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Abstract: Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by distinctive
physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype.
SMS is caused by interstitial 17p11.2 deletions (90%), encompassing multiple genes and including
the retinoic acid-induced 1 gene (RAI1), or by pathogenic variants in RAI1 itself (10%). RAI1 is a
dosage-sensitive gene expressed in many tissues and acting as transcriptional regulator. The majority
of individuals exhibit a mild-to-moderate range of intellectual disability. The behavioral phenotype
includes significant sleep disturbance, stereotypes, maladaptive and self-injurious behaviors. In
this review, we summarize current clinical knowledge and therapeutic approaches. We further
discuss the common biological background shared with other conditions commonly retained in
differential diagnosis.

Keywords: Smith-Magenis; SMS; RAI1; 17p11.2 deletion syndrome; sleep disorders

1. Introduction

Smith-Magenis syndrome (SMS; OMIM #182290) is a rare genetic disorder character-
ized by developmental delay (DD)/intellectual disability (ID), typical behavioral character-
istics, distinct facial features evolving with age, and multiple congenital anomalies [1–3].

The first report of SMS was in 1982 by Ann CM Smith who described two individuals
with an interstitial deletion of the p11 band on chromosome 17 [4]. Four years later, Ann
Smith and Ellen Magenis expanded the previous work including nine unrelated patients
and delineating the phenotypic spectrum of this condition [2], later named SMS.

The syndrome is caused either by the recurrent 17p11.2 deletion or pathogenic variants
in RAI1 causing its haploinsufficiency [2,5]. The majority of subjects carry a 17p11.2 deletion
whereas the remaining ones show a pathogenic variant in RAI1 [6]. RAI1 encodes a protein
that acts as transcriptional regulator and is involved in neurodevelopment, behavioral
function, and circadian rhythms, such as the sleep–wake cycle.

Almost all patients reported to date are sporadic, although rare familial clustering has
been described as well. Since the identification of RAI1 as the major gene of SMS [5], an
increasing number of pathogenic variants have been detected in individuals presenting
with the core phenotype of SMS and no 17p11.2 deletion.

The birth incidence is estimated to be between 1:15.000 [7] to 1:25.000 [3], with no
predominance of either sex [8].
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This review focuses on the current knowledge of the clinical features of SMS, with
particular attention to behavioral problems and their treatment options, as well as the
molecular aspects providing an overview of the spectrum of SMS-related disorders.

2. Clinical Features
2.1. General Appearance

The facial appearance could be enough recurrent and specific to prompt a gestalt recog-
nition (Figure 1A,B). Typical dysmorphisms include brachycephaly (HP:0000248), broad
face (HP:0000283), frontal bossing (HP:0002007), synophrys (HP:0000664), upslanting palpe-
bral fissures (HP:0000582), deep-set eyes (HP:0000490), midface retrusion (HP:0011800),
depressed nasal bridge (HP:0005280), short and broad nose (HP:0003196, HP:0000445),
low-set and/or abnormally shaped ears (HP:0000369, HP:0000377), everted and tented
upper lip vermilion (HP:0010803, HP:0010804), prognathism (HP:0000303) [1–3,9]. Other
signs reported less consistently are thick hair with sparse temporal scalp distribution, thick
eyebrows, eyelash trichomegaly, telecanthus/hypertelorism or hypotelorism, epicanthus,
strabismus, cleft lip and/or palate, downturned corners of mouth, micrognathia (during
infancy) [1,2,8–14]. The facial traits become progressively more pronounced from childhood
to adulthood, particularly due to the disproportion between the midface retrusion and the
increasing width and protrusion of the mandible, emphasizing prognathism [1,10,15]. This
transition illustrates also why facial dysmorphisms of SMS may recall Down syndrome in
infancy (brachycephaly, broad face with midface retrusion, upslanting palpebral fissures,
short nose) [1,15] and fragile X syndrome in adulthood (prognathism) [16]. Dental develop-
ment is often affected, leading to malocclusion, taurodontism, and teeth agenesis, especially
of the second lower premolars [17]. The voice may be peculiar and is usually described as
hoarse, low-pitched, and raspy [2,3,18–20]. Hands and feet are broad, short, and associated
with brachydactyly (Figure 1C,D). Clinodactyly of the fifth fingers, 2–3 toe syndactyly,
single transverse palmar crease, and finger pads may also be present; polydactyly has been
reported twice [2,21–25]. Common dermatological features comprise xerosis, folliculitis of
the back, acral pachydermia, and plantar keratoderma [12]. Some authors have noticed
that the pigmentation of hair and skin of SMS individuals is lighter than that of their
relatives [12,15].
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2.2. Growth

