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Abstract: Skeletal muscle atrophy is a common condition in aging, diabetes, and in long duration
spaceflights due to microgravity. This article investigates multi-modal gene disease and disease
drug networks via link prediction algorithms to select drugs for repurposing to treat skeletal muscle
atrophy. Key target genes that cause muscle atrophy in the left and right extensor digitorum longus
muscle tissue, gastrocnemius, quadriceps, and the left and right soleus muscles are detected using
graph theoretic network analysis, by mining the transcriptomic datasets collected from mice flown
in spaceflight made available by GeneLab. We identified the top muscle atrophy gene regulators
by the Pearson correlation and Bayesian Markov blanket method. The gene disease knowledge
graph was constructed using the scalable precision medicine knowledge engine. We computed node
embeddings, random walk measures from the networks. Graph convolutional networks, graph
neural networks, random forest, and gradient boosting methods were trained using the embeddings,
network features for predicting links and ranking top gene-disease associations for skeletal muscle
atrophy. Drugs were selected and a disease drug knowledge graph was constructed. Link prediction
methods were applied to the disease drug networks to identify top ranked drugs for therapeutic
treatment of skeletal muscle atrophy. The graph convolution network performs best in link prediction
based on receiver operating characteristic curves and prediction accuracies. The key genes involved
in skeletal muscle atrophy are associated with metabolic and neurodegenerative diseases. The drugs
selected for repurposing using the graph convolution network method were nutrients, corticosteroids,
anti-inflammatory medications, and others related to insulin.

Keywords: machine learning; skeletal muscle atrophy; graph convolutional neural networks; graph
neural network; random forest; gradient boosting method; knowledge graphs; node embeddings;
random walk; diseases; drugs; link prediction

1. Introduction

Spaceflight experiments using mice are being conducted to determine the impact of
microgravity on different muscle groups [1]. A major health problem in spaceflight is
muscle wastage due to microgravity. The primary muscles in the human body are the
muscles of the upper limb and lower limb. Experiments on hind limb muscle wasting after
a 13-day shuttle flight have shown reduced knee weight bearing and meniscal degrada-
tion, inducing an arthritic phenotype in cartilage and menisci [2]. Changes in electrical
impedance characteristics in gastrocnemius muscles are also induced by spaceflight [3].
Skeletal muscle atrophy is a secondary effect of aging (sarcopenia) and diseases such as
diabetes, cancer and kidney diseases. The primary muscles in the human body are the
upper limb and lower limb. Studies have shown that muscle gene expression is different
in spaceflight vs. that on the ground. Models of sarcopenia and age-related muscle loss
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have been studied in [4]. Spaceflight induces similar muscle loss, and the analysis of their
gene expression (see [5]) has revealed that a majority of 272 mRNAs that were significantly
altered by spaceflight displayed similar responses to hind limb suspension.

There are several molecular processes that influence muscle atrophy. The muscle RING-
finger protein-1 that plays an important role in muscle remodeling is an E3 ubiquitin ligase
expressed in skeletal and cardiac muscle tissues [6]. Spaceflight induces unique muscle
atrophy in animal models. The MuRF1 nullified mice did not show improvement in soleus
muscle loss, showing that atrophy proceeds under unique mechanisms in spaceflight [7].
Muscle mass is a balance between protein generation and degradation. A decreased
rate of synthesis causes skeletal muscle wasting. The ubiquitin proteosome is the protein
synthesis pathway in muscle atrophy. It has been shown that proteosome inhibition reduces
denervation-induced muscle atrophy [8]. One of the most important muscle-wasting
cytokines is tumor necrosis factor-a (TNF-a), elevated levels of which cause significant
muscular abnormalities. Although there has been some advancement in understanding
cellular and molecular mechanisms such as MuRF1/MAFbx/FOXO pathways and potential
triggers behind muscle disuse, there is a significant gap in knowledge in the regulatory
mechanism of the associated genes and their functional significance. It is known that
anabolic and catabolic pathways regulate muscle atrophy in adult organisms. Deacetylase
inhibitors represent a prototype of epigenetic drugs that have been proposed as a possible
intervention that targets multiple signaling pathways in the pathogenesis of muscle atrophy.
Niclosamide has also been proposed to regulate myogenesis and catabolic pathways in
skeletal muscle.

