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Abstract: The idea of forensic DNA intelligence is to extract from genomic data any information
that can help guide the investigation. The clues to the externally visible phenotype are of particular
practical importance. The high heritability of the physical phenotype suggests that genetic data can be
easily predicted, but this has only become possible with less polygenic traits. The forensic community
has developed DNA-based predictive tools by employing a limited number of the most important
markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many
other appearance phenotypes requires big data coupled with sophisticated machine learning methods
to develop accurate genomic predictors. A significant challenge in developing universal genomic
predictive methods will be the collection of sufficiently large data sets. These should be created using
whole-genome sequencing technology to enable the identification of rare DNA variants implicated
in phenotype determination. It is worth noting that the correctness of the forensic sketch generated
from the DNA data depends on the inclusion of an age factor. This, however, can be predicted
by analysing epigenetic data. An important limitation preventing whole-genome approaches from
being commonly used in forensics is the slow progress in the development and implementation of
high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology
suggests that such methods may possibly be developed in forensics.

Keywords: physical appearance; human genome variation; DNA-based prediction; investigative
leads; forensic DNA intelligence; forensic genomics

1. Introduction

The information included in genomic data can be used to generate investigative leads
that, when properly used, can speed up the process of human identification in forensic
investigations. Such forensic DNA intelligence can use a variety of methods, including
relatedness testing, the inference of ancestry, the prediction of physical phenotype, and
age estimation [1–4]. As an inherently interdisciplinary science, forensic science today
can benefit from the rapidly developing methods in the areas of genomics and machine
learning, which is particularly beneficial for the further development of forensic DNA
intelligence. Studies of human genome variation conducted today on an unprecedented
scale are revealing how genes control phenotypes. This knowledge has fundamental
meaning for understanding the genome–phenome relationship. Importantly, the growing
knowledge of human genome variation allows for the development of algorithms that can
more accurately predict phenotypes, providing more reliable investigative leads to help
identify an unnamed perpetrator or victim and solve a case. It is worth noting that the
DNA-based predictive tools developed in the forensic field are also useful in evolutionary
anthropology. In this review paper, we will summarise how the advances in understanding
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the genetic architectures of various human physical characteristics, and the progress in
high-throughput genotyping technologies in combination with machine-learning methods,
allow the prediction of physical appearance traits. We will also highlight the evolution of
the approach to the genetic prediction of physical traits, which has moved from building
predictive models based on variables that show genetic association to building models
based on variables that improve predictive performance (Figure 1).

Figure 1. Procedure for the development and application of a phenotype prediction tool. The main
differences in the procedures for developing a predictive model using the standard or alternative
approach concern the selection of variables and the number of variables in the model. Consequently,
the method of acquiring genetic data in the practical forensic applications of the next-generation
predictive models may require whole-genome sequencing methods. Thus: (a) only phenotype-
associated SNPs are included in prediction modelling, the models are not very extensive, and the
methods of data acquisition can be less complex (SNaPshot, targeted MPS); (b) the selection of relevant
variables (SNPs) is targeted towards improving the prediction accuracy of the model, and much
more advanced variable selection methods are required. Some complex models may involve many
thousands of SNPs, which, in biological traces, must be analysed using whole-genome sequencing
methods that are effective for low DNA input samples.

2. Explaining the Heritability of Appearance Traits

A large meta-analysis of twin studies has confirmed that all human traits are heritable
and showed that most of the traits can be explained by an additive genetic variation [5]. The
extreme similarity of physical appearance of monozygotic twins clearly indicates the role of
genes, but their identification is not simple due to the complex nature of appearance traits.
Linkage mapping, which relies on the co-segregation of causal DNA variants with marker
variants (SNP or STR) within pedigrees, has been very successful at identifying the gene
variants affecting simple mendelian traits [6], but mostly failed to identify the DNA variants
involved in the determination of complex traits [7]. The breakthrough in explaining the
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heritability of complex phenotypes has come with the advent of genome-wide association
studies (GWAS), which are effective at discovering common variants with small effect sizes
on traits [7]. GWAS is used to identify associations between genotypes and phenotypes by
testing for differences in the allele frequency of DNA variants between individuals who
differ phenotypically. Technically, the analysis of hundreds of thousands of DNA variants
in the genomes of these individuals enables finding those statistically associated with a
specific phenotype [8].

2.1. Pigmentation Phenotype

GWAS data have been very effective at explaining the heritability of physical appear-
ance traits. The heritability of human pigmentation traits has been assessed to be above 80%
and, thus, provides a good starting point for DNA-based prediction, because it means that
80% of the variation in pigmentation in a population is due to genetic variation between
individuals and that the influence of the environment is relatively small [9–11].

Many candidate genes for human pigmentation were identified before the GWAS era
through animal models and the linkage to diseases with mendelian inheritance modes, such
as oculocutaneous albinism. Genome-wide association scans confirmed the importance
of these genes and identified many of the novel gene variants influencing the variability
of normal human pigmentation. The collected data confirmed a very promising perspec-
tive for the genetic prediction of pigmentation traits. The less complex nature of some
pigmentation phenotypes, such as blue and brown eye colours and red hair colour, and the
availability of DNA variants with relatively large effect sizes, similar to the genetic effects
observed for mendelian traits, were particularly encouraging. The region on chromosome
15, including the OCA2 gene, was implicated in eye colour via linkage and subsequent fine-
mapping analyses [12,13]. The evidence of a relationship between OCA2 genotypes and
eye colour became stronger with additional reports [14–16]. This was an Icelandic GWAS
that implicated the involvement of neighbouring HERC2 in the determination of eye colour
and suggested that this genomic region was responsible for the regulation of OCA2 gene
expression [17]. This speculation was soon confirmed by other studies that showed that the
DNA variant rs12913832 was responsible for brown and blue eye colour in humans [18,19].
The postulated interaction between these two genes in determining eye colour was also
confirmed [20]. Most of the SNP heritability of red hair colour is explained by the single
MC1R gene, which was also discovered long before the genome-wide association scans and
confirmed in various population samples across the globe [21,22]. The effect of this gene
was extended to skin colour and freckling [23,24]. These early genome-wide association
scans for pigmentation also clearly demonstrated their agnostic power to detect novel,
sometimes unexpected genotype–phenotype relationships, as in the case of the IRF4 gene,
which is now an important predictor of pigmentation phenotypes [17,25]. The success
of GWAS was clear, but a significant proportion of heritability remained missing, which
could be attributed mainly to the insufficiently large sample sizes used in genome-wide
association scans, insufficient phenotyping regimes generating heterogeneity, the insuf-
ficient density of the GWA arrays and the significance of non-additive variation [26,27].
Indeed, the improved statistical power to detect small effect-size variants more effectively
in the next series of genome-wide association scans enabled the identification of multiple
new DNA variants involved in the heritability of hair and eye colour. For example, a
large study of 192,986 European individuals from 10 populations identified 50 new loci
for eye colour [28]. The study revealed signals with genome-wide significance for 12,192
SNPs from 52 genomic regions in the discovery set of 157,485 individuals. By combining
discovery and replication sets, the study finally identified 124 independent associations
from 61 genomic regions and concluded that the known variants explain 53.2% of eye
colour variation. Notably, the study also investigated Asian cohorts and found consistency
in the genetic architecture of eye colour in populations from Europe and Asia [28].

Human skin colour is highly variable at continental and intercontinental levels, com-
plicating research on the genetic architecture and heritability of this trait [29]. The rs1426654
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in SLC24A5, discovered thanks to a Zebrafish study, plays an important role in skin colour
differences at the continental level, explaining more than 30% of skin colour differences
between African and European populations [30]. GWAS on skin colour conducted on
various population samples discovered multiple genes and gene variants involved in skin
colour variation at the intercontinental level [25,31–34]. Notably, the studies of African
populations showed large differences in skin colour, revealing the high complexity of the
genetic architecture of skin colour in Africa and the significance of genes unknown to
European studies [35,36].

