o-o0
aO>0
>0
—0-

genes

Article

Molecular Design-Based Breeding: A Kinship Index-Based
Selection Method for Complex Traits in Small
Livestock Populations

Jiamin Gu 12, Jianwei Guo 12, Zhenyang Zhang >3, Yuejin Xu '+, Qamar Raza Qadri ¢, Zhe Zhang 123,

Zhen Wang "2, Qishan Wang 1:2-3/4/*

check for
updates

Citation: Gu, J.; Guo, J.; Zhang, Z.;
Xu, Y.; Qadri, Q.R;; Zhang, Z.; Wang,
Z.; Wang, Q.; Pan, Y. Molecular
Design-Based Breeding: A Kinship
Index-Based Selection Method for
Complex Traits in Small Livestock
Populations. Genes 2023, 14, 807.
https:/ /doi.org/10.3390/
genes14040807

Academic Editors: Linyuan Shen and
Mailin Gan

Received: 7 February 2023
Revised: 22 March 2023
Accepted: 23 March 2023
Published: 27 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Yuchun Pan 1.2/3:4,5/*

College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture
and Rural Affairs, Hangzhou 310058, China

Zhejiang Key Laboratory of Dairy Cattle Genetic Improvement and Milk Quality Research,

Hangzhou 310058, China

Hainan Institute, Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and
Technology City, Yazhou District, Sanya 572025, China

Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University,
Shanghai 200240, China

Correspondence: wanggishan@zju.edu.cn (Q.W.); panyuchun1963@aliyun.com (Y.P.)

Abstract: Genomic selection (GS) techniques have improved animal breeding by enhancing the
prediction accuracy of breeding values, particularly for traits that are difficult to measure and have
low heritability, as well as reducing generation intervals. However, the requirement to establish
genetic reference populations can limit the application of GS in pig breeds with small populations,
especially when small populations make up most of the pig breeds worldwide. We aimed to propose
a kinship index based selection (KIS) method, which defines an ideal individual with information
on the beneficial genotypes for the target trait. Herein, the metric for assessing selection decisions
is a beneficial genotypic similarity between the candidate and the ideal individual; thus, the KIS
method can overcome the need for establishing genetic reference groups and continuous phenotype
determination. We also performed a robustness test to make the method more aligned with reality.
Simulation results revealed that compared to conventional genomic selection methods, the KIS
method is feasible, particularly, when the population size is relatively small.

Keywords: animal breeding; breeding approach; KIS; indigenous pig breeds

1. Introduction

China is home to approximately 84 indigenous pig breeds, which are rich in genetic
resources and possess a wide range of desirable and undesirable traits. Some of the
desirable traits include high meat quality, large litter size, high tolerance to roughage, and
disease resistance, while undesirable traits include slow growth, high feed conversion ratio,
and low lean meat rate. Examples of typical indigenous pig breeds include Jinhua and
Laiwu pigs. To achieve pigs with desirable traits, one approach is to select indigenous
breeds with superior performance or to create new breeds (lines) through crossbreeding
between Chinese indigenous breeds and intensive breeds such as Duroc, Landrace, and
Large White.

Before the widespread availability of high-throughput sequencing technology, best
linear unbiased prediction (BLUP) was the most commonly used selection method in China,
which is based on pedigree information and uses a kinship matrix to estimate breeding
values. Despite its widespread use in early animal breeding, the accuracy of BLUP is
limited by the quality of the pedigree information and performance test scale [1].
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The utilization of genomic prediction, through the correlation of whole-genome geno-
types with phenotypes in a large sample of individuals, has been established as a means
of enhancing quantitative traits in domesticated animals [2-4]. However, the reliance on
imputed genomic regions can result in decreased prediction accuracy when applied to
populations with divergent linkage disequilibrium structures [5].

The advancement of next-generation sequencing technology has greatly increased
the volume of pig genomic data, making it possible to utilize this information in breeding
studies. The most commonly used method is genomic best linear unbiased prediction
(GBLUP), which allows for the direct estimation of an individual’s genetic merit through
the construction of a genomic relationship matrix G, instead of a kinship matrix A based
on pedigree information. While GBLUP methods assume that all markers have the same
genetic variance. In reality, only a few single nucleotide polymorphisms (SNPs) have an
impact and are linked to the quantitative trait loci (QTL) affecting the trait, while most
SNPs are ineffective [6-8].

In the realm of genetic prediction, Bayesian techniques have gained prominence due
to their incorporation of marker effect variance as a predetermined prior distribution. This
approach encompasses a range of variations, such as BayesA, BayesB, BayesC, Bayesian
Lasso, among others. These methods address limitations in the single-trait genomic best
linear unbiased prediction (GBLUP) method by assuming that only a few single nucleotide
polymorphisms (SNPs) have significant effects, with the variance of these effects following
an inverse chi-squared distribution. This assumption aligns more closely with reality, as
only a few SNPs are usually linked to the quantitative trait loci (QTLs) affecting the trait,
while most SNPs have no effect. As a result, the BayesB method is often more accurate
when few QTLs control genetic variation with large effects [9-11].