Apart from microgravity, radiation exposure in spaceflight has been reported to ag-
gravate atrophic processes in soleus and gastrocnemius muscles, which is induced already
by spaceflight. Radiation was shown to inhibit the reparative processes [9]. Oxidative
stress is increased by higher levels of radiation. The upregulation of heme oxygenase-1
(HO-1) counters cellular damage due to radiation which can be artificially induced [10].
Several countermeasures have been proposed for alleviating muscle wastage in spaceflight.
Exercise countermeasures do not alleviate the reduction in muscle function or muscle size
due to the unloading effects of spaceflight [11]. While exercise countermeasures seem
insufficient for maintaining muscle function in long deep space measures, it is important
to find effective countermeasures for long duration spaceflights. Bone loss is preserved
and tibialis anterior and gastrocnemius muscle changes are eliminated by countermea-
sures such as bisphosphonates and anti-RANKL therapies (Denosaumab and OPG-Fc) and
treatment of young mice with REGN1033 (a monoclonal antibody against myostatin) [12].
With future space missions, finding effective countermeasures for muscle atrophy in space-
flight has gained paramount importance. Simulated microgravity, use of animal models,
applications of countermeasures, studies of interrelationships between bone and muscle
tissues, and studies on the effect of radiation on skeletal muscles are necessary for human
exploration of space [13]. In our earlier paper on drug repurposing [14], we applied three
Machine Learning (ML) methods for identifying drugs for treatment of organ muscle
atrophy. In this paper, we have added the Pearson correlation method for identification
of key gene regulators of skeletal muscle atrophy, and also have implemented Graph
Convolutional Neural Network (GCN) for link prediction. GCN results for identification
of repurposable drugs for skeletal muscle atrophy is compared with the GNN method
reported as the best method in [14]. NASA’s GeneLab [15] datasets are collected in space-
flight under microgravity and low radiations doses in low Earth orbit. The radiation details
of these datasets are provided in [16]. Section 2 presents the GeneLab datasets and ML
methods used to identify key diseases associated with skeletal muscle atrophy and drugs
for repurposing. Section 3 presents the results of the ML algorithms for link predictions in
the constructed Gene Disease Knowledge Graph (GDKG) and Disease Drug Knowledge
Graph (DDKG). Section 4 discusses the key genes and repurposable drugs selected by link
prediction, and Section 5 presents the conclusions.
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2. Materials and Methods

Datasets from the GeneLab repository [15] related to skeletal muscle atrophy were
mined for studying the effects of microgravity and low radiation doses in low Earth orbit
found beyond Earth’s atmosphere on mice. All the -omics datasets in GeneLab were
preprocessed and normalized before being published.

2.1. GeneLab Datasets

GLDS-99, 101, 103, 104: A cohort of 16-week-old female mice were flown in the ISS for
37 days. They were euthanized in spaceflight and returned to Earth where left and right
extensor digitorum longus muscle tissue (GLDS-99), gastrocnemius (GLDS-101), quadriceps
(GLDS-103), and left and right soleus muscles (GLDS-104) samples were collected. RNA
and DNA sequencing was carried out. GeneLab processed the RNA sequencing data into
gene expression values using standardized methods. These datasets belong to the Rodent
Research (RR) payload. The daily average absorbed dose of Galactic Cosmic Radiation
(GCR) nucleic particle is 0.13126 mGy, Inner Radiation Belt (IRB) South Atlantic Anomaly
(SAA) is 0.07331 mGy, and the cumulative absorbed dose of GCR is 4.98795 mGy, and SAA
is 2.78573 mGy.

GLDS-111 and GLDS-135: Adult male mice C57BL/N6 were flown aboard the BION-
M1 biosatellite for 30 days on orbit (BF) or housed in a replicate flight habitat on Earth (BG)
as the reference flight control. GeneLab processed RNA sequencing data from mouse soleus
and EDL muscles (GLDS-111) and longissimus dorsi and tongue (GLDS-135). The radiation
inside the Bion-M1 mouse habitat dosimeters SPD2 and SPD4 recorded an average absorbed
dose of 0.630 and 1.149 mGy, respectively. These are averages of low and high LET
radiation doses. The total average absorbed radiation dose for the mission is 18.81 mGy
and 34.30 mGy for the SPD2 and SPD4 dosimeters, respectively. The total average absorbed
dose of Galactic Cosmic Radiation (GCR), Outer Radiation Belt (ORB), and Inner Radiation
Belt (IRB) is 0.985 mGy.

GLDS-21: Mice were flown on the STS-18 shuttle flight mission for 11 days, 19 h and
gene expression analysis was performed on gastrocnemius muscle. Mice were maintained
on earth for the same period. Additionally, to identify changes that were due to unloading
and reloading, ground-based mice were subjected to hind limb suspension for 12 days and
microarray analyses were conducted on their calf muscle. The average absorbed radiation
dose is 2.19 mGy for the entire mission with an average absorbed radiation dose rate of
0.18 mGy.

The workflow pipeline for identifying key genes and drugs for treating skeletal muscle
atrophy is shown in Figure 1. The stages of the pipeline are numbered from 1 to 4 and each
stage is explained below.

2.2. Finding Regulatory Relationships between Gene Pairs (Stage 1)

Graph-based Gene Regulatory Network (GRN) inferencing methods of Pearson corre-
lation and Markov Blanket (MB) are utilized to identify the most regulated genes in the
seven GeneLab datasets [17,18]. The gene expression values of pairs of genes are used to
compute the Pearson correlation value. The p-values are used to extract the most correlated
pairs of genes by selecting all values below 5 × 10−7, which will extract the same pairs
of genes as a correlation threshold of 0.9 and above. For identifying causal relational
gene pairs, the Markov Blanket (MB) method is used. Joint conditional probabilities are
computed from the gene expression values which are used to construct a Bayesian Network
(BN). The incremental association Markov blanket of any node (gene) in a BN is the set of
parents, children, and spouses (the other parents of their common children) of the gene.
The genes are connected by edges if its upregulation is caused by another gene, or if it
causes the upregulation of another gene. The MB(X) of a node (gene) X includes its parents,
children, and spouses which are the strongly relevant genes to gene X. The output is a list
of pairs of genes that are connected by edges. The list of pairs of most correlated genes and
causally related genes are combined into one list and input to the next stage in Figure 1.
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Figure 1. Workflow pipeline showing the order of steps involved in constructing GDKG and DDKG
and link prediction methods for finding key diseases associated with skeletal muscle atrophy genes
and drugs for repurposing.