A meta-analysis that involved almost 300,000 genomes from individuals of European
ancestry included in two different cohorts (23andMe, UK Biobank) discovered 124 loci
relevant to human hair colour, mostly novel associations, including genes with strong effect,
such as SLC45A1, DSTYK, FOSL2, LHX2, EDNRB, SHC4, KRT31, and BCAS1. The study
was highly successful at explaining up to 34.6% (red hair) of the heritability of human hair
colour, despite an imperfect phenotyping regime involving self-reported hair colour in
adulthood [37]. Another study based on UK Biobank resources examined 343,234 genomes
from participants reporting British descent and these were, thus, more homogeneous. This
study assessed that all identified variants explain 90% of the SNP heritability of red hair
colour but, surprisingly, it found that a DNA variant located 97 kb from the 5’ end of the
MC1R gene may be more important for explaining red hair colour than the polymorphism
within the MC1R exon, and it identified an additional eight loci that contribute to the
genetics of red hair colour. This research also revealed 213 variants important to the
determination of blond hair colour, accounting for 73% of SNP heritability. In addition, a
set of 56 DNA variants was found to be important for brown hair colour and was assessed
to account for 47% of SNP heritability of this hair category [38].

2.2. Hair Features

Along with hair colour, other features describing the properties of human hair can be
useful to define the physical appearance of an individual. Research shows that genetics
plays a key role in the determination of hair features. However, the level of heritability
may differ for various hair traits. Very high heritability (85–95%) was estimated for hair
shape [39]. Heritability of around 70% was reported for monobrow and beard thickness [40].
Studies are contradictory in terms of the heritability level of hair loss (~40–80%) [40–43]
and hair greying (~30–90%) [40,44], but the accuracy of the heritability measurement may
be affected by the definition of heritability, the study design and the method of analy-
sis used [45]. It is worth noting that heritability values calculated from the entire SNPs
analysed in GWA studies tend to be underestimated compared to estimates of pedigree
heritability, because the former do not include phenotypic variation due to rare variants that
are not correctly determined by the SNPs genotyped on microarrays or common variants
with small effect sizes that are not correctly identified if the sample size is not large enough.
In turn, pedigree heritability may be biased by the common environmental factors to which
families are typically exposed [43,45]. Notably, heritability estimates may vary due to
changes in allele frequencies in populations caused by different evolutionary mechanisms
and environmental contributions that change with the age of individuals [46]. The genetic
basis of hair loss and hair shape are the most investigated so far. Androgenetic alopecia,
known in men as male pattern baldness (MPB), is the most common type of progressive
loss of hair from the scalp and is particularly frequent among men in Europe. Over the last
>10 years, several GWA studies on hair loss have been carried out, with the vast majority of
research conducted on Europeans [43,47–53]. These studies revealed multiple genes that are
associated with the risk of MPB, with two loci showing the strongest effect of association,
Xq12 (AR/EDA2R) and 20p11 (PAX1/FOXA2). Of these two loci, only 20p11 is known
to act in Asians, indicating the significance of population heterogeneity [54,55]. A long
list of additional loci, representing smaller effect sizes, identified through GWAS and/or
candidate gene approaches, is available in the literature (e.g., HDAC9, WNT10, TARDBP,
EBF1, SUCNR1, AUTS2, FGF5, IRF4, C1orf127, RUNX1, and TWIST2). Studies published in
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2017–2018 led to significant advances in research on the genetics of hair loss. Four large
GWA scans have been conducted on individuals of European descent. The first three of
those studies, which investigated 20,000–50,000 genomes each, detected altogether more
than 300 GWA signals, including 253 novel MPB associations [42,52,53]. The largest study,
which investigated 200,000 genomes, allowed the identification of >600 genome-wide asso-
ciations, explaining altogether 25% of the phenotypic variation observed in alopecia [43].
These large-scale studies not only discovered many new loci involved in alopecia, but also
highlighted the implicated molecular pathways and discovered the genetic links of alopecia
with different traits/conditions, including bone mineral density, puberty, metabolic traits,
and Parkinson’s disease. However, a significant part of MPB heritability remains missing.
Recent studies showed that the use of advanced statistical methods and the incorporation
of functional genomics data prior to association tests may improve the efficiency of SNP
detection in GWAS and these approaches were proved to be successful in MPB research by
increasing the number of SNP hits by an additional ~4% [56,57].

For hair morphology (shape), four GWA studies have been published so far, two of
which were carried out on Europeans, with one study on Latin Americans and one on East
Asians [40,58–60]. Hair shape, usually defined as straight vs. wavy vs. curly, is a highly
distinctive feature of human appearance. As with hair loss, genetic heterogeneity between
populations is observed with different mechanisms and genes underlying straight hair
formation in Europeans and East Asians. The TCHH gene is known to act only in Europeans,
while EDAR is the main contributor to straight hair in East Asians [58,59,61]. However, the
proportion of known heritability attributed to both genes in respective populations was
found to be small (<10%). The TCHH gene was discovered in the first GWA study published
in 2009, which was conducted on three cohorts with a total of more than 4800 individuals
of European descent [58]. TCHH was the only gene in this study that reached genome-wide
significance, but suggestive associations were also disclosed for several additional loci,
including the FRAS1 and WNT10 genes. The role of the EDAR gene in hair straightness
and thickness in Asians was discovered through candidate gene analyses [61,62] and
confirmed in a later GWA study conducted in 2016 on ~2900 Chinese people, with no
additional genes reaching GWA significance in this study [59]. A GWA study conducted
on >6000 Latin Americans discovered a novel association for PRSS53 [40]. The latest
meta-analysis of European GWA studies, exploring a total of more than 16,000 samples,
allowed the identification of 12 hair shape genes, including eight novel association signals
(ERRFI1/SLC45A1, PEX14, PADI3, TGFA, LGR4, HOXC13, KRTAP, and PTK6) [60]. The
study showed that a model consisting of 14 SNPs across novel and literature loci, together
with sex, explains 10% of the total hair shape variability. Further research pointed to the
role of gene–gene interactions in hair shape determination as one of the factors underlying
missing heritability [63]. The RPTN gene has been implicated in straight hair formation in
Europeans and East Asians, but throughout interactions with different previously known
head hair shape genes.

Only a few studies have addressed the genetic basis of other hair traits. In recent
years, the first genes responsible for the thickness of the eyebrows, e.g., EDAR, FOXL2,
LIMS1, TMEM174, SOX2, and FOXD1 [40,64,65], monobrows, e.g., PAX3 and 5q13.2 [40,51],
beard thickness, e.g., EDAR, LNX1, PREP, and FOXP2 [40], and hair greying, e.g., IRF4,
and KIF1A [40,66], have been identified through whole-genome or whole-exome analyses.

2.3. Human Height

Human height is heritable in approximately 80%, but only the single genes associated
with this trait were known before the era of GWA studies. The study of human height
genetics is a good example of the effectiveness of explaining the heritability of complex traits
through the GWAS approach. An important advantage of stature studies is undoubtedly
the ease of measuring this phenotype and thus the homogeneity of the phenotypic data.
The genome-wide association scans for human stature identified gene variants with a
small effect size, clearly confirming the high polygenicity of this trait. The first three GWA
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studies of human height, which collectively included more than 50,000 samples, detected
only 54 loci with a statistically significant association with stature [67–69]. Most of these
loci have not been previously linked to human height and, in many cases, the known
biological function did not make them candidates for the regulation of human stature.
The genes discovered explained only about 5% of the variation in height, which was very
discouraging, especially for predicting this distinctive feature. A huge meta-analysis that
considered GWAS data for more than 180,000 genomes made only a small advance in
explaining the heritability of human growth, enabling the discovery of 180 loci. The work
demonstrated the importance of allelic heterogeneity in explaining the complex genetic
architecture of human stature [70]. At the same time, it has been argued that testing each
SNP individually for an association with a trait, which is typical for GWAS investigations,
leads to missing many real associations, especially when the effect sizes of individual
SNPs on a trait are small. By fitting all SNPs simultaneously, Yang et al. provided an
unbiased estimate of the variance explained by the SNPs in total, and showed that common
genetic variants are able to explain as much as 45% of the variance in human height [71].
However, consistently increasing the number of genomes analysed with high-density
DNA microarrays has proven to be an effective method for elucidating the still-missing
genetic variation responsible for human height. The large meta-analysis that included
700,000 European genomes (250,000 previously investigated [72] and 450,000 from the UK
Biobank) identified 3290 near-independent SNPs associated with human stature which were
found to explain 24.6% of variance of this trait [73]. Still, unpublished data suggest that the
large proportion of missing heritability may be hiding in rare genetic variants (≤0.01) that
can be detected via the whole genome sequencing of a sufficient number of genomes [74].
Notably, Zoledziewska et al. showed that human height can be under pressure from natural
selection, presenting data showing that known height-decreasing alleles were found at
higher frequency in Sardinians than would be expected to be caused by genetic drift [75].
Research on the genetic architecture of human stature, on a smaller scale, is also being
conducted in populations in Asia and Africa. A meta-analysis of 93,926 individuals from
East Asia identified 98 loci, including 17 novel for human height [76]. A GWA study based
on 191,787 Japanese genomes disclosed 573 height-associated variants and assessed that
64 rare (<0.01) and low-frequency (<0.05) variants explain 1.7% of the height variance.
The study revealed genes not previously associated with stature [77]. Eighty-three low-
frequency variants affecting human height have also been reported in [78].