Compared to GBLUP methods, Bayesian models have more estimated parameters,
leading to increased computational effort and improved prediction accuracy. However,
the computational speed and robustness are not as favorable as those of GBLUP [12,13].
Both Bayesian and GBLUP methods rely on the accuracy of phenotypic determination and
require the creation of a large-scale reference population to ensure selection accuracy [8,9].

In the case of Chinese pig breeds with small foundation populations and the breed-
ing work being carried out involves both intraspecific selection and the hybridization of
locally adapted varieties with introduced varieties to create new hybrid varieties, a genetic
reference population may not exist, and the determination of quantitative traits may not be
precise due to a lack of highly qualified breeding staff and refined breeding equipment.

The main purpose of genomic selection is to estimate genome-wide SNP effects based
on a reference population and then to sum the genetic effects of candidate individuals
based on the specific alleles they carry. This means first identifying an ideal individual;
then the more similar a candidate is to an ideal individual, the higher its breeding value.
For this purpose, we propose a kinship index based selection (KIS) method. To validate the
efficacy and stability of the KIS method, we performed a series of simulations using the
MoBPS R package [14].

2. Materials and Methods
2.1. Methods

In the KIS method, the first step is to identify parental varieties that support the
breeding objectives. The second step is to design breeding strategies; common breeding
strategies include introgression cross breeding, stepwise cross breeding, and multiple
cross breeding. The third step is to design ideal individuals with the desired genotype
harboring parental advantageous traits, compare the differences between candidate and
ideal individuals, and finally, select and cross the individuals with high similarity with the
ideal individual. The visual representation of the process is shown in Figure 1A.
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Figure 1. (A) The entire progress of the KIS method; (B) The progress of constructing the ideal individual.

The establishment of the ideal individual is the core component of the KIS method, and
the accuracy of this method is entirely dependent on the quality of the ideal individual. The
first step in building the ideal individual is to identify the advantageous traits in the parent
breed. Different pig breeds have specific advantages; the advantageous traits of Chinese
indigenous pigs are mainly in meat quality, roughage tolerance, and disease resistance,
while that of the introduced breeds has better leanness, growth rate, and feed conversion
ratio [15]. The beneficial genotype corresponding to the desired trait is identified after
the determination of the advantageous trait. The beneficial genotype can be established
by GWAS, QTL database, pig resource census data, etc. The ideal individual containing
the desired traits is established. In the actual operation process, the genome is divided
into several subsystems based on traits or trait categories. The KIS method calculates the
similarity between candidate individuals and ideal individuals based on each trait or trait
category, and then synthesizes a comprehensive index (kinship index KI) by weighting
according to importance. Considering the existence of multiple effects for one cause, we
analyzed the interactions between genes and selected loci for consideration based on
the effect value; loci with small effect values will be ignored. The process of selection is
illustrated in Figure 1B.

Based on the positional information of the ideal individual, the genotypes of the
candidate individuals at these loci were extracted and compared to that of the ideal indi-
vidual. The results of the comparison are expressed in the form of ordinals of 0, 1, and
2, where 0 represents both disadvantage alleles, 1 represents allelic heterozygosity with
half advantageous alleles, and 2 represents advantageous alleles. The sum of the scores
for all loci represents the degree of similarity between the candidate individual and the
ideal individual. Candidate individuals are ranked according to their similarities to ideal
individuals, and those with high similarities will be selected.

2.2. Simulation
2.2.1. Historical Population

The historical population consisted of 200 animals, with an equal number of males
and females. For each individual, an underlying true genetic value is calculated for
each trait. Based on this, phenotypes can be generated [14]. Two quantitative traits
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containing 100 additive QTLs and 500 additive QTLs, respectively, were assigned to the
historical population where each individual carries a varying number of QTLs. The genomic
variance of these traits was simulated to be 1. According to the KIS method, two purebred
populations, each to be selected for one quantitative trait, were created from the historical
population. The purebred populations were raised separately for 10 generations. In
each generation, 5 sires and 20 dams were crossed to obtain 200 offspring, of which the
numbers of males and females were equal. The selection of sires and dams depended on
the advantage of genotypic similarity with the ideal individual and was independent for
the two purebred populations. Hereon, the two purebred populations are referred to as
population A and population B. The simulation process for historical populations is shown
in Figure 2A. Figure 2B shows principal components analysis of individuals in the founder
population and generation 10 of population A and population B; the x-axis denotes the first
principal component and the y-axis represents the second principal component.
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Figure 2. (A) The entire progress of simulating the historical population and (B) the principal com-
ponent analysis of individuals in the founder population (black circle) and population A (green circle)
and population B (red circle) of generation 10.