2.3. Construction of Knowledge Graphs (Stage 2)

The selected genes from Stage 1 are input to the Scalable Precision Medicine Open
Knowledge Engine (SPOKE), which is a database of databases [19]. SPOKE is used for
creating a network based on a data integration approach to prioritize disease-associated
genes [20]. It is a graph-theoretic database organized in a hierarchical manner with inputs
from molecular research, clinical insights, environmental data and others. Currently it
integrates 19 different databases. The SPOKE creates a new graph with the provided list
of skeletal muscle atrophy genes and the diseases associated with it. The list of genes and
their associated diseases are input to Cytoscape to construct the Gene Disease Knowledge
Graph (GDKG). The Disease Drug Knowledge Graph (DDKG) is constructed by finding
the top ten drugs used to treat the diseases associated with skeletal muscle atrophy from
the DrugBank database. A table of diseases and the top ranked drugs is built and input to
Cytoscape to construct the DDKG.

Graph Concepts and Properties for Analysis of GDKG and DDKG

Graph concepts of random walk and preferential attachment used by the link predic-
tion algorithms are described in this section. We also compute network measures on the
constructed graphs. We follow Janwa, Massey, Velev and Mishra [21–24]. A graph is a
representation of a set of entities and relations among them and represents an underlying
concrete network, such as a GRN, the internet, or a social network. We formally present a
graph as a pair of sets G = (V, E), where V are the vertices (nodes, points) and E ⊆ V ×V
are the edges (arcs), respectively. When E is a set of unordered pairs of vertices, the graph
is said to be undirected. In a directed graph (representing key genes and target genes,
for example) G = (V, E, o, t), E consists of an ordered set of vertex pairs, i.e., for each
edge e ∈ E, e→ (o(e), t(e)) where o(e) is called the origin of the edge e and t(e) is called
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the terminus of the edge e [22,23]. A graph is weighted if there is a map (weighting func-
tion, w : E→ R+ ), assigning to each edge a positive real-valued weight. Weighting can
represent the strength of a signal in sender–receiver gene interaction, for example. A net-
work’s properties are governed by its topology, such as the degree distribution, clustering
coefficients, motifs, assortativity, hierarchicity, etc. (see [24–26]); a more in-depth treatment
regarding biomedical networks is given in [27]. The degree of a vertex v, deg(v), is the
number of edges that connect the vertex with other vertices. In other words, the degree
is the number of immediate neighbors of a vertex. In directed graphs, the in-degree and
out-degree of a vertex can be defined as the number of incoming and outgoing edges,
respectively. Thus, the degree distributions can tell a great deal about the structure of
a family of networks. As probability distribution, degree distribution can be binomial,
Poisson, or Gaussian (in the limit), or as we will see, it can follow a power–law distribution
that is characterized by a scale-free property. We say that a graph is sparse if 〈k〉 = O(log N)
(or M = O(N log N)). In random probability models such as the Erdos-Renyi model, one
does not find nodes of a very high degree.

Similarity measures computed from neighborhoods in a graph are widely used in
link prediction algorithms [28]. A semi-supervised scalable feature learning method is
proposed in [29], where the authors develop a family of biased random walks resulting in
a flexible search space of nodes for link (edge) prediction. We have used this method to
obtain the highest ranked nodes for possible links between the muscle atrophy gene and its
disease associations, as well as between diseases and drugs in the Graph Neural Network
(GNN) method.

Random walks: A walk of length n in a graph is a sequence of alternating vertices and
edges, 〈v0, e1, v1, e2, . . . , en, vn〉 such that 0(ei) = vi−1 and t(ei) = vi for all i = 1, . . . , n.
Let T be the diagonal matrix with dv along the diagonal. First, we consider the stochastic
matrix P = T−1 A, which may be thought of as describing the probabilities of certain
“information” being moved from one node to a neighboring node by a diffusion process.
Let {v0, e1, v1, e2, · · · vs} be a random walk in the graph with (vi−1, vi) ∈ E(G), for all
1 ≤ i ≤ s, and determined by transition probabilities P(u, v) = Prob(xi+1 = v |xi = u)
which are independent of i. Normally, we take p(u, v) = w(u, v)/du, as defined by the
stochastic matrix P. Apart from random walks, we have computed preferential attachment
measures to obtain possible gene–disease and disease–drug link associations. We follow [30]
for computation of preferential attachment. For any node u let Γ(u) denote the set of
neighbors of u. Let Λ be a community of G, i.e., Λ is a set of cohesive vertices such that it
contains more connections inside the set than outside the set. The preferential attachment
score of u and v is defined as |Γ(u)||Γ(v)|.