2.4. Facial Morphology

The human face represents a set of correlated complex phenotypes that are highly
variable at inter- and intra-population levels and define what is apparently the most
differentiating human trait [79]. The high similarity of the faces of monozygotic twins
clearly indicates that most of this variability is genetically determined. Despite this, research
into the heritability of facial features has caused quite a few problems, probably due to the
three-dimensional nature of human faces. Only a recent face heritability study performed
on 952 British twins using an advanced phenotyping and landmarking system confirmed
the high heritability (>65%) of many facial traits [80]. Indeed, contrary to some physical
phenotype traits, collecting phenotypic data for faces can be challenging. A self-reported
categorisation is less useful, and measurement ideally requires the involvement of methods
that are able to capture the three-dimensionality of faces. The approaches used to collect
facial appearance data for studying the genetics of craniofacial variation that can be found
in the literature are standard 2D photographs, magnetic resonance imaging (MRI) and
3D scanning. The latter has quickly gained a dominant position in craniofacial genetics
research. It should be noted that the phenotypic assessment of facial variability from
3D images is not an easy task and makes large-scale studies and comparisons between
different studies difficult. Initially, the process relied on a labour-intensive process of the
manual determination of landmarks, and later, several automated landmarking methods
applicable to 3D images have facilitated research on the association of facial phenotype
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with genotype [80–83]. In one of the first works on the genetics of natural craniofacial
variation, 11 DNA variants previously associated with cleft-lip phenotypes were tested
in two European cohorts with the phenotypes captured using 2D photos or magnetic
resonance images [84]. A DNA variant near the GREM1 gene was associated with nose
width, and another near the CCDC26 gene was associated with bizygomatic distance. The
first GWAS scan that was aimed at investigating normal facial variation identified only
a single intronic DNA variant in the PAX3 gene, which showed association with nasion
position. This first study was conducted on a relatively small group of 2185 adolescents.
The study used a 3D laser scanning method to collect phenotypic data. The 22 identified
landmarks were then used to generate 54 3D and 2D distances featuring different facial
characteristics. Additionally, following a previous method, a principal component analysis
enabled the identification of 14 independent groups of correlated coordinates [85]. These
parameters were used in association testing, which identified four associations, but only
PAX3 was replicated in an independent cohort of 1622 participants [86]. A larger GWAS
analysis of almost 10,000 individuals of European origin from several cohorts used 3D
MRI scans and 2D photos, and identified five genes involved in facial variation. PAX3,
PRDM16, and TP63 have previously been linked to craniofacial development, while C5orf50
and COL17A1 were new findings [87]. The strongest signal was again obtained for PAX3,
which soon gained further confirmation in an independent study of about 6000 Latin
Americans investigated in the large CANDELA project [40]. It is worth noting that rare
variants in PAX3, the most replicated gene for natural variation in facial appearance, cause
Waardenburg syndrome, which involves some facial dysmorphism, including a broad nasal
bridge. The phenotyping regime in Adhikari’s study involved a simple approach based
on standard 2D photographs, and the study also implicated DCHS2, RUNX2, GLI3, and
PAX1 in nose morphology and EDAR in chin protrusion [40]. Another GWAS study, which
included 3D images of 3118 individuals of European ancestry that were used to derive 20
facial distance measurements, identified several genomic regions and implicated MAFB,
PAX9, MIPOL1, ALX3, HDAC8, and PAX1 in normal facial variation, including the measures
of eye, nose, and facial breadth. The study also provided additional evidence for the
association between PRDM16 and C5orf50 and facial features [88]. Crouch et al. investigated
the hypothesis that the DNA variants responsible for large effects on facial morphology exist
in the human genome, and focused on individuals displaying extreme facial characteristics
to find them. The study included 3D images of 1832 individuals from the general population
as a discovery set and 1567 3D scans of twins from the TwinsUK databank, plus 33 of East
Asians for replication. The original 3D scans were used to manually mark each face with
14 well-defined landmarks, allowing a mesh of 50,000–150,000 surface points in 3D space
to be transformed into a set of 29,658 surface points for each face. This approach enabled
the identification of three SNPs in PCDH15, MBTPS1, and TMEM163, genes that have
previously been associated with various pathological phenotypes involving craniofacial
dysmorphias [89]. The study by Claes et al. (2018) involved 2329 individuals at the
discovery stage and an additional 1719 at the replication stage, and found associations
for 15 loci with facial features, including four new genes, nine consistently confirmed,
and two linked with pleiotropic facial phenotypic features. The study used an innovative,
data-driven facial phenotyping approach based on structural correlations between about
10,000 3D quasi-landmarks, which enabled the hierarchical (global-to-local) clustering of
the human face into segments [90]. This approach also yielded good results for a meta-
analysis, which included 8246 European individuals and enabled the identification of
203 loci associated with normal facial variation [91] and for a study of facial features in East
Africans, which investigated 2595 3D facial images collected on Tanzanian children [92]. The
latter cohort was previously investigated, with two genes, SCHIP1 and PDE8A, identified
that were associated with measures of human facial size [83]. GWA studies investigating
human facial morphology in non-European cohorts are rare. Worth noting is a GWAS
conducted on an exploratory panel of Uyghurs that identified six loci important for the
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genetic architecture of the human face, four of which were replicated in independent
cohorts of Uyghur or southern Han Chinese [93].

3. DNA-Based Predictive Tools for Forensic Applications

Several factors determine the accuracy of DNA-based predictive methods, including
high heritability of a trait, the identification of appropriate predictors, and the selection
of the best mathematical approach to model development. The forensic community very
early recognised the investigative potential of extracting phenotypes from DNA data. The
practical importance of a simple amelogenin genetic sex test [94], and also of the inference
of biogeographical ancestry [95,96], made it clear that a description of the phenotypic
characteristics of a person of undetermined identity can provide important investigative
leads. The variation of the MC1R gene was soon proposed as an indicator of red hair
colour [97], while the predictive potential of the OCA2 variation was proposed for the
inference of eye colour [14]. The availability of GWAS data has made it possible to develop
tools for predicting human appearance traits more effectively. The research carried out has
made it possible to develop predictive tools with varying performances and practicalities
of application for different physical characteristics (Table 1).

Table 1. Examples of various approaches proposed for genetic prediction of physical traits.

Physical
Trait Statistical Model Number of Predictors

in the Model Prediction Accuracy Parameters Ref.

Eye
colour

Multinomial logistic regression
(IrisPlex) 1 6 SNPs

AUCbrown = 0.93 2

AUCintermediate = 0.72
AUCblue = 0.91

[98]

Likelihood ratio 4 SNPs LRlight-dark depends on genotypes [99]

Multiple linear regression 3 SNPs R2 = 0.764 [100]

No statistical model,
classification based on

genotypes
6 SNPs Overall classification success rate

(blue–green–brown): 98.94% [101]

Likelihood ratio 6 SNPs LRlight-dark depends on genotypes
AUClight-dark = 0.925 [102]

Bayesian naïve classifier
(Snipper) 23 SNPs

Classification success rate:
blue = 98.27%,

green-hazel = 97.81%
brown = 96.67%.