2.2.2. Breeding Program

We implemented hybridization and pure breeding programs to test the effectiveness of
different breeding approaches. During the hybridization process, the first hybrid generation
was obtained by mating five sires from population A and 20 dams from population B from
generation 10 of their respective populations. Subsequently, 20 females from the first
hybrid generation were mated with five males from population B of generation 10. The
two generations in the hybridization process were referred to as generations 11 and 12,
respectively. Animals in the purebred reproduction breeding process were mated with their
contemporaries, and five males and 20 females were selected to maintain the population
in each generation. Five generations of the purebred reproduction breeding process were
simulated to examine the effectiveness of diverse breeding methods.

2.2.3. Evaluation Criteria

An animal’s true breeding value was used as an evaluation criterion to evaluate the
effectiveness of different breeding methods. The advantageous genotype, as well as, the
effect of each QTL was considered in the simulation, therefore, an individual’s true breeding
value was calculated as follows:

nQTL

TBV; = ) ZijaQrL;s
=1

where TBYV; is the true breeding value of individual i, agry is the vector that includes the
additive QTL effect values, and Z is the genotype matrix for all animals, which is coded
by 0, 1, 2. All simulations were repeated 10 times and the resultant data were tested for
significance using ANOVA.
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2.3. Feasibility Test

Four selection methods, including KIS, GBLUP, BayesB, and strategy based on true
breeding value (TBV), were implemented in the simulation. The effectiveness of each
selection method was evaluated by the true breeding values of the simulated individual. In
addition, negative control simulation was implemented by replacing the ideal individual
with an individual with 600 noneffective loci and random beneficial alleles.

2.4. Robustness Test

Robustness tests were implemented to fit better replicate the real situation, including
QTL with different false negative rates, QTL with different false positive rates, QTL with
different quantitative gradients, and the scale of foundation population and selection
proportion, and simulation of dominant and epistatic effects.

2.4.1. QTL with Different False Negative Rates

QTL for the ideal individual was sorted considering the smallest to greatest effect
values, that is, 10%, 20%, and 30% of the QTL were randomly selected for deletion to
reconstruct the ideal individual (false negative individual), and the missing QTL of the
ideal individual with a low absence rate was contained in the one with high absence rate.
The selection and mating of simulated individuals were optimized according to the false
negative individual. Nevertheless, the TBV of the mating individuals was calculated using
true QTL effects.

The advanced KIS method did not consider QTL effects when establishing the ideal
individual, therefore, we built an ideal individual containing beneficial genotypes and QTL
effects. Other basic settings were as previously described.

2.4.2. QTLs with Different Pseudo-Positive Rates

The pseudo-positive rates were the same as those in the false negative test, which
included three gradients. However, pseudo-positive QTLs were adjacent to true QTLs on
chromosomes. The false positive QTL did not duplicate true QTL, and beneficial genotypes
were assigned randomly. Other basic settings were as previously described.

2.4.3. QTLs with Different Quantitative Gradients

In addition to the combination of 100 and 500, which represent the number of QTLs
for two quantitative traits, three other combinations, including, 100-350, 150-400, and
200-500 were considered to investigate the robustness of the KIS method. The number of
QTLs for the other three selection methods subsequently changed. Other basic settings
were as previously described.

2.4.4. Scale of Foundation Population

In this context, different scales of the foundation population were taken into consid-
eration to detect the robustness of the KIS method, while the number of QTLs was the
same as in the previous simulation (100-500). Five different gradients of the foundation
population sizes, that is, 2000, 1000, 500, 200, and 50, were utilized to examine if the KIS
method was still valid in the disparate scale of the foundation population. The ratio of
male to female was half in all the selection methods. Five sires and 20 dams were selected
for mating according to the criteria corresponding to different selection methods. Other
basic settings were as previously described.

2.4.5. Selection Proportion

For the examination of the selection proportion, the scale of the foundation population
was fixed at 200, with an equal number of sires and dams. Five selection proportions:
0.2-0.5, 0.15-0.4, 0.1-0.3, 0.05-0.2, and 0.03-0.1 were simulated. In these combinations, each
group of figures represented the proportion of male and female animals in the foundation
population. Other basic settings were the same as previously described.
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2.4.6. Simulation of Dominance and Epistatic Effects

In the simulation of dominance and epistatic effects, the impact of each effect on the
accuracy of the KIS method was first simulated separately, followed by a simultaneous
consideration of both effects on the simulation results. Different QTL gradient settings
were employed in the simulation, representing 10%, 20%, and 30% of the total number of
QTLs with additive effects.

3. Result
3.