At birth, auxological parameters usually fall within the normal range [2,15,25]. The
evolution of weight tends to be biphasic: in the first years of life, feeding difficulties
may even cause failure to thrive whereas, from preadolescence onwards, overeating,
low daily activity, and possible iatrogenic side effects often cause a significant ponderal
gain [2,3,15,25,26]. From the age of 9 years, about half (47.8%) of individuals have a weight
> 95th percentile [27]. Stature is usually below the normal range in toddlerhood and early
childhood while it partially recovers with age [3,21]. Most of available data concerning
height derive from series enriched in individuals in their middle/late childhood, so that
the high prevalence of short stature (range 66% [28]–81% [3]) might not reflect the final
height, which should place in the low percentiles of the normal range [29]. Moreover, a
recent retrospective study found short stature to be less frequent than previously thought
(25%) [25]. When addressing adults with SMS, short stature is reported to be present in
5–10% of them [15]. Moreover, both height and weight vary accordingly to the underlying
genetic defects. In particular, short stature is more documented in patients carrying the
17p11.2 microdeletion than in those with RAI1 pathogenic variants (81% vs. 10%) [8].
Short stature is not usually due to an impaired functioning of the growth hormone (GH)
axis. The total secretion of GH has been proved to be normal, although the peak values
were lower than those of controls [30]. On the other hand, a GH deficit was identified
three times [25,31,32] and replacement therapy might have proved to be effective for the
final stature only once [32], requiring further studies to elucidate its real benefit. Micro-
cephaly is not common and varies from 16% [25] to 37.5% [33].

2.3. Multisystemic Manifestation

Cardiovascular. The frequency of congenital heart defects (CHDs) varies from 25% [34]
to 45% [28]. The most frequent CHDs are atrial septal defects, ventricular septal defects,
tetralogy of Fallot, valvular abnormalities, and total anomalous pulmonary venous connec-
tion [34]. Arrhythmias and conduction disorders are present in 12% of subjects and include
right conduction delay and ventricular pre-excitation [9,34]. Importantly, echographic signs
of dysfunction of both the right and the left ventricle have been detected in all the patients
of a cohort of 24 SMS individuals, raising concerns about the possible occurrence of heart
failure [34].

Genitourinary malformations are reported in 14% [8]–35% [9] of subjects. The following
abnormalities have been pointed out [2,9,25,28,35–39]: unilateral renal agenesis, ectopic
kidney, abnormally small or hypertrophic kidney(s), renal dysplasia, duplex collecting
system, renal pelvic ectasia, ureteropelvic junction obstruction, ureterovesical junction
ectasia or obstruction, vesicoureteral reflux. Male genitals may present cryptorchidism,
testicular ectopia, shawl or underdeveloped scrotum, micropenis [2,25,33,40].

Otolaryngologic domain is consistently affected in SMS [9,10,28]. A specific hearing
assessment performed on 97 individuals detected an overall presence of hearing loss in
at least one ear in 78.9% of the cohort, the majority of them demonstrating a slight or
mild impairment. Sensorineural hearing loss was the most represented, its occurrence
increased in older subjects and longitudinal data revealed a progressive decline with
age. On the contrary, the proportion of conductive hearing loss was higher in childhood,
corresponding to a higher percentage of flat tympanograms, in turn presumably due to
middle ear effusion [41]. Indeed, acute and chronic otitis media are common in children
and often require ventilation tubes [10,29]. In addition to hearing loss, also hyperacusis is
part of SMS and has been estimated to be as frequent as 73.5% by means of a questionnaire
addressed to caregivers [41]. Velopharyngeal insufficiency (VPI) is recurrent and has been
related either to the hypotonia of the orofacial district or to patent or submucous palate
cleft [9,16,28]. VPI may lead to hypernasal speech, phonological errors, and swallowing
difficulties [9,42]. When performed, laryngoscopy showed vocal cord polyps, nodules,
thickening, edema, or paralysis [9,28].
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Ocular. Eyes and sight are often affected [8,25,28]. Morphological anomalies mostly
involve the anterior portion of the eye. Microcornea is identified in half of SMS subjects
and iris abnormalities in about 2/3 of them. The iris nodules, once identified as Brushfield-
like spots, are more properly definable as Wölfflin-Krückmann spots [13]. The frequency
of strabismus was reported to be 55% in a large cohort [25], ranging from 32% [13] to
81% [21] depending on the case series. Refractive defects in SMS include myopia, astig-
matism, and hyperopia and should be routinely sought as they may concern up to half of
the individuals [21] and be severe [14]. Cataracts and retinal detachments are likely less
penetrant [13,25] than previously reported [14]. Nevertheless, the occurrence of retinal de-
tachments may increase with age, being possibly related to severe myopia or self-injurious
behaviors [6].