[103]

Multiple response
classification tree 4 SNPs

Classification success rate:
blue = 89%

intermediate = 46%
brown = 94%

[104]

No statistical model,
prediction based on genotypes 5 SNPs Overall classification success rate

(blue–green–brown): 97.64% [105]

Hair
colour

Multinomial logistic regression
+ prediction guide (HIrisPlex) 1 22 SNPs

Classification success rate:
AUCblond = 0.81
AUCbrown = 0.82
AUCblack = 0.87
AUCred = 0.93

[106]



Genes 2022, 13, 121 9 of 28

Table 1. Cont.

Physical
Trait Statistical Model Number of Predictors

in the Model Prediction Accuracy Parameters Ref.

Hair
colour

Bayesian naïve classifier
(Snipper) 12 SNPs

Classification success rate:
blond = 92.3%
brown = 76.7%
black = 74.6%

red = 85%
Sex-related prediction accuracy

differences noted

[107]

Multinomial logistic regression 270 SNPs

AUCblond = 0.74
AUCbrown = 0.68
AUCblack = 0.86
AUCred = 0.86

[37]

Skin
colour

Multiple linear regression,
including interaction 3 SNPs R2 = 0.496 [100]

No statistical model,
classification based on

genotypes
5 SNPs

Overall classification success rate
(dark–medium–light): 62%
38% of results inconclusive

[105]

Bayesian naïve classifier
(Snipper) 10 SNPs AUCwhite = 0.999AUCintermediate = 0.803

AUCblack = 0.966 [108]

Multinomial logistic regression
(HIrisPlex-S) 1 36 SNPs

AUClight = 0.97
AUCdark = 0.83

AUCdark-black = 0.96
or

AUCvery-pale = 0.74
AUCpale = 0.72

AUCintermediate = 0.73
AUCdark = 0.87

AUCdark-black = 0.97

[109]

Multiple linear regression 9 SNPs R2 = 0.65 [110]

Freckles

Binomial logistic regression 34 SNPs + sex AUCfreckled = 0.809 [111]

Multinomial logistic regression 20 SNPs + sex
AUCnon-freckled = 0.754

AUCfreckled = 0.657
AUCheavily-freckled = 0.792

[112]

Hair loss

Binomial logistic regression 20 SNPs AUCbald = 0.66
AUCbald = 0.76 in men ≥ 50 years old [113]

Binomial logistic regression 14 SNPs AUCearly-onset baldness = 0.74 [114]

Polygenic scores
(weighted allele sums)

261 autosomal SNPs;
70 X chromosomal

SNPs

AUCsevere baldness = 0.748
(autosomal SNPs)

AUCsevere baldness = 0.621
(X chromosome SNPs)

With autosomal and X SNPs + age
included in the model:

AUCsevere baldness = 0.79;
AUCmoderate baldness = 0.70;

AUCslight baldness = 0.61

[52]
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Table 1. Cont.

Physical
Trait Statistical Model Number of Predictors

in the Model Prediction Accuracy Parameters Ref.

Hair
shape

Binomial logistic regression 3 SNPs AUCstraight = 0.62 [115]

Binomial and multinomial
logistic regression

32 SNPs in binomial
modelor33 SNPs in
multinomial model

AUCstraight = 0.66 in Europeans
AUCstraight = 0.79 in non-Europeans

or
AUCstraight = 0.67 in Europeans
AUCwavy = 0.60 in Europeans
AUCcurly = 0.60 in Europeans

AUCstraight = 0.80 in non-Europeans
AUCwavy = 0.61 in non-Europeans
AUCcurly = 0.74 in non-Europeans

[116]

Hair
greying

Binary and multi-class neural
network

10 SNPs + age and sex
in binary model

or
12 SNPs + age and sex
in multi-class model

AUCgreying = 0.87 (mostly based on age)
or

AUCno greying = 0.86
AUCmild greying = 0.79

AUCsevere greying = 0.86

[66]

Height

Polygenic scores
(weighted allele sums) 54 SNPs AUCtall stature = 0.65 [117]

Polygenic scores
(weighted allele sums) 180 SNPs AUCtall stature = 0.75 [118]

Polygenic scores
(weighted allele sums) 689 SNPs AUCtall stature = 0.79 [119]

L1-penalized regression
(LASSO) >20,000 SNPs r = 0.64 [120]

Face

Partial least squares regression
Genomic ancestry

(68 DNA variants) +
sex + 24 SNPs

Genomic ancestry explains 9.6% of the
total facial variation; sex independently

from ancestry explains 12.9%; SNPs make
a small contribution to improving facial

distinctiveness

[82]

Ridge regression

Genomic ancestry
(1000 genomic

Principal Components)
+ sex, BMI and age

Genomic ancestry and sex explain large
proportion of the predictive accuracy of

the model; age and BMI improve the
accuracy of the model

[121]

Simple quantitative method
(principal component analysis

and partial least square
analysis used to extract new

face traits)

277 SNPs

SSA statistic 3:
no difference between SNP-based

prediction and random predictions in
females; SNP-based predictions
significantly better than random

predictions in males

[93]

1 SNaPshot and MPS forensically validated genetic tests for data collection available; 2 AUC—area under the
ROC (receiver operating characteristic) curve, describes the general performance of the model, 1 means perfect
prediction and 0.5 means random assignment; 3 SSA—a shape similarity statistic (shape space angle) developed
to measure the angle between two shapes in the 3D face modelling data space.

3.1. Pigmentation Traits

In particular, the discovery of eye colour markers with large phenotypic effects has
made it easy to develop pretty accurate genetic predictors of this trait. The best-known tool
commonly used in the forensic field today is the IrisPlex predictive system, which includes
both a genetic test for data acquisition and a mathematical algorithm for predicting the
three categories of eye colour [98]. The algorithm was developed based on the systematic
selection of markers made by Liu et al., who reported 24 variants from eight genes, enabling
the prediction of blue and brown eye colour with a prediction accuracy expressed by an
AUC of 0.91 and 0.93, respectively [122]. AUC, which stands for area under the ROC
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(receiver operating characteristic) curve, describes the general performance of the model in
such a way that 1 means perfect classification and 0.5 means random assignment to the
phenotype categories. For forensic purposes, the number of markers from the originally
identified 24 was restricted to the six with the largest effect [98,122]. The six crucial
predictors included HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2
rs16891982, TYR rs1393350, and IRF4 rs12203592. The original IrisPlex method implements
a multinomial logistic regression algorithm and a simple single base extension method
based on SNaPshot minisequencing, which allows the PCR amplification and genotyping
of several SNPs in a multiplex reaction. Importantly, the products of primer extension are
analysed using capillary electrophoresis platforms, which are commonly used in human
identification testing laboratories. Other tools based on other mathematical solutions were
soon developed but, essentially, each of these algorithms relied on exploiting information in
the HERC2-OCA2 gene complex. In general, these works were limited to the development
of predictive algorithms using various sets of samples and mathematical approaches, but
did not present specific tools for the collection of genetic data [99–104]. Notably, IrisPlex and
other forensic methods of eye colour prediction can accurately predict blue and brown iris
colours, but have difficulty with the prediction of intermediate eye colours [3]. Moreover,
in some populations, the effect of sex was noted on prediction results [123–125]. The
IrisPlex tool for the genotyping and prediction of eye colour evolved to HIrisPlex [106] and
finally to the HIrisPlex-S tool [109], which were developed based on the same strategy as
IrisPlex. The algorithm for hair colour prediction implemented in HIrisPlex was developed
based on the investigation of a Polish population sample, which enabled the selection of
22 crucial SNPs from 11 genes for hair colour. The study showed a high level of accuracy
for red and black hair colour prediction (AUC ~ 0.9) and a lower prediction accuracy for
blond and brown hair colour (AUC ~ 0.8) [126]. The skin colour predictor was proposed
by Walsh et al. after a systematic study of skin colour candidate variants in a sample of
2025 individuals from 31 worldwide populations. The algorithm predicted skin colour
with very high accuracy, with an AUC = 0.97 for light skin colour, 0.83 dark, and 0.96 for
dark-black skin colour [127]. Notably, it has been demonstrated that the original SNaPshot
protocol can be replaced by the targeted massive parallel sequencing (MPS) method [128],
and the HIrisPlex-S method was also adopted in a tool combining pigmentation prediction
capability with ancestry inference developed by the VISAGE consortium [129]. Other
studies also investigated the possibility of hair and skin colour prediction in the forensic
field [100,105,107,108,110]. The Snipper Application suite deserves more attention because
it provides an online tool that allows the performance of predictive calculations based
on data generated by any genotyping method. The tool was originally developed for
the statistical interpretation of data in ancestry inference studies, but a number of new
functionalities have subsequently been added to enable the prediction of pigmentation
and even age [130]. A more complete prediction of pigmentation will be provided by
the developed algorithms for freckle prediction [111,112]. It is worth noting that the
use of extended DNA variant sets for prediction has begun to be explored, which may
lead to the development of next-generation prediction tools. For example, the previously
described association work of Hysi et al. was extended to predictive modelling. Hair
colour prediction was compared in two independent cohorts using prediction models
based on the 258 associated SNPs and the original HIrisPlex method, and these new models
outperformed the previous HIrisPlex model [37]. Further development of pigmentation
predictors may also require the use of sex information, and age will naturally be needed for
the final interpretation of the data [37,123]. This issue is also addressed later in the article,
as sex in particular can be important for predicting other appearance traits.