2.4. ML Methods for Link Prediction (Stage 3)

We used four ML methods for identifying and ranking the top skeletal muscle gene
disease associations in the GDKG, and for identifying the top ranked drugs for repurposing
from DDKG. The Random Forest (RF), Gradient Boost (GB), and Graph Neural Network
(GNN) were used for link prediction and drug repurposing for organ muscle atrophy [14].
In addition to the above, we implemented the GCN method. The problem of link prediction
is to predict an edge between two existing nodes in a graph or network. Each of the
methods are described below.

2.4.1. Random Forest (RF) Method

This method is based on decision trees, and an ensemble of trees is called a decision
forest. Each tree is trained on a random subset of input features, and their predictions
are combined to improve overall prediction. The tree is based on discriminants instead of
likelihoods. Discriminants are estimated by passing class densities. The hyperparameters
area: tree depth of 15 with 500 estimators.
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2.4.2. Gradient Boosting (GB) Method

The GB method is also an ensemble decision tree method which trains one tree at a
time. The regression trees were built from the previous step on the prediction error of the
previous tree. This is a useful method for tabular datasets. Multiple weak learners are
combined to give a better performance. It can find nonlinear relationships between model
targets and features and can deal with outliers, and missing values. The feature labels are
the value of various node centralities. The positive and negative samples are the labels for
the existent and non-existent edge in the network, respectively. The features of the nodes at
the end of the edges, along with the positive or negative label, form a well-defined dataset
for the task of link prediction. The learning rate is 0.2 for this algorithm.

2.4.3. Graph Neural Network (GNN) Method

The GNN is a deep network with ten hidden layers with 100 nodes (neurons) in each
of the hidden layers. The activation function for the hidden layers is the Rectified Linear
Unit (ReLu) function. The limited-memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs)
solver from sktlearn library in Python was used to predict the links. The input layer of the
GNN takes as input random walk features computed on the knowledge graphs. The output
of the GNN is a matrix of predicted edges.

2.4.4. Graph Convolution Neural Network (GCN)

We used the Graph Convolution Neural Network (GCN) for link prediction in GDKG
and DDKG for skeletal muscle atrophy and compared it with the above methods. The GCN
takes as input the knowledge graph with N number of nodes, A is the N × N adjacency
matrix. The GCN learns the graph Gi = (Vi, Ei), learns node embeddings, and predicts
links between the nodes. The layer-wise propagation rule for each neural network layer is

H(l+1) = D−
1
2 AD−

1
2 H(l)W(l).

Here, A = A + IN is the adjacency matrix of the undirected graph G with added
self-connections. IN is the identity matrix, Dii = ∑j Aij is the diagonal node degree
matrix of A and W(l) is the layer-specific trainable weight matrix, σ(.) is an activation
function. With spectral analysis, a graph convolution is a multiplication of spectra of
signal in a Fourier domain [31]. As it is computationally expensive, the convolution kernel
is the existing Chebyshev polynomial of Eigenvalues in a spectral domain. A softmax
activation function is applied row-wise to f (X, A) to obtain Z = so f t max f (X, A) where

so f t max(xi) =
exp(xi)

∑i xi
. To evaluate loss in this semi-supervised model, cross-entropy error

is calculated as follows: L = −∑l∈yL
∑F

f=1 Yl f ln Zl f where YL is the set of nodes with
labels or the labeled training instances. The weights of the neural network W are trained
using gradient descent. Figure 2 shows the GCN trained for link prediction on the GDKG.
The GCN has two hidden layers with 32 nodes in the first hidden layer and 16 nodes in the
second hidden layer, respectively. The GCN uses Adam optimizer for gradient descent and
weight updates for the network. The probabilities of the predicted links range from 0 to 1.
These probabilities are predicted using the ReLu activation function shown in Figure 2.
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Figure 2. Graph Convolutional Network (GCN) is trained on the GDKG network. Figure shows the
sparse GCN layer, ReLu activation function, graph embedding, and the decoded GCN with output
predicted links between the genes and disease nodes. g1 and g2 are the gene nodes, d1, d2, and d3
are disease nodes. The output predicted links are shown as red dotted lines.

2.5. Gene-Disease and Disease-Drug Associations (Stage 4)

The knowledge graphs are split into training and validation sets. The GridSearchCV
library is used to estimate the best split of the data for cross validation. This implemen-
tation uses 10-fold cross validation for link prediction in both the knowledge graphs.
The computation of network features and graph features are implemented in Python using
the libraries networkX, node2vec, pandas, numpy, and sktlearn. The link prediction accura-
cies for the four methods are calculated by comparing a binary label (an edge exists or not
exists) with a real valued predicted score. The technique used for evaluation in this setting
is the Area Under the Receiver Operating Characteristic (AUROC) curve. The predicted
links are sorted from highest probability to lowest probability. The drug nodes with the
highest link probability to the disease nodes are selected as candidates for repurposing.

3. Results

The seven gene expression datasets have from three to eight expression values.
The datasets were combined, and the significantly regulated genes were extracted us-
ing the Pearson correlation and Incremental Association Markov Blanket (IAMB) methods.
For details on the implementation of Pearson correlation and IAMB, please refer to [32].
Pearson identified the most correlated genes and IAMB identified causally related genes.
A total of 473 genes were identified as the most significantly regulated from the seven
datasets. Hence, we have included all of these genes in our analysis as important regulators
of skeletal muscle atrophy in spaceflight.