Musculoskeletal. As for many other genetic conditions, scoliosis and constipation are
common [8,9,21,25,28,43].

Immunologic. The production of antibodies is impaired in 60% of individuals, predis-
posing to recurrent airways infections [44].

Other less frequent findings are hypothyroidism, gastroesophageal reflux, hypercholes-
terolemia, and hypertriglyceridemia [15,25,45].

Malignancy. The risk of malignancies is currently considered not to be increased in
SMS [6]. However, the typical 17p11.2 deletion comprises the gene FLCN, associated with
Birt-Hogg-Dubé syndrome (BHDS, OMIM # 135150). This autosomal dominant condition
features various cutaneous alterations, spontaneous pneumothorax due to pulmonary
cysts, and an increased risk for renal malignancies. A heterozygous pathogenic variant
leading to loss-of-function of the FLCN gene is required for the diagnosis [46]. Although
subjects diagnosed with SMS due to 17p11.2 deletions do not automatically receive an
additional diagnosis of BHDS, few anecdotal patients illustrate clinical overlaps between
these two conditions [47–50], raising questions about the opportunity to adopt the oncologic
surveillance recommended for BHDS also for SMS.

2.4. Neurodevelopmental Features

SMS belongs to genetically determined neurodevelopmental disorders. This con-
dition typically shows the co-occurrence of DD/ID, unique behavioral phenotype, and
sleep disturbances.

First concerns about psychomotor development arise by the first year [25]. Hypo-
tonia, lethargy, increased daytime sleepiness and napping, and oromotor dysfunction
with reduced vocal production (crying, babbling, vocalizing) are virtually present in all
infants. Feeding difficulties are also common and, in the first months, infants often need
to be actively awakened during nighttime. This presentation has been summarized in
the formula “quiet babies sleeping poorly” whereas the parents might refer to them as
“perfect babies” [15,19]. Developmental milestones are delayed. Deambulation is reached
on average from 20 to 25 months and first words appear in about two-thirds of individuals
by the age of 3 years [25,51]. Speech delay is more severe in the expressive than in the
receptive domain, so toddlers may recur to nonverbal communication. Daytime and night-
time toilet training are, respectively, achieved by 78% and 35% of children before thirteen
years [25]. The degree of ID ranges from profound to borderline; the majority of subjects
score in the moderate ID level [9,25,51–55]. At school, SMS children demonstrate long-
term memory, perceptual skills and closure as points of strength while they have relevant
weaknesses in short-term memory, sequential processing, and math skills [19,53,55–57].
Moreover, scholastic performance is often lowered by maladaptive conduct, hyperactivity,
and distractibility [19,58].

The presence of speech delay and stereotypes may recall what is commonly observed
in autism spectrum disorder (ASD) [25,51,54]. This overlap is possibly more compelling
in toddlerhood, particularly due to poor verbal communication compared to peers [51].
Contrary to what is expected in ASD, in SMS autistic features may be more penetrant
in females than in males [59,60]. In a cohort of 20 minors (age range: 4–18) assessed by
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means of questionnaires addressed to their parents (Social Responsiveness Scale), 90%
of subjects scored within ASD, of whom 35% were in the mild/moderate range and 55%
were in the severe one [59]. Nevertheless, the subsequent appearance of language, the
remarkable communication and socialization skills, and the typical behavioral phenotype
may distinguish SMS from typical ASD [54,61]. Another contact point between ASD and
SMS is represented by the abnormal processing and modulation of environmental stimuli,
including tactile and auditory aversion, hypersensitivity to sounds, vestibular and oral
motor dysfunction [15,41,62].

2.5. Behavioral Manifestations

Behavioral manifestations are heterogeneous and reflect the integration of self-injurious,
stereotypic, and maladaptive components.