3.2. Hair Loss

Numerous association studies conducted for MPB raised questions about the pre-
dictive ability of the discovered genetic variants. In 2015, a compact regression model
was developed based on analysis of five SNPs from five genomic regions (Xq12, 20p11,
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EBF1, TARDBP, and HDAC9), trained and validated on >600 samples from six European
populations [113]. The model was shown to enable the prediction of hair loss in Europeans
at an acceptable level, but only in two extreme phenotype categories, i.e., young men with
significant alopecia vs. older men without symptoms of alopecia with AUC of 0.76. In
the same study, Marcińska et al. also pointed to the potential role of allelic heterogeneity
in determining scalp hair loss. Expanding the number of DNA variants in both crucial
regions, i.e., Xq12 and 20p11, improved the accuracy of prediction, suggesting that there
might be more functional variants in these loci. The extended 20-SNP regression model
predicted hair loss with an AUC of 0.66 in all samples of all age categories and had the
highest AUC value for the age category of ≥50 years old (AUC = 0.76; sensitivity = 67.7%;
specificity = 90%), where the sensitivity refers to the ability of the model to correctly classify
individuals with the particular phenotype (here baldness), while the specificity refers to
the ability of the model to correctly classify individuals without this phenotype [113].

Liu et al. conducted a parallel study on the prediction of MPB in >2700 Europeans
and developed a 14-SNP model that was found to predict early-onset MPB cases with a
cross-validated AUC of 0.74 [114]. The accuracy of hair loss prediction status in elderly and
middle-aged individuals was lower, with an AUC of 0.69–0.71. In 2017, Hagenaars and
colleagues developed a polygenic predictor based on the genome-wide data generated for a
large cohort of 40,000 individuals and showed that it can discriminate individuals with no
signs of hair loss from those with severe baldness, with an AUC = 0.78, sensitivity = 0.74,
and specificity = 0.69 [52].

3.3. Hair Shape and Other Hair Features

The first preliminary model for head hair shape was developed as a follow-up to the
first GWA study conducted on hair characteristics [58], and included an analysis of three
SNPs in three genes (TCHH, WNT10A, FRAS1), and was trained on data generated for
528 samples from Polish individuals [115]. The model was reported to predict straight hair
with high accuracy but low specificity (cross-validated AUC = 0.622, sensitivity = 93.2%,
specificity = 15.4%). The application of the model on an independent test set consisting of
samples from six European populations and using a 65% probability threshold allowed for
higher sensitivity (81.4%) and improved specificity (50.0%) of prediction, but at the same
time with a very high rate of inconclusive results (66.9%). In 2018, a large-scale prediction
study for hair shape prediction was conducted with more than 9600 samples used for
predictor selection and model development and more than 2400 samples used for prediction
model validation, collected from both European and non-European populations [116]. The
binomial logistic regression model was developed to predict hair shape, defined as straight
vs. non-straight, based on 32 informative SNPs from 26 loci. The model was reported
to explain ~12% of hair shape variation and can predict straight vs. non-straight hair
in European populations with an accuracy of AUC of 0.66, a sensitivity of 84.1% and a
specificity of 34.2%. It was shown that the same set of SNP markers can predict hair shape
with significantly different accuracies in Europeans and non-Europeans. For non-European
samples, the AUC value was 0.79, sensitivity = 82.9%, and specificity = 49.8%. The higher
prediction accuracy obtained for non-European populations compared to Europeans is due
to the effect of the EDAR gene, which has a significant effect on the determination of straight
hair in non-European populations, primarily East Asian. In addition to the binomial model,
a multinomial logistic regression model was developed to allow for a higher resolution of
hair shape prediction, considering three categories—straight, wavy and curly—based on
an analysis of 33 SNP positions. There are few or no prediction studies of the remaining
hair features. In 2016, Adhikari et al. predicted different hair traits using the GWAS data
generated for Latin Americans and reported the highest accuracy of prediction for beard
thickness and the lowest for hair greying, with ~18% and ~7% of the phenotypic variation
explained by the associated SNPs, respectively [40]. Interestingly, for both of these traits, a
large effect of age and sex on prediction was observed, explaining the additional ~11% and
~20% of the phenotypic variation, respectively, for beard thickness and greying. Age was
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found to be a main predictor of hair greying in a study conducted in 2020, explaining around
48% of the variation observed in hair greying in a cohort of 849 people from Poland [66]. A
binary neural network model for greying vs. no greying prediction was developed in this
study based on information relating to age, sex, and 10 SNPs selected using whole-exome
sequencing data analysis (e.g., KIF1A rs59733750, SEMA4D rs45483393) and literature
resources (IRF4 rs12203592, FGF5 rs7680591). The model achieved a high accuracy of
prediction with a cross-validated AUC = 0.87 (sensitivity = 0.73; specificity = 0.85) but most
of the prediction information was driven by age itself, while SNPs were found to explain
merely ~7% of the variation in hair greying. As mentioned earlier, age is a very important
factor in predicting hair loss. Sex and age were also shown to slightly improve the accuracy
of prediction of hair shape [116].

This implies that there is a need to determine the sex and age of an individual from the
analysed biological sample. Information on a person’s sex is usually available in criminal
investigations due to the inclusion of marker for the amelogenin gene located on the X and
Y chromosome in standard STR DNA profiling, as previously mentioned, whereas age can
be estimated via epigenetic analysis [131].

3.4. Human Stature

Attempts at forensic human height prediction have not been particularly numerous
and have been limited to the development of predictive algorithms that are not equipped
with data collection tools. The reasons are related to the limitations of DNA analysis
technology and stem from the need to analyse too many DNA variants. While the 5%
heritability explained by the 54 DNA variants identified by the initial GWAS scans for
human height was unlikely to predict the full range of human height, Aulchenko et al.
tested whether it would allow the reliable prediction of extreme height. However, this
turned out to be possible with only limited accuracy. Tall stature prediction was possible
at AUC of 0.65, thus only moderately improving the accuracy resulting from a random
hit (AUC = 0.5) [117]. Using the 180 height markers identified in the Lango Allen et al.
paper improved the prediction of tall stature to AUC of 0.75 [118]. The study suggested the
importance of allelic heterogeneity for the prediction of human stature. Further increasing
the number of predictors to 697 reported in the paper by [72] enabled the prediction of tall
stature with an AUC of 0.79 [119]. The possibilities of human height prediction have also
been explored outside the forensic mainstream using a non-standard approach that has
nevertheless yielded very promising results, enabling the prediction of the full range of
human height at a good level of accuracy [120]. Based on the results obtained, the authors
suggested changing the approach to phenotype prediction, pointing out the benefits of also
including as predictors polymorphisms that do not show an association with a given trait,
but only on the basis of the improved prediction accuracy obtained after their inclusion in
the prediction model [132].