Many diseases such as metabolic and neuromuscular diseases, cancer, chronic in-
flammatory diseases, and acute critical illness are associated with skeletal muscle atrophy,
muscle weakness, and general muscle fatigue. Additionally, skeletal muscle atrophy is
the secondary effect of many diseases, and it is important to find the diseases linked
with this condition. The Scalable Precision Medicine Knowledge Engine (SPOKE) was
used for identifying all the diseases related to muscle atrophy. SPOKE is a large heteroge-
neous network with many types of biological data organized in a hierarchical structure
for the benefit of biomedicine and human health (Scalable Precision Medicine Knowledge
Engine n.d.). The maximally regulated genes identified from the GRNs were input to the
SPOKE. Figure 3 shows the GDKG constructed from all the diseases related to the muscle
atrophy genes. Next, we applied ML methods to predict new gene disease associations in
the GDKG.
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Figure 3. Gene Disease Network (Red nodes–Genes, Blue nodes–Disease).

Link Prediction Using GCN and Other ML Methods

The graphs were preprocessed by computing the graph Laplacian. Each node was
embedded into a feature vector and input to two hidden layers. Given the graph embedding,
GCN model is trained to predict new gene–disease interactions in the GDKG. The GCN
predicted 21 new gene disease associations with a probability greater than 0.8. The gene
names and associated diseases are given in Table 1. Figure 4 shows the Receiver Operating
Characteristics (ROC) curve for link prediction using the GCN and GNN, Random Forest,
Gradient Boosting, and preferential attachment methods. The link prediction methods were
trained with 80% of the data and the remaining 20% were used for testing. The ten-fold
cross validation accuracies for the gene-disease link prediction using the four methods
are given in Table 2. The key diseases associated with skeletal muscle atrophy genes were
identified and sorted. Out of these top ranked, 100 diseases were selected. The drugs
were selected from the drug bank database [33] and the ten most commonly used drugs



Genes 2022, 13, 473 9 of 20

for each of the diseases were selected. The Disease–Drug Knowledge Graph (DDKG)
was then built from the diseases and drugs used to treat them. The DDKG is shown
in Figure 5. Since the existing drugs are the most commonly used for these diseases,
the link prediction method was used to find new repurposable drugs for these diseases
which in turn can be used for repurposing for muscle atrophy in spaceflight. Figure 6
shows the Receiver Operating Characteristics (ROC) curve for link prediction using the
GCN, GNN, Random Forest, Gradient Boosting, and preferential attachment methods
applied to the DDKG. A total of 60% of the data from the DDKG was used for training
and the remaining 40% for testing. Table 3 lists the new predicted links with the highest
probabilities for disease and drugs using the GCN link prediction method. The predicted
links with highest probabilities for drugs and diseases using the GNN method is given in
Table 4 for comparison. The ten-fold cross validation accuracies for link prediction applied
to DDKG are given in Table 5. The GDKG and DDKG are massively scalable knowledge
graphs and have several properties, such as expansion and diffusion. Graph network
measures computed on these graphs are listed in Table 6. The preferential attachment
network measure-based link prediction gives an accuracy of 74.64% for the GDKG and
73.55% for the DDKG, respectively.

Table 1. Ranking of genes and diseases with new predicted links using GCN.

Gene Disease Code Link Prediction
Probabilities Disease Name

EIF3H ICD10:C22 0.92 Malignant neoplasm of liver and
intrahepatic bile ducts

SNF8 DOID:178 0.83 vascular disease

RPS25 ICD10:G969 0.77 Disorder of central
nervous system

NDUFB2 DOID:0050589 0.79 inflammatory bowel disease

MTCH2 DOID:10273 0.95 heart conduction disease

FTO DOID:1289 0.79 neurodegenerative disease

NDUFS3 ICD10:I5 0.97 Non-ischemic myocardial injury
(non-traumatic)

MEF2A ICD10:C25 0.79 Malignant neoplasm of
the pancreas

DDA1 DOID:8857 0.84 lupus erythematosus

ATG3 ICD10:H8 0.8 disorder of vestibular function

COG6 ICD10:N429 0.73 Disorder of prostate

ELK4 DOID:6364 0.71 migraine

MRPL4 DOID:2007 0.73 Pesticide residues in food

ZFR ICD10:N399 0.78 Disorder of urinary system

ELK4 ICD10:G93 0.89 brain disorder

COLGALT1 DOID:0050890 0.84 synucleinopathy

RPL7A ICD10:K0 0.81 Diseases of the oral cavity and
salivary glands

PRMT5 ICD10:N399 0.86 Disorder of urinary system

MRPS21 DOID:0050687 0.89 cell type cancer

SNW1 ICD10:C64 0.83 Malignant neoplasm of kidney
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Table 2. Ten-fold cross validation accuracies for link prediction using RF, Gboost, and GNN in GDKG.

Methods 1 2 3 4 5 6 7 8 9 10 AUROC

RF 89.39 88.64 90.54 91.76 89.09 88.57 86.04 91.03 87.66 90.94 88.75

GB 85.28 84.62 87.03 86.82 85.62 86.52 83.22 87.33 82.89 88.06 85.69

GNN 87.70 90.13 89.78 89.96 88.79 90.59 85.60 89.44 88.35 90.26 88.63

GCN 88.95 90.87 91.21 92.79 93.00 93.20 94.29 95.05 95.72 96.00 96.11

Table 3. Ranking of drugs and diseases with new predicted links using GCN.