Their penetrance and severity are influenced by several determinants, e.g. age, sleep,
communicative skills, cognitive level, developmental comorbidities, environmental con-
text, and the underlying genetic defect [8,21,30,51,52,54,58,63–69]. When the diagnostic
process was less straightforward, many subjects were diagnosed with psychiatric disorders,
attention deficit hyperactivity disorder (ADHD), or ASD before the diagnosis of SMS was
reached [15,59]. Self-injurious behaviors are nearly constant, being observed in more than
95% of individuals [64,69]. The first episodes can be appreciated from the age of 18 months,
when repetitive (tilting head, body rocking, rubbing surfaces, excessive mouthing, clap-
ping hand) and self-injurious (self-hitting, biting, or pinching, head banging, hair pulling)
behaviors emerge. Onychotillomania (nail yanking) and polyembolokoilamania (insertion
of objects into bodily orifices) are specific and strongly evocative of SMS. Onychotillomania
and polyembolokoilamania are respectively present in 53.5% and 32.3% of subjects [70]
and their occurrence increase with age [63,64]. Polyembolokoilamania can involve ears
(31%), nose (17.2%), rectum (3.5%), or vagina (21.1%) [64]. Two additional stereotypies
distinctive of SMS are the spasmodic upper-body squeeze (or self-hugging) [71] and the
“lick and flip” repetitive page turning [56,63], found in approximately 51% and 46% of
patients [63]. Other frequent behavioral problems are teeth grinding, screaming, temper
tantrum, hetero-aggressive outbursts, and destruction of property [56,63,70]. On the other
hand, adaptative scales show higher scores in communication and socialization skills, both
in children and in adults [52,54,66]. This finding reflects the notion of a few individuals
with SMS being particularly affectionate, communicative, eager to please but also attention
seeking and unceasing talkers [66,67,71]. This attitude coexists with a significant emotional
immaturity, which may trigger behavioral responses and make social inclusion difficult.
This contrast, termed developmental asynchrony, becomes more appreciable and divergent
in those with higher cognitive functioning and in adults: if academic achievements in SMS
correspond to the 6- to 8-year-old range, emotional reactions are more in accordance with
the 1- to 3-year-old developmental level (the so-called “inner toddler”) [67].

Similarly, daily living skills seem to configure a negative correlation with age, so that
in adulthood routine needs appear too demanding in respect of age or, possibly, of ID
degree [53,54]. Adults generally rely on their caregivers and only a minority of them are
reported to be independent in personal hygiene, cleaning tasks, cooking, or walking short
distances in a familiar environment [53].

Eating disorders (foraging and overeating) appear with adolescence [70] and have
been found to be directly mediated by RAI1 haploinsufficiency [27]. These traits are shared
with Prader-Willi syndrome, which indeed represents another differential diagnosis due to
the presence of infantile hypotonia, short stature, small hands and feet, self-picking, sleep,
and behavioral problems [72].

2.6. Sleep Disorders

Sleep disorders were mentioned since the first reports of SMS [2,3,33] and their pene-
trance is nearly complete [8,21,28,73]. The most recurrent features of sleep disturbance are
fragmented and shortened sleep cycles, frequent nocturnal and early morning awakenings,
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and excessive daytime sleepiness [30,73–75]. Nighttime sleep may be further deteriorated
by the occurrence of enuresis, snoring, and bruxism [73]. Reduced sleep time (on average
1 h less) can be detected by the first year and parents may notice increased somnolence
from 12–18 months of age [15]. Interestingly, the circadian rhythm of melatonin secretion is
inverted in most SMS patients [30], being active during the daytime rather than nighttime.
This reversal, however, is currently not believed to be the only factor responsible for sleep
disorders, which are detectable also in individuals with normal melatonin secretion [76,77].
Moreover, the circadian rhythm of body temperature is disrupted, being not inverted but
shifted about three hours in advance [74]. The employment of polysomnography revealed
REM sleep to be altered in about half of individuals, resulting mostly reduced but also
absent or increased [3,9]. Although sleep disorder persists throughout the entire life, some
changes have been identified in the transition toward adulthood. A questionnaire-based
study detected an association between older ages and earlier wake-up times, more naps
with shorter duration, increased number of nighttime awakenings, and shorter overall
sleep time [73]. A subsequent paper employing wrist actigraphy identified an age-related
variation in sleep patterns, waking time, progressively getting later, and waking time after
sleep onset [74].