3.5. The Human Face

Drawing a forensic sketch based on the instructions of a witness in a criminal case is a
tool that has been used for years to identify the perpetrator of a crime. People recognise each
other through the high variability of facial features. Therefore, having a good understanding
of the genetics of human facial variation and being able to predict this complex phenotype
is a very exciting prospect for forensic DNA intelligence. The small amount of explained
heritability for craniofacial traits does not bring good prospects for the prediction of human
facial phenotypes. Nevertheless, attempts have been made to develop models that would
allow the prediction of facial appearance. The proposed methods are based on the indirect
prediction of facial phenotypes, with ancestry and sex prediction DNA data playing a key
role in this regard. The method by Claes et al. implements a bootstrapped response-based
imputation modelling that makes use of information on genomic ancestry and sex first
to create a sketch called a base-face. At the second stage, the information in 24 SNPs
associated with facial variation is used to improve the prediction outcome [82]. A similar
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strategy was proposed by Lippert et al., who used the whole genome sequencing data
to gain information about the sex and ancestry proportions of the individual [121]. The
data on genetic face predictors did not improve facial appearance predictions, but the
study showed a positive effect on the prediction of age and body mass index. The genetic
prediction of facial features was also explored by Qiao at el., who developed a quantitative
model based on multiple SNP loci and tried to simulate 3D face models. The study suggests
that epistasis is part of the genetic architecture of facial features and concludes that the
model developed should be treated as an exploratory basis for future, more advanced
predictive models [93].

4. Appearance Prediction in the Era of Big Data
4.1. Appearance Trait Predicition as a Supervised Learning Task

The prediction of human externally visible characteristics using DNA markers can be
treated as a supervised learning problem in which the considered appearance trait corre-
sponds to a response (target) variable, whereas genetic markers correspond to explanatory
variables (also known as features or predictors). The supervised learning models are fitted
using training data, which consist of observations for which the value of the target variable
is known. Depending on the type of the target variable, three tasks can be distinguished:
regression (for a quantitative trait, e.g., human height), binary classification (for a binary
trait, e.g., the presence of freckles), and multi-class classification (for a categorical trait,
e.g., eye colour).

The specificity of the problem and the greatest challenge lies in the large number
of potential features (genetic markers), which may significantly exceed the number of
observations in the training data. Due to this, the use of traditional models and estimation
methods (such as the maximum likelihood method in logistic regression) is not feasible.
The simplest solution is to use some initial filtering method to reduce the total number
of markers. However, simple filters only assess the marginal dependence between the
variable and the trait; they may exclude variables that are potentially useful for the model,
for example, variables that contribute by interacting with already selected ones. Therefore,
there is a need to apply the estimation methods as well as feature selection approaches
specially tailored to high-dimensional settings. This is one of the greatest challenges in
designing learning models for appearance trait prediction.

Finally, it is important to note that traditional genome-wide association studies focus
on detecting the genetic variants associated with the trait with high statistical confidence,
which, in particular, includes controlling the probability of at least one rejection via multiple-
testing procedures. When the prediction is the main task, the paradigm shift is needed,
because focusing on the accuracy of the model becomes the main objective [133]. This
approach requires the careful selection of variables. On one hand, unlike in GWAS, it is
allowed to include a certain number of non-significant variables in the model, since the
excessive pruning of SNPs, which may result in the discarding of some significant variables,
can negatively affect prediction accuracy [132]. On the other hand, including too many
spurious variables may cause the overfitting of the model and decrease its accuracy [134].

4.2. Linear Easily Interpretable Models

Despite its simplicity, the linear model and its generalisations are powerful tools for
appearance trait prediction. The theory [135] and empirical evidence [136,137] suggest that
in many cases the dependence between the trait and genetic markers can be captured using
linear models. Several studies indicate that they frequently work on par or even better than
more complex models, such as ensemble methods or neural networks [120,132,135–137], as
they are not liable to overfitting. A distinct advantage of the linear models is their inter-
pretability; the parameter value indicates how the given variable influences the dependent
variable for fixed values of the remaining variables. Within the linear models, there are
many methods of parameter estimation, among which the regularised (also known as
penalised) maximum likelihood methods play the most prominent role in modern genetic
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data analysis. First, for the regularisation methods, there are theoretical guarantees that
the solution of the related optimisation problem exists and is unique, even for a high-
dimensional setting. Second, some forms of the regularisation, such as lasso, ensure the
sparsity of the vector of estimated coefficients, meaning that a majority of coefficients will
be zero. Under some unfortunately stringent conditions, this majority will correspond
to non-significant variables in the model. Thus, the selected regularisation techniques
can be seen as methods of simultaneous parameter estimation and feature selection. Be-
low, we discuss the three most important generalised linear models (linear regression,
logistic regression, and multinomial regression) and the methods of parameter estimation
within them.

In the case of the quantitative trait, it is natural to consider the linear regression model,
which assumes that for an i-th observation, we have yi = β0 + xT

i β + εi, where yi is the
value of the target variable, β0 is an intercept, β = (β1, . . . , βp)

T is the coefficients vector,
εi is noise, and xi = (xi,1, . . . , xi,p)

T is a vector of features. Coordinates xi,1, . . . , xi,p denote
the genetic markers for the i-th observation. They can be coded numerically as 0, 1, or
2, where 0 indicates the homozygosity of the major allele, 1 the heterozygosity and 2 the
homozygosity of the minor allele. In the penalised least squares method, we solve:

β̂0, β̂ = arg min
b0∈R,b∈Rp

n

∑
i=1

(yi − b0 − xT
i b)

2
+ λpen(b),

where λ > 0 is the regularisation parameter that controls the penalty strength and pen(b)
is the penalty. For example, in the lasso method, pen(b) = ||b||1 = ∑

p
j=1

∣∣bj
∣∣, we discuss

other choices below. In the case of a binary trait, the logistic regression model is usually
used in which the posterior probability is modelled as:

P(yi = 1|xi) =
exp

(
β0 + xT

i β
)

1 + exp
(

β0 + xT
i β

)
and parameters are estimated using the penalised maximum likelihood method:

β̂0, β̂ = arg max
b0∈R,b∈Rp

n
∑

i=1
[yi log

(
σ
(
b0 + xT

i b
))

+ (1− yi) log
(
1− σ

(
b0 + xT

i b
))
] + λpen(b),

where σ(s) = exp(s)/(1 + exp(s)) is the sigmoid logistic function. The multinomial
logistic regression (MLR) extends the logistic model when the number of categories of
the dependent variable K > 2. This is the most commonly used model, as usually the
considered trait has multiple categories (eye colour, skin colour, hair type, etc.). The
posterior probability for the k-th category is:

P(yi = k|xi) =
exp

(
β0k + xT

i βk
)

1 + ∑K−1
k=1 exp

(
β0k + xT

i βk
) ,

for k = 1, . . . , K− 1, where βk is a coefficients vector corresponding to the k-th category and
P(yi = K|xi) = 1− ∑K−1

k=1 P(yi = k|xi). In this model, we have K × p parameters, which
are estimated using the penalised maximum likelihood method. The interaction terms
xi,j × xi,k can be included in the above models, at the cost of a significant increase in the
number of parameters. In addition to linear models, additive models are an important
class of models in which, instead of the linear combination β0 + xT

i β , the combination
of M non-linear base functions β0 + ∑M

m=1 βmhm(xi) is used. In this group, the notable
approach is the MARS method (multivariate adaptive regression splines; see Section 9
in [134]) in which the functions hm are constructed as products of so-called hinge functions
in a forward stage-wise manner. Importantly, the functions hm in MARS can capture non-
linear dependencies as well as interactions between variables. Note that the considered



Genes 2022, 13, 121 16 of 28

model is linear in predictors hm(xi) and is an important example of the transformation of
predictors method.

Regarding regularisation in the above models, the lasso penalty pen(b) =||b||1 is the
most popular choice, which was successfully used in appearance trait prediction, e.g., in
prediction of human height [120] or eye colour [137]. The lasso method selects features
with non-zero estimated coefficients, and the number selected depends on parameter
λ > 0. A small value of λ will result in a larger number of features included in the model,
whereas for a larger λ, we obtain a more parsimonious model. The optimal value of λ is
chosen using cross-validation or by minimising the prediction error with a validation set.
An alternative to the lasso is ridge penalty pen(b) =||b||2 which, instead of performing
feature selection, only shrinks the estimated parameters towards zero. The ridge penalty
facilitates a reduction in the variance of the estimators, especially when the variables are
highly correlated, and thus may yield an even higher accuracy for the prediction than the
lasso method.