Drugs Disease Link Prediction Probability

L-CARNITINE Metabolic disease 1
THIAMINE Autoimmune disease of the musculoskeletal system 1

TELITHROMYCIN Breast cancer 0.98
FLUOCINOLONE ACETONIDE Uterine disease 0.96

RIBOFLAVIN Autoimmune disease of the musculoskeletal system 0.94
AZATHIOPRINE Cardiovascular system disease 0.94

IVERMECTIN Allergic rhinitis 0.9
INSULIN LISPRO Urinary system disease 0.9

NELARABINE Hypervitaminosis 0.9
SURAMIN Allergic rhinitis 0.89

TETRACYCLINE Male reproductive organ cancer 0.86
INSULIN DETEMIR Urinary system disease 0.85

PRAMLINTIDE Type 2 diabetes mellitus 0.84
ARCITUMOMAB Breast cancer 0.83
CLINDAMYCIN Influenza and pneumonia 0.83
L-ORNITHINE Vasomotor and allergic rhinitis 0.83
BUDESONIDE Autoimmune thyroiditis 0.82
GOLIMUMAB Benign neoplasm 0.82

ARCITUMOMAB Skin disease 0.82
INSULIN, ISOPHANE Unspecified diabetes mellitus 0.82
HYDROCORTISONE Integumentary system cancer 0.82

CHLOROQUINE Bone inflammation disease 0.82
L-CARNITINE Malignant neoplasm 0.82

INSULIN GLARGINE Disease of the genitourinary system 0.81
KETOCONAZOLE Allergic rhinitis 0.8

WARFARIN Generalized skin eruption 0.79
ARCITUMOMAB Nasal cavity disease 0.79

KETOCONAZOLE Malignant neoplasm of prostate 0.79
VITAMIN C Lung disease 0.78

GALSULFASE Malignant neoplasm of other endocrine glands 0.77
L-ORNITHINE Arterial fibrillation 0.75

LUCINACTANT Mood disorder 0.75
VITAMIN C Mental, behavioral and neurodevelopmental disorders 0.74

TETRACYCLINE Allergic rhinitis 0.74
SURAMIN Other disorders of central nervous system 0.73

SULFASALAZINE Other and unspecified noninfective gastroenteritis and colitis 0.71
TINIDAZOLE Bronchial disease 0.71
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Table 4. Ranking of drugs and diseases with new predicted links using GNN.

Drugs. Disease Name Link Prediction
Probability

MEMANTINE Carcinoma 0.98
CINNARIZINE Carcinoma 0.97
MEMANTINE Heart Disease 0.97
IXABEPILONE Complications Additionally, Ill-Defined Descriptions Of Heart Disease 0.96

PREDNISOLONE Malignant Neoplasm of Other Additionally, Unspecified
Urinary Organs 0.95

CLINDAMYCIN Artery Disease 0.93
CLINDAMYCIN Urinary System Disease 0.93

LUCINACTANT Malignant Neoplasm of Other Additionally, Unspecified Major
Salivary Glands 0.93

CINNARIZINE Cancer 0.93
ETOPOSIDE Artery Disease 0.93

L-ORNITHINE Carcinoma 0.92
LUCINACTANT Disorder Of Urinary System 0.92

IMATINIB Heart Conduction Disease 0.91
L-ORNITHINE Heart Disease 0.89
NELARABINE Heart Conduction Disease 0.88
NIMODIPINE Abscess Of Lung Additionally, Mediastinum 0.87

METHOTREXATE Integumentary System Cancer 0.86
PREDNISOLONE In Situ Neoplasms 0.85

MELATONIN Cognitive Disorder 0.85
TEMOZOLOMIDE Other Disorders of Urinary System 0.84

ANASTROZOLE Malignant Neoplasm of Other Endocrine Glands Additionally,
Related Structures 0.82

FLUOCINOLONE ACETONIDE Other Diseases of Liver 0.79
AGALSIDASE β Carbohydrate Metabolism Disease 0.77

CALCIUM ACETATE Type 2 Diabetes Mellitus 0.75
CYSTEAMINE Other Disorders of Carbohydrate Metabolism 0.74

VITAMIN C Type 2 Diabetes Mellitus 0.74
L-CARNITINE Autosomal Dominant Disease 0.70
IBUPROFEN Cardiovascular System Disease 0.70

Table 5. Ten-fold cross validation accuracies for link prediction using RF, Gboost, and GNN in DDKG.

Methods 1 2 3 4 5 6 7 8 9 10 AUROC

RF 96.69 99.44 99.60 98.05 99.88 99.65 98.34 98.86 99.68 99.52 98.09

GB 92.10 97.12 99.80 91.60 99.69 96.83 97.07 94.86 97.32 98.39 96.19

GNN 95.55 99.36 95.56 95.42 98.62 99.22 97.98 95.18 99.86 100.00 97.70

GCN 99.75 100.00 99.75 99.872 99.87 100.00 99.75 100.00 100.00 99.87 99.19

Table 6. Graph theoretic measures for the GDKG and DDKG networks.