2.7. Neurological Problems

Seizures are estimated to occur in 11–30% of subjects [3,9]. More recent series sub-
stantially confirm this proportion, ranging from 2.1% [25] to 27.5% [8]. An additional
20–25% of individuals develop electroencephalographic abnormalities without a clinical
correlation [9,15,78]. No seizure type or electroencephalographic pattern appears to be
recurrent, although focal onset impaired awareness seizures (formerly defined complex
partial seizures) might occur more frequently [15]; catamenial seizures have been noticed
as well [15]. Peculiar neuroradiological findings have been identified in about half of the
individuals [9,25], and those more consistent are ventriculomegaly [9,15,25,79–81], anoma-
lies of the posterior fossa (enlarged posterior fossa, mega cisterna magna) [9,15,79,80,82],
and bilateral decrease in grey matter concentration in lenticulo-insular regions [79]. Several
sporadic abnormalities have also been highlighted: unilateral dystrophic calcification of
the frontal lobe [9], cortical atrophy [25], hypoplasia of the corpus callosum [25], bilateral
periventricular nodular heterotopias [82], hypoplasia of the cerebellar vermis [9,80,81],
hypoplasia of the pons [80], enlarged foramen magnum [9], prominent cerebrospinal fluid
spaces [9]. Stroke-like episodes have been identified in three subjects, of whom one affected
from Moya-Moya disease [29,83,84]; it has thus been recommended to assess cerebrovas-
cular disease in all individuals with SMS before open-heart surgery [84]. The occurrence
of peripheral neuropathy, once reported in about 75% of patients [9] and more recently
estimated at 38% [25], may produce reduced deep tendon reflexes, a peculiar profile of
lower limbs (i.e., the inverted champagne bottle appearance), abnormal gait (flapping
feet, toe walking), pes cavus or pes planus [9,15]; moreover, the decreased sensitivity
to temperature and pain may worsen the consequences of self-injurious behaviors and
polyembolokoilamania [19].

3. Genomic and Genetic Cause of SMS

The most common genetic cause of SMS, accounting for about 90% of patients, is
an interstitial deletion at 17p11.2, ranging from 1.5 to 9 Mb [5,21]. About 70–80% of the
individuals with a 17p11.2 deletion carry a large and recurrent deletion of 3.7 Mb, which
results from non-allelic homologous recombination (NAHR) between low-copy-number
repeats (LCR) [28,85]. 17p11.2 is a rearrangement-prone genomic region containing seven
LCR elements [86]. The genomic instability of this region derives also from the presence
of repetitive elements such as Alu elements and AT-rich repeats, that through NAHR and
non-homologous end joining (NHEJ) mechanisms are causative of the remaining 20–25%
of SMS patients that display atypical deletions of variable size [87].
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About 80 known genes map to the 17p11.2 deleted region and for a long time, SMS
has been considered a contiguous gene syndrome [3]. Subsequently, the sequence analysis
in three patients with SMS phenotype lacking the common deletion disclosed frame-shift
variants in RAI1 (retinoic acid-induced 1), demonstrating its role as the causative gene for
SMS [5].

Up to now, about 50 pathogenic variants, mostly non-sense and in-frame located in
exon 3 (http://www.hgmd.cf.ac.uk/ac/all.php (accessed on 15 December 2021), HGMD
Professional, version 3 September 2021), have been detected in 10% of patients with classical
SMS clinical features (Figure 2). All the identified variants result in RAI1 haploinsufficiency,
which is responsible for the SMS phenotype.

Genes 2022, 13, x FOR PEER REVIEW 8 of 18 
 

 

detection of RAI1 pathogenic variants, with clinical implications for genetic counseling 
and decision making [89]. 

 
Figure 2. RAI1 gene and protein structures. At the top, RAI1 gene structure based on RefSeq 
NM_030665, including noncoding exons (white) and coding regions (dark grey). At the bottom, 
RAI1 protein structure with seven key functional domains, starting with N-terminal a polygluta-
mine rich tract (Poly-Q, orange), a polyserine rich domain (Poly-S, light purple), a bipartite Nucle-
ar Localization Signal (NLS, green), a second Poly-S tract (light purple), a nucleosome-binding 
domain (NBD, blue), and a C-terminal “plant homeo-domain” (PHD, red). The pathogenic 
SMS-associated reported truncating and missense mutations are indicated in bold in the protein 
structure, the remaining variations reported are not associated with SMS, but with indicated con-
ditions, according to HGMD Professional (version 3 September 2021) and ClinVar database. ID; 
intellectual disability, DD; developmental delay. 

SMS is an autosomal dominant condition typically caused by de novo deletions or 
pathogenic variants in RAI1 at 17p11.2, although familial transmission has been ob-
served [90–92]. Zori and collaborators identified a maternal mosaicism for 17p11.2 dele-
tion [90]; other SMS cases of parental mosaicism are known, including one family with 
three affected sibs due to maternal mosaicism [92]. Even rare complex chromosome re-
arrangements leading to 17p11.2 deletion have been reported [91,93,94]. In 2017, for the 
first time, a SMS individual harboring an RAI1 frameshift variant gave birth to a child 
with the same genotype [95]. 

