kang
et al. recently revealed the mechanism linking MHY9 to DKD, demonstrating that an
angiotensin II-mediated MHY9 downregulation causes structural and functional podocyte
injury, thus increasing filtration barrier permeability [15]. Moreover, genetic variability
in the gene locus has also been shown to alter podocyte structure, making these cells
more injury-prone after a damaging stimulus [16], and MYH9 SNPs have been shown to
be associated with ESRD linked to diabetes in Europeans and African Americans [17,18].
This background supports the findings presented herein on the putative clinical relevance
of MHY9 rs710181 SNP for DKD. It should be remarked that rs710181 causes a C-to-A
substitution in exon 26 of the gene locus, which translates into a synonymous Ala1143Ala
polymorphism. The fact that a synonymous variant may have clinical consequences is not
as uncommon as one might think. There are many examples in the literature illustrating
that synonymous polymorphisms should not automatically be disregarded in genomic
analyses. A number of studies have pointed out that synonymous mutations may affect
translation kinetics, miRNA binding, splicing machinery or mRNA stability and lead to
altered protein function [19,20]. In this regard, even though cancer has been the field where
this type of mutation has been mostly studied, there is also evidence that synonymous
SNPs may contribute to renal pathologies such as nephronophtisis [21] or polycystic kidney
disease [22,23]. Interestingly, this synonymous rs710181 SNP in particular was selected for
analysis in an association study with glomerulosclerosis in African Americans; however,
its effect could not be tested, as the frequency shown in these ethnicity was too low [24]. In
any case, rs710181 has been pointed out as a tag-SNP of the MYH9 gene locus [25], e.g.,
a representative variant of an haplotype block. Therefore, we should not rule out that
the observed effect of rs710181 could in fact be produced by another SNP in high linkage
disequilibrium with this variant.

With regard to the other two SNPs that were pinpointed in the validation study,
namely rs13140552 and rs4891564, the latter, in CNDP1, had previously been found to be
related to DKD risk in African Americans [26]. Our findings would therefore confirm this
association in Caucasian patients as well. CNDP1 encodes the enzyme responsible for the
degradation of carnosine, a peptide with renoprotective properties. This gene has been
pointed out as an important locus for DKD [27], as its overexpression, enhancing carnosine
metabolism, may favor the development of this complication [28]. The identified rs4891564
SNP is located in the regulatory region of the gene and hence it holds the potential to
affect its expression. Much less data is available on the other relevant SNP, SOWAHB
rs13140552. One report that analyzed DKD biopsies linked downregulation of SOWAHB
expression to the disease, but the specific role of this gene in the context of DKD remains to
be assessed [29]. In any case, it should be acknowledged that these two SNPs were carried
by very few patients and hence caution should be exerted when interpreting these results.

Finally, the C-allele of the RGMA rs1969589 SNP was observed to play a protective
role in the discovery cohort, as it resulted in an inverse association with diabetic ESRD
onset, a finding that has also been reported for other RGMA variants [30]. This association
with ESRD was, however, not maintained in the validation study, but a significant correla-
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tion with lower proteinuria values was found instead, which could explain this putative
protective role. Given that the rs1969589 SNP has been proposed to alter the binding of
microRNAs [31], it seems likely that the mechanism underlying the observed effects was
the modulation of gene expression.

In this work we also aimed to study the influence of genetics in pathways that are
proposed to be involved in DKD pathogenesis. However, we could not confirm that any of
these biological routes in which the 70 candidate genes participate displayed a significantly
different number of genetic variants between controls and DKD patients. Therefore, and at
least from the point of view of our genetic approach, no pathway was observed to play a
predominant role in the susceptibility for the disease. This is most likely a reflection of the
high complexity and extremely multifactorial character of the pathogenic mechanisms of
DKD, which are not fully understood yet [32].

This study has several limitations. We aimed to identify variants that are not common
in the study population (Caucasian Spaniards) and hence have a higher likelihood of
clinical consequences. The drawback of this design is that two of the pinpointed SNPs
in the replication analysis, rs13140552 and rs4891564, were only carried by five controls
and two cases, respectively. Therefore, even if the Chi-square test resulted in significant
associations, it would be adventurous to draw clinical conclusions from this specific finding.
In addition, the validation study would have benefited from a larger sample size, which
could in part have made up for the low allele frequencies analyzed. Another limitation
is that the DKD diagnosis was not confirmed by biopsy in all patients, which precluded
expression studies from being performed. These could have been interesting to unveil
underlying mechanisms for the genotype–phenotype associations reported, especially
when three of the four relevant genes identified (MHY9, RGMA and SOWAHB are highly
expressed in the human kidney (www.proteinatlas.org, accessed on 1 July 2021). Finally,
functional studies that could shed some light on the mechanisms explaining the SNP effects
are generally lacking, and the in silico tools that were utilized in the present work could
not identify clear functional consequences for the studied variants. The present work adds
to the considerable efforts that are currently being made to identify genetic biomarkers of
DKD, efforts that are very much needed because there remains considerable unexplained
heritability in this disease [33]. Very recently, Lazaro-Guevara et al. [34] analyzed 345
kidney disease related genes by NGS in 206 diabetic and non-diabetic renal patients. The
authors did not include regulatory regions in the analysis and there was no replication
study, but they found that roughly one-fifth of DKD patients carried rare variants that
could contribute to their disease.

5. Conclusions

By utilizing a custom target NGS 70-gene panel and a validation cohort, we have been
able to point out some of these rare variants in the MYH9, CNDP1, SOWAHB and RGMA
genes relevant to renal disease in diabetic patients. Further studies on larger and more
diverse replication cohorts, as well as expression studies and/or validation in experimental
DKD models, are warranted to confirm the results reported herein.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121992/s1. Figure S1: Number of genetic variants detected in each of the main
biological processes in which the 70 candidate genes were involved distributed in the three study
cohorts. Table S1: List of genetic variants whose frequencies were significantly different between
controls and diabetic kidney disease patients in the discovery cohort. Rs numbers are provided when
available.
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