Network Measure GDKG DDKG

Spectral gap 37.5218 99.7221
Density 0.0221 0.0452

Average number of neighbors 26.423 13.345

We have compared the GCN-based link prediction in the knowledge graphs with
other ML methods, Random Forest, Gradient boosting, GNN, and preferential attachment.
The GCN method demonstrated the best performance with highest accuracies from ten-fold
cross validation for link prediction in both the GDKG and DDKG.
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4. Discussion

All of the 423 genes in the GDKG are highly activated and related to muscle atrophy
in spaceflight. However, it is necessary to identify a few most important genes related
to other conditions that can enable the identification of drugs for repurposing. The GCN
link prediction method has achieved the highest accuracy of 96.11%, as seen from AUROC
values for the ten-fold cross validation accuracies for the four methods of RF, GB, GNN
and GCN given in Table 2. The GCN link prediction method has predicted 20 important
genes. Their association with other diseases [34] is given in Table 1. For example, RPS25
is an mRNA significantly affected in spaceflight gastrocnemius [5] and its reduction in
bed rest [35]. From Table 1, we see that this gene is not only significantly activated in
muscle atrophy but is also associated with disorder of central nervous system. Similarly,
many of the muscle atrophy genes in Table 1 such as SNF8 [36], ELK4 [37], FTO, and EIF3H
are associated with neurodegenerative diseases. The Eukaryotic Initiation Factor (EIF)
is one of the most complex translation initiation factors and consists of several subunits.
The EIF3 complexes are central regulators of atrophy in skeletal muscle and are also linked
to neurodegenerative diseases [38]. Muscle activity causes the ubiquitin-proteasome system
to remove sarcomeric proteins. A decrease in muscle mass is associated with: (1) increased
conjugation of ubiquitin to muscle proteins; (2) increased proteasomal ATP-dependent
activity; (3) increased protein breakdown that can be efficiently blocked by proteasome in-
hibitors; and (4) upregulation of transcripts encoding ubiquitin, some ubiquitin-conjugating
enzymes (E2), a few ubiquitin-protein ligases (E3) and several proteasome subunits [39].
The proteins such as NDUFS3 identified by the GCN link prediction methods are important
for reversion of myopathies in mice [40]. These are atrophy associated proteins (NDUFS3,
NDUBF2 part of the ubiquitin-proteasome system [41]. The loss of other target genes such
as MEF2A results in progressive atrophy [42]. Myostatin, a member of the TGF-β family
is a negative regulator whose predominant secretion in skeletal muscles causes muscle
atrophy. Similarly, an increase in autophagy related gene ATG3 is identified by GCN link
prediction [43]. Resistive Exercise (RE) with superimposed vibration mechanosignals (RVE)
is proposed to counter muscle atrophy, which is effective against the over expression of
Mitochondrial Ribosomal Proteins (MRPs) and Mitochondrial Tu Translation Elongation
Factor (TUFM) that cause muscle atrophy [44]. Some of the MRP proteins are identified
to be linked with other diseases such as cancer. Lack of Zinc Finger RNA-binding (ZFR)
proteins also cause severe muscle wasting [45]. The collagen β(1-O)galactosyltransferase
type 1 (COLGALT1) has been identified, whose loss of function also causes muscle atro-
phy [46]. Many proteins such as RPL7A have increased expression in cancer [47]. Other
critical regulators of muscle atrophy such as protein arginine methyltransferases (PRMTs)
-PRTM5 is linked by the GCN method [48]. Other genes such as SNW1 are also prioritized in
other diseases such as Amyotrophic Lateral Sclerosis (ALS) [49]. Hence, we find that genes
overexpressed in skeletal muscle atrophy are also found to be prioritized in other diseases
such as cancer, and neurodegenerative diseases. Mitochondria-related gene MRPS21 has
been identified here as well, whose declined expression has been found in sarcopenia or
age-related skeletal muscle deterioration [50].