RAI1 (OMIM *607642, NM_030665) is composed of six exons, four of which are 
protein coding, and is widely expressed among tissues, including the brain. RAI1 is 
highly conserved across different species and is composed of seven different functional 
domains (Figure 2) [96–100]. Among them there is a C-terminal “plant homeo-domain” 
(PHD) containing a His-Cys5-His-Cys2-His motif, an extremely conserved motif distinc-
tive of nuclear proteins implicated in chromatin remodeling and in transcriptional regu-
lation [101–103]. Indeed, RAI1 is a transcriptional regulator that enhances the expression 
of many genes involved in the development and function of the mammalian brain, for 
instance implicated in the homeostasis maintenance of synaptic plasticity [104] and reg-
ulation of circadian rhythm [100,105,106].  

RAI1 is classified within epigenetic machinery readers [106] and likely binds to 
unmodified histone tail H3 through the PHD domain. In addition, proteomic studies 
suggest that RAI1 may interact with PHF14, TCF20, HMG20A/iBRAF, which contain 
several PHD domains as well [107]. Supported by these findings, it was proposed that 
together they might form a multiprotein complex, the “RAI1 complex”, functioning as 
chromatin reader specifically recognizing and binding unmethylated lysine 4 of histone 

Figure 2. RAI1 gene and protein structures. At the top, RAI1 gene structure based on RefSeq
NM_030665, including noncoding exons (white) and coding regions (dark grey). At the bottom,
RAI1 protein structure with seven key functional domains, starting with N-terminal a polyglutamine
rich tract (Poly-Q, orange), a polyserine rich domain (Poly-S, light purple), a bipartite Nuclear
Localization Signal (NLS, green), a second Poly-S tract (light purple), a nucleosome-binding domain
(NBD, blue), and a C-terminal “plant homeo-domain” (PHD, red). The pathogenic SMS-associated
reported truncating and missense mutations are indicated in bold in the protein structure, the
remaining variations reported are not associated with SMS, but with indicated conditions, according
to HGMD Professional (version 3 September 2021) and ClinVar database. ID; intellectual disability,
DD; developmental delay.

A recent study on a large SMS cohort evidenced a higher number of pathogenic vari-
ants in RAI1 than previously reported (23% compared to 10% of all patients with SMS [86]),
suggesting that the percentage of RAI1 variants causing SMS is underestimated [88]. This
finding can firstly be explained by the fact that a multisystemic disorder may not be
suspected in patients with RAI1 variants due to the reduced penetrance of congenital
anomalies, commonly associated with 17p11.2 deletions. Indeed, notwithstanding the con-
sistent phenotypic overlap among patients harboring either the 17p11.2 classical deletion
or a pathogenic variant in RAI1, cardiac and renal anomalies, motor delay, short stature,
and hearing loss are enriched in carriers of the 17p11.2 deletion [8,21]. Conversely, patients
carrying RAI1 variants show an increased risk of developing overweight/obesity, feeding
disorders, polyembolokoilamania, self-hugging, skin picking, muscle cramping, and dry
skin [8,11,21]. Secondly, agnostic genetic testing for patients not resembling classical SMS
was introduced only recently by means of next-generation sequencing (NGS) technology,

http://www.hgmd.cf.ac.uk/ac/all.php
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which will likely lead to an increased detection of RAI1 pathogenic variants, with clinical
implications for genetic counseling and decision making [89].

SMS is an autosomal dominant condition typically caused by de novo deletions
or pathogenic variants in RAI1 at 17p11.2, although familial transmission has been ob-
served [90–92]. Zori and collaborators identified a maternal mosaicism for 17p11.2 dele-
tion [90]; other SMS cases of parental mosaicism are known, including one family with
three affected sibs due to maternal mosaicism [92]. Even rare complex chromosome rear-
rangements leading to 17p11.2 deletion have been reported [91,93,94]. In 2017, for the first
time, a SMS individual harboring an RAI1 frameshift variant gave birth to a child with the
same genotype [95].