Although the lasso method has many excellent properties and high predictive power,
in recent years, several modifications have been proposed in statistical and machine learning
literature. For example, it has been noticed that the lasso method produces biased estimators
for truly significant variables with large coefficients, and this bias does not necessarily
disappear for a large sample size. To overcome this drawback, non-convex penalties, such as
SCAD (smoothly clipped absolute deviation) [138] or MCP (minimax concave penalty) [139]
have been proposed and effective algorithms for solving the related optimisation problems
have been developed [140]. Another important line of research is focused on controlling
the false discovery rate (FDR) (the expected fraction of non-significant variables that are
selected for the model) instead of the much stronger control of probability that at least one
non-significant variable is selected (familywise error rate). Unfortunately, the standard
lasso does not control the FDR, which means that, among the selected variables, we can
expect a significant portion of spurious variables. The problem is exacerbated by the fact
that there is no known way of testing the significance of a specific feature based on its
estimated lasso coefficient that would allow the application of one of multiple testing
approaches, such as the Benjamini-Hochberg procedure [141], to control the FDR.

A notable alternative approach is the knockoff filter method [142]. It can be seen
as a refinement of randomisation methods [143,144] that, by permuting the values of a
studied predictor (which renders the resulting artificial predictor non-significant), creates
a benchmark situation in which its usefulness can be checked. The basic idea in [142] is
to construct extra variables called ’knockoff’ variables, which are noisy copies of original
ones but which have a certain similar correlation structure, as they allow for FDR control
when standard variable selection methods (such as lasso) are applied. Namely, the lasso
method is run using both the original variables and knockoff variables (thus there are 2× p
variables in total). The original variable is deemed useful when its pertaining estimated
coefficient is significantly larger than that of the corresponding knockoff.

The nonconvex penalties, as well as the randomisation methods, seem to be worth-
while alternatives to the lasso method for predicting human traits. The above methods
are implemented, e.g., in R software, see packages glmnet (lasso and ridge), ncvreg (MCP,
SCAD), knockoff (knockoff filter), and earth (MARS method).

4.3. Complex Black-Box Models

The black-box model is a class of predictive models that are able to recover complex
dependencies between explanatory variables and the dependent variable, including in-
teraction terms, and which can potentially achieve higher accuracy then linear models.
The main limitations are the high computational complexity, the difficulty in interpreting
the model, and the necessity of parameter tuning. In this group, ensemble methods and
neural networks play the leading role. The former are usually based on decision trees [145]
and overcome two limitations of single trees: their instability and tendency to overfitting.
The simplest approach is bagging (bootstrap aggregating) [146] in which each tree in the
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ensemble is trained using a bootstrap sample, i.e., a sample drawn with replacements from
the original training data. In order to classify a new instance, each decision tree provides
the classification for the input data. The majority vote classification is then chosen as the
final prediction. In the case of regression, the predictions from individual tress are averaged.
Another important class of models are random subspace methods (RSM), in which each
base classifier is learnt using the randomly selected subset of variables [147,148]. One of
the most successful and commonly used methods is random forest (RF), which can be seen
as a combination of bagging and RSM. The RF uses a modified tree learning algorithm
that selects, at each candidate split in the learning process, a random subset of the features
of size m, where m is a hyper-parameter. Making m smaller helps to avoid the danger of
overfitting. Nowadays, the most powerful class of ensemble methods are gradient boosting
(GB) algorithms (Section 10 in [134]). In GB, the subsequent models F1(x), . . . , FM(x) are
learned sequentially, and the last model FM(x) serves as a final model. The main advantage
of GB algorithms is that they are able to optimise different loss functions, depending on the
considered task. The classifier in step m + 1 (usually a decision tree) is learnt using current
training data, in which the residuals from the previous model are treated as the current
target variable (where the squared loss is considered, and the residuals are yi− Fm(xi)). The
residuals are related to the so-called functional gradient of the loss function and, therefore,
GB methods can be seen as gradient descent algorithms, which take steps in the direction
of the steepest descent and converge to the minimum of the loss function. The common
property of all boosting algorithms is that the current model zooms in on samples where its
predecessor failed. Usually, some regularisation techniques are used in boosting algorithms
to prevent overfitting. There are many versions of gradient boosting algorithms, among
which XGB (extreme gradient boosting) is considered to be one of the most powerful vari-
ants [149]. The ensemble methods are controlled by different parameters, whose optimal
choice may significantly improve the performance: the number of trees, the size of the
random subspace (in RF and RSM), as well as the regularisation and pruning parameters.

The ensemble methods described above (RF and XGB) are often used to assess the
importance of the features. The simplest approach is based on a permutation scheme and
is very similar to the randomisation feature selection described above. The first method
(called mean decrease accuracy) involves fitting two ensemble models (e.g., RF or XGB):
the first is based on the original training data and the second is based on training data in
which the values of the j-th variable are randomly permuted. The variable importance
measure for the j-th variable is defined as the difference in accuracies corresponding to
these two models. A large value of the difference indicates the significance of the variable.
The second measure (called mean decrease impurity) is based on observing how well the
given variable separates the classes. The Boruta algorithm [150], based on the above two
measures, contains a testing procedure that allows the rejecting of the noisy variables.
Other more sophisticated variable importance measures are also advocated for, e.g., the
MCFS method [151], in which one of its major advantages is that the predictive power of
each tree in the ensemble is taken into account in the measure definition.

The second important group of black-box models is artificial neural networks
(ANN) [152]. The latest advances in computational and optimisation methods have made it
possible to train networks with very complex architectures corresponding to large families
of functions, such as convolution networks (in image recognition) and recurrent networks
(in text analysis). The deep networks used today may consist of hundreds of hidden layers
and can model very complex dependencies [153]. In appearance trait prediction, the feed-
forward neural network is usually used. In such networks, the input signal (the vector of
features for the i-th observation) is transmitted from the input layer to the output layer,
which yields the prediction of the response. The hidden layers consist of artificial neurons
in which the linear combination of the signals from the previous layers is computed and
the signal is passed through the activation function as the input for the following layers.
The models are trained using gradient algorithms (the ADAM algorithm [154] is now the
state-of-the-art method) and the back-propagation algorithm is used to effectively compute
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the gradient of the considered risk function [153]. A number of parameters need to be tuned
in ANN, such as the number of layers, the number of neurons in each layer, and the value of
the learning rate. Other spectacular advances with ANN, such as variational autoencoders
(VAE), which enable latent feature analysis (see [155]), are of potential interest in appearance
trait prediction. For the methods described here, see R packages randomForest, xgboost,
rmcfs, Boruta, and tensorflow.

4.4. Feature Selection

Feature selection is an essential element when building predictive models, as it pre-
vents overfitting and allows discovering the dependency structure between variables and,
in particular, recovering the features that affect the target variable. In the models described
above, feature selection is usually embedded in learning algorithms. For example, in linear
models as well as neural networks, selection is performed via regularisation, whereas in
tree-based methods, the relevant features are selected when building the tree. However,
including too many potential features may significantly increase the computational cost of
fitting the model. Thus, very often in practice, there is a need to apply some fast prelimi-
nary filtering method. In the machine learning community, methods based on information
theory have gained the most popularity in recent years [156]. They are fast, model free,
and are able to detect non-linear dependencies and interactions between variables, as well
as take into account redundancies. The basic quantity used in such methods is mutual
information (MI):

I(Y, Xk) = ∑
x,y

P(Xk = x, Y = y) log
P(Xk = x, Y = y)

P(Xk = x)P(Y = y)

which is a non-parametric measure of dependence between some feature Xk and target
variable Y. Moreover, analogously defined, the conditional mutual information I(Y, Xk|Z)
quantifies the dependence strength between Xk and Y given the possibly multivariate
variable Z. It is commonly used in feature selection of a new predictor Xk when Z consists
of predictors already chosen. Another important quantity used in genome-wise interaction
studies (GWIS) is interaction information (II):

I I
(
Y, Xj, Xk

)
= I

((
Xk, Xj

)
, Y

)
− I(Y, Xk)− I

(
Y, Xj

)
which measures the interaction strength between Xk and Xj for the prediction of Y. The pos-
itive value of I I indicates a synergistic interaction, whereas a negative value indicates redun-
dancy. I I has been successfully used in many genetic studies to detect epistasis [157,158],
and also in the context of appearance trait prediction, such as human pigmentation [159]. It
has been shown that the methods based on I I are able to detect interactions that remain
undetected by the logistic regression model [160].