The four ML link prediction methods are applied to the DDKG. As seen from Table 5,
the GCN method obtains the highest accuracy of 99.19%. The top ranked drugs with new
predicted links and highest probabilities above 0.7 using the GCN method are listed in
Table 3. The drug L-carnitine is an essential nutrient that has been proposed as a dietary
supplement to enhance β-oxidation and treat skeletal muscle atrophy conditions [51]. This
nutrient is predicted with the highest probability by the GCN method. This is followed by
thiamine, which is also an essential nutrient that has been selected by the GCN method.
Thiamine is another nutrient whose deficiency causes myotonic dystrophy. It has been
found that treating patients with intramuscular thiamine 100mg twice a week for 11 to
12 months is effective in improving muscle strength [52]. Both L-carnitine and thiamine are
potential nutrients that can be given as a dietary supplement countermeasure for skeletal
muscle atrophy in spaceflight. There is no specific treatment for muscle atrophy, with only
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recent advances in the identification of treatments such as nanotechnology approaches [53].
However, ML based methods such as the GCN can be used to select drugs. The drugs
selected by the GCN method for repurposing are commonly used for the treatment of
diseases that are associated with skeletal muscle atrophy. Bimagrumab is an anabolic
medication used for treating muscle wasting in COPD [54]. Arcitumomab and golimumab
are drugs belonging to the Monoclonal AntiBodies (MABs) family predicted by the GCN
method (Table 3). Decline in anabolic signals and activation of catabolic pathways con-
tribute differently to muscle atrophy pathogenesis associated with diseases or unfavorable
conditions such as spaceflight. Hence, epigenetic drugs have been proposed [55] to target
multiple pathways. Fluocinolone acetonide is a corticosteroid with glucocorticoid activity
selected by the GCN method, which could be a useful drug for repurposing for skeletal
muscle atrophy. As mentioned in [56], niclosamide is not a good drug for repurposing
for glucocorticoid-induced muscle atrophy or cancer cachexia. Anti-inflammatory drugs
such as dexamethasone, and drugs alendronate have been proposed for the therapeutic
management of muscle wasting and sarcopenia [57]. Similar drugs such as hydrocortisone
and chloroquine are selected by link prediction. Insulin resistance is a significant cause
of decreased protein and glucose available for muscle anabolism [58]. It can be noted
from Table 3 that four insulin related medications have been selected for repurposing.
The four drugs: L-carnitine, clindamycin, vitamin C, L-ornithine, and nelarabine selected
by GCN, have also been selected by the GNN method with new predicted links and higher
probability as seen in Table 4. Additionally, the common top ranked diseases with predicted
links using GCN and GNN from the DDKG are metabolic diseases, type 2 diabetes, cancer,
and neurological disorders. Although there is some overlap in the identified diseases and
drugs using the GCN and GNN methods, the drugs predicted by the GCN method are
more reliable, as this method has the highest accuracy for the link prediction probabilities.
It has better performance in training with lesser samples, and validation accuracies.

The graph-theoretic measures of degree distribution, neighborhood connectivity,
Eigenvector centrality, and subgraph centrality for the nodes in the GDKG and DDKG are
listed in Supplementary Table S1 for the 473 genes, and in Supplementary Table S2 for the
98 drugs, respectively. The degree distribution ranges from 1 to 171 for the gene nodes in
the GDKG network and between 5 to 76 for the drug nodes in the DDKG network, respec-
tively. Some of the gene nodes, as well as drug nodes, have a higher number of connections
in the networks. The neighborhood connectivity is higher in the GDKG because the net-
work is constructed using a large number of diseases overlapping with skeletal muscle
atrophy. The neighborhood connectivity is ten for all the drug nodes in the DDKG because
we selected a maximum of ten significant drugs for each disease. The Eigenvector centrality
is a measure of the influence of a node in a network, the higher this score, the greater the
connectivity of this node with nodes that have a higher score for the same measure. This
measure is similar for the genes and the drugs in both networks. The subgraph centrality
of a node is a weighted sum of the numbers of all closed walks of different lengths in the
network starting and ending at the node. There are more closed walks for the gene nodes
in the GDKG, hence this value is higher for the gene nodes in GDKG than the drug nodes
in the DDKG. The graph theoretic measures for the whole GDKG and DDKG networks are
given in Table 6. The DDKG network has a higher value of spectral gap, indicating that the
network is sparse, and has higher measures for random walk, diffusion, and expansion.
The GDKG network has a higher average number of neighbors, indicating that the skeletal
muscle genes have higher neighborhood connectivity measure.

The preferential attachment network measure-based link prediction gives an average
accuracy of 74.10%, while the ML-based methods give accuracies above 80%. The random
walk measure is shown to be a better network measure for link prediction than preferential
attachment. The ML methods of GNN, RF and GB which use random walk features perform
better than preferential attachment-based link prediction alone. The ML method of GCN
that uses semi-supervised learning of the graph structure by node embeddings performs
best for link prediction in both the GDKG and DDKG networks giving an accuracy of
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96.11% and 99.19% in the GDKG and DDKG networks, respectively. The average accuracy
of the GNN, RF, and Gboost method for link prediction in the GDKG network is 88.69%,
whereas the GCN gives a much better accuracy of 96.11%. Overall, ML methods can be
used for novel applications such as the identification of new gene regulators of diseases
from spaceflight datasets and candidate drugs for their treatment.

5. Conclusions

Though skeletal muscle atrophy is known to be an incapacitating consequence of
several chronic diseases, increasing morbidity and mortality, no drug is approved to treat
this condition. It also severely affects animal models flown in spaceflight missions. In this
paper, we have presented a comprehensive study on skeletal muscle atrophy identifying
the key genes that give rise to this condition in spaceflight microgravity. By the application
of ML algorithms, we have identified the main gene regulators of skeletal muscle atrophy
that are also highly activated in other diseases. By constructing disease drug networks and
applying ML algorithms for link prediction, we have identified top ranking drugs with
the highest probability that are novel candidates for the management of skeletal muscle
atrophy in spaceflight microgravity. In this work, we have mined seven GeneLab datasets
to identify key genes and drugs. Through network analysis and ML methods, we show
that our networks are scalable and can be expanded to include as many datasets, genes and
drugs for speeding up the process of identifying repurposable drugs for medical conditions
that arise in long duration spaceflights.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13030473/s1, Table S1: Network measures for the 473 genes in the Gene Disease
Knowledge Graph (GDKG); Table S2: Network measures for the Drug nodes in the Drug Disease
Knowledge Graph (DDKG).
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