RAI1 (OMIM *607642, NM_030665) is composed of six exons, four of which are pro-
tein coding, and is widely expressed among tissues, including the brain. RAI1 is highly
conserved across different species and is composed of seven different functional domains
(Figure 2) [96–100]. Among them there is a C-terminal “plant homeo-domain” (PHD) con-
taining a His-Cys5-His-Cys2-His motif, an extremely conserved motif distinctive of nuclear
proteins implicated in chromatin remodeling and in transcriptional regulation [101–103].
Indeed,RAI1 is a transcriptional regulator that enhances the expression of many genes
involved in the development and function of the mammalian brain, for instance implicated
in the homeostasis maintenance of synaptic plasticity [104] and regulation of circadian
rhythm [100,105,106].

RAI1 is classified within epigenetic machinery readers [106] and likely binds to un-
modified histone tail H3 through the PHD domain. In addition, proteomic studies suggest
that RAI1 may interact with PHF14, TCF20, HMG20A/iBRAF, which contain several
PHD domains as well [107]. Supported by these findings, it was proposed that together
they might form a multiprotein complex, the “RAI1 complex”, functioning as chromatin
reader specifically recognizing and binding unmethylated lysine 4 of histone 3 (H3K4)
and recruiting MLL1 (KMT2A, OMIM *159555) to tri-methylate H3K4, thereby promoting
gene transcription [106]. The biological relevance of these proteins is highlighted by the
clinical consequences of their haploinsufficiency, as KMT2A and TCF20 are the causative
genes of Wiedemann-Steiner syndrome (WDSTS, OMIM #605130) and of a syndromic
neurodevelopmental disorder (OMIM #618430), respectively [108,109].

At the moment, very little is known about the transcriptional regulatory activity and
the target genes of RAI1. However, the genome-wide testing approach on SMS-like patients
without molecular diagnosis has provided some clues.

4. Differential Diagnosis and Related Disorders

Only 50% of individuals with a clinical suspicion of SMS have been confirmed by
genetic tests, suggesting that other loci may be directly or indirectly involved in the same
pathway of RAI1, hence contributing to SMS-like phenotype (Figure 3) [86]. The best
approach to discover and understand the molecular basis of complex disorders is by means
of genome-wide investigation, such as array-CGH and NGS. Array-CGH screening in
SMS-like patients, displaying most of SMS clinical features but lacking either the clas-
sical 17p11.2 deletion or RAI1 mutations, disclosed HDAC4 and MBD5 loss-of-function
alterations [110,111].

HDAC4 is a class IIa histone deacetylase. Interestingly, quantitative expression anal-
ysis on BDMR (BrachyDactyly-Mental Retardation syndrome, OMIM #600430) patients,
carrying either a deletion including HDAC4 or HDAC4 mutations, resulted in the downreg-
ulation of RAI1 transcripts [110], suggesting that HDAC4 plays a role as RAI1 transcriptional
regulator. This evidence supports their possible connection and may explain the overlap-
ping phenotypes of SMS and BDMR. The second SMS-related locus is 2q23.1, the region
involving the MBD5 gene [111,112]. Deletions or loss-of-function variants of MBD5 cause
MBD5-associated neurodevelopmental disorder (MAND; OMIM #156200). A downreg-
ulation of RAI1 was detected in MAND patients, thus supporting the idea that MBD5
might also exert control on RAI1 transcription [113]. Moreover, similarly to SMS, MAND
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patients show sleep disorders and, in patient-derived lymphoblastoid cell lines, MBD5
haploinsufficiency was demonstrated to lead to the downregulation of clock circadian
genes (CCG) (PER1, PER2, PER3, NR1D2, CRY2) and RAI1, thus linking circadian rhythm
disruption to RAI1 expression [114].
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In addition, pathogenic de novo variants in MBD5 and in other epigenetic regulators
(SMARCB1, NR1I3, KMT2C) were reported in individuals with a clinical diagnosis of Kleefs-
tra syndrome (KS; OMIM #610253) [115,116]. This condition, also known as 9q34.3 deletion
syndrome, is due to microdeletions or point variants of the EHMT1 gene [117]. EHMT1
encodes a histone methyltransferase, which is considered a histone writer mono- and
di-methylating H3K9 (histone 3 lysine 9) and is involved in chromatin remodeling during
neurodevelopment and synaptic plasticity [118]. Moreover, the increase of H3K9me2/3 cor-
relates with altered expression of protocadherins, principal regulators of cell-cell adhesion
and neuronal connectivity associated with ASD etiology [119]. Although a direct molecular
link between RAI1 and EHMT1 remains to be proved, the clinical overlap of SMS and KS
might be mediated by MBD5.