The existing filters based on MI are forward sequential procedures that, in each
step, add a candidate feature Xk to the set of already selected features S. The quality
of a candidate feature can be assessed using various criteria, and the representative one
is CIFE (conditional infomax feature extraction) [156,161]. It adds candidate Xk, being
the maximizer of I(Y, Xk) + ∑

j∈S
I I
(
Y, Xk, Xj

)
. The CIFE takes into account the marginal

dependence between a candidate feature and the target variable, as well as interactions
between the candidate feature and the previously selected features. Methods taking into
account higher order interactions are also considered [162]. In practice, it is important to
decide at which step to stop the procedure of adding new candidate variables, with the
possible solution based on the approximate distribution of the criterion function when a
candidate feature is not significant, as proposed in [163].
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5. The Need for a High-Throughput, Low-Input DNA Sequencing Method in
Forensic Science

The limitations of DNA sequencing technologies used in the forensic field are in-
creasingly problematic because they are hindering the implementation of new methods
that can improve law enforcement and justice, and which are therefore important for the
safety of society. The lack of a suitable method for generating large amounts of SNP data
from degraded DNA, validated for use in forensics, was considered to be a barrier to the
forensic implementation of investigative genetic genealogy, an approach that was very
successful at solving a number of criminal cases [1,164]. Such a method also seems to
be essential for developing next-generation tools for the DNA-based prediction of ap-
pearance traits, which requires information derived from hundreds or even thousands
of SNPs. It may be argued that the optimal method for all the applications developed
for forensic DNA intelligence would be whole-genome sequencing (WGS). Notably, WGS
that uses high-throughput methods (massively parallel sequencing) has revolutionised
the studies of ancient DNA and enabled a better understanding of human evolutionary
history. Similarities between forensic genetics and palaeogenetics, especially in terms of
the specificity of research material with a high content of inhibitors and small amounts
of highly fragmented DNA, and the enormous success of palaeogenetics in the analysis
of such samples, prompts a closer look at the methods developed in this field. Several
technological advancements were crucial for the effective analysis of ancient DNA, includ-
ing the very efficient extraction of short ancient DNA fragments, the implementation of
the uracil-DNA glycosylase (UDG) protocol for the selective removal of damaged sections
of ancient DNA, improved protocols for library preparation, and, finally, progress has
also been made in high-throughput DNA sequencing [165,166]. The major advantage for
ancient DNA research brought about by high-throughput sequencing technology is the
ability to sequence very short DNA fragments. Research material analysed in forensic
DNA laboratories is not as degraded as ancient samples, and current DNA extraction
methods are efficient and effective at removing inhibitors. Therefore, the transfer of DNA
analysis protocols from palaeogenomics to forensic genomics should perhaps primarily
focus on library preparation methods that work well with low-input DNA. Standard library
preparation protocols are optimised for large amounts of DNA and perform poorly in the
case of samples containing degraded DNA. However, a number of modified protocols have
been proposed to reduce the requirement for DNA inputs to be at subnanogram quantities.

One category of protocols involves library construction based on double-stranded
DNA. A first protocol was described by Meyer and Kircher in 2010, and this was labo-
rious and had limitations that resulted in the losses of ancient DNA sequences due to
incompatible adapter combinations and three purification steps prior to amplification [167].
Double-stranded library preparation protocols involve the blunt-end repair of the degraded
DNA fragments, the non-directional blunt-end ligation of two adapters and the fill-in of
the nicks formatted between adapters and the DNA fragment [168]. A more advanced
alternative of double stranded library preparation method is the protocol proposed by
Carøe et al., named blunt-end-single-tube. As the name suggests, the protocol is carried
out in a single tube and relies on heat denaturation instead of purification between the
subsequent steps of end-repair, the ligation of double-stranded adapters to the 5′ ends, and
adapter fill-in [169].

The second approach for library preparation from samples containing low amounts of
degraded DNA is particularly interesting, as it implies a process of library construction
based on single-stranded DNA, allowing the use of DNA that was preserved in a single-
stranded state and which is considered to be more efficient compared to double-stranded
approaches. The original protocol for single-stranded library preparation, although it
recovered more endogenous DNA, was very expensive and laborious [170]. However, the
protocol evolved to a simplified version proposed in Gansauge et al., 2017 [171]. This is a
method that involves the dephosphorylation of the template DNA, the splinted ligation of
a biotinylated adapter to the 3′ end, bonding to streptavidin beads, annealing an extension
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primer to allow the synthesis of a second strand, and the ligation of the 5′ end of a double-
stranded adapter to the 3′ end of the newly synthesized strand. The authors also proposed
an automated version of this protocol [172]. An interesting modification of the single-strand
library preparation method was recently proposed by Kapp et al. (2021). The advantage of
the method, named the Santa Cruz Reaction, relies on simplicity and cost effectiveness. The
method converts single-stranded DNA into sequencing libraries using a single enzymatic
reaction, enabling the simultaneous directional splinted ligation of Illumina’s P5 and P7
adapters [173]. Technological improvements in ancient DNA analysis have resulted in
significant progress in sequencing efficiency. Whole-genome data from ancient hominin
material were generated with an average sequence coverage of only 1.3-fold in 2010 [174]
and 30-fold in 2012 [175]. The usefulness of these protocols was also confirmed in clinical
research of problematic biological material, including formalin-fixed paraffin embedded
tissues [176]. The future will show whether the protocols developed in palaeogenomics can
be easily transferred to forensic genomics. This would undoubtedly be extremely helpful
for the further development of forensic DNA intelligence methods.

6. Concluding Remarks

Research on the genetic architecture of natural variation in the human physical pheno-
type is growing in scale and involves different human populations. The genetic prediction
of physical appearance traits occupies an important place in forensic research, although
the available tools are limited to the least complex traits, mainly pigmentation. Notably,
there are examples of using predictive methods that have been developed by the forensic
community in ancient DNA research, and which have been carried out in the field of
molecular anthropology [177–179] and in the identification of historical figures [180–182],
which is further evidence that molecular anthropology and forensic genetics have a lot in
common. Some DNA-based predictive tools developed by the forensic community have
been implemented in commercial kits. The most famous ForenSeq kit allows the analysis of
HIrisPlex SNPs and therefore the prediction of eye and hair colour [183]. The HIrisPlex-S
variants are also available in the Ion AmpliSeq™ PhenoTrivium Panel [184]. Predicting
reliable sketches in forensic science is highly desirable at the investigation stage. For this
reason, there are reports of police using private companies offering services in this regard,
particularly for facial appearance prediction. For example, the Snapshot Forensic DNA Phe-
notyping System offered by Parabon NanoLabs claims to facilitate the accurate prediction of
genetic ancestry, eye colour, hair colour, skin colour, freckling, and face shape [185]. Further
research offers the opportunity to better understand the evolutionary and genetic basis
of human appearance traits. The prospect of future studies on the heritability of complex
traits and the exploration of the importance of rare DNA variants, as well as epistatic inter-
actions of the second and higher orders, seems interesting. The explanation of heritability
will consequently enable a more reliable prediction of physical phenotype. Undoubtedly,
however, the application of next-generation predictive methods, which must rely on much
larger sets of predictors and more sophisticated statistical and machine learning algorithms,
will require improvements in the technology of DNA polymorphism analysis used in the
forensic field. Proper interpretation of the data requires knowledge of age, which is best
determined via DNA methylation analysis. However, DNA methylation analysis requires
the largest amounts of DNA, so in studying biological traces for intelligence purposes, it
would be beneficial to develop more sensitive age prediction methods. The application
of novel predictive approaches will also require answers to important ethical questions
arising from the use of high-throughput DNA analysis methods.
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