Whole-exome sequencing (WES) performed in individuals with a clinical suspicion
of SMS but without a molecular diagnosis highlighted potentially deleterious variants
in different genes, including KMTD2, MECP2, KDM5C, IQSEC2, and DEAF1 [120,121].
Notably, a combined approach using WES and array-CGH in 31 unrelated families with an
SMS-like phenotype identified pathogenic variants in TCF20, defining a new syndrome
termed developmental delay with variable intellectual impairment and behavioral abnor-
malities (DDVIBA, OMIM #618430). These findings support the commonalities in gene
structure and function between TCF20 and RAI1, reinforcing the role of the “RAI1 complex”,
of which both are likely part, and likely explaining the shared core clinical features [122].
Based on routine and dedicated genetic analysis, we suggest a diagnostic algorithm for the
diagnosis of SMS and SMS-related disorders (Figure 4).
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Genome-wide methylation episignatures are significant tools to improve the diagnostic
process and provide functional clues. The clinical overlap among SMS and the mentioned
conditions does not currently find an epigenetic counterpart, as distinctive episignatures
have been detected for HDAC4, MBD5, MLL1/KMT2A but not for RAI1 [123,124].

Despite these functional and clinical convergences, further studies are needed to
explore on different omic levels the functional links among these genes and clarify the
biological mechanisms responsible for their phenotypic overlap.

5. Treatment Insight

To date, no specific therapy is available for SMS; therefore, its clinical management
consists of treating the medical issues presented by each affected individual. Appropriate
assessment of related clinical problems, early target intervention, and strict maintenance to
therapy can improve overall health, quality of life, and social functioning in SMS patients.

Considering that nearly all SMS individuals have behavioral problems and sleep
disturbance, treatments focus on behavioral and educational interventions that target these
cardinal traits. Psychotropic medications may be necessary, although evidence regarding
pharmacological interventions in SMS is scarce. The array of medications that are prescribed
in clinical practice appears to be largely based on clinical experience, case reports, or small
series assessing drug efficacy on autism in general and/or ADHD.

According to the retrospective study of Laje et al. [125], stimulants are the preferred
medications in the treatment of hyperactivity symptoms. In particular, methylphenidate
(MPH) is well-established as first-line treatment with high efficacy and tolerability com-
pared to other psychotropic drugs [126]. Clonidine is sometimes used for the treatment
of ADHD in addition or in alternative to stimulants and may have a beneficial effect on
sleep in that population [125]. Among the antipsychotics, risperidone shows a marked
improvement of symptoms of hyperactivity and/or maladaptive behaviors (including
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irritability, aggression, outbursts, and self-injury) [127,128]. Adverse effects of risperidone
include weight gain, increased appetite, hyperlipidemia, insulin resistance, fatigue.

Furthermore, the management of dysfunctional sleep patterns should also be consid-
ered as a key clinical goal in SMS subjects. Good sleep hygiene should include maintaining
regular day and night routines, developing rituals that help with relaxation, keeping the
sleep environment dark during the night, pleasant and relaxing, and avoiding caffeine and
electronic devices. However, pharmacotherapy is often required to optimize the routine
management of sleep disorders. Melatonin is a common nonprescription pharmacologic
treatment particularly appropriate for populations with sleep disturbance due to circadian
phase delay, as for SMS. Evidence to support the use of short-acting melatonin supplemen-
tation consists of small case series and anecdotal reports by SMS parents. Overall, short
melatonin treatment trials reported a significant decrease in sleep latency with little impact
on the total duration of sleep or behavioral manifestations. Optimal melatonin dosing
ranged from 0.75 to 10 mg/day taken approximately 90 min before bedtime [129,130]. The
combined regimen of nocturnal melatonin and daytime administration of acebutolol, an
adrenergic antagonist that blocks melatonin secretion, proved to be beneficial. This strategy
may increase nocturnal melatonin concentrations, improve nocturnal sleep and behavior,
and aid in correcting sleep patterns [131].

Tasimelteon is an oral melatonin receptor agonist that was developed for the treatment
of circadian sleep–wake rhythm disorders. In 2020, this drug was approved in the US for
the treatment of nighttime sleep disturbances in SMS [132]. Ramelteon, another melatonin
agonist approved for the treatment of insomnia, has not been studied specifically in patients
with SMS but has been shown to shift the circadian phase in individuals with jet lag [133]
and might be effective also in SMS.

Other drugs that could be useful in the management of sleep problems in children with
SMS include antihistamines (i.e., diphenhydramine), antidepressants (i.e., trazodone), atyp-
ical antipsychotics (i.e., quetiapine), gabapentin, or other anticonvulsant drugs (appropriate
for children with concomitant seizure disorders) [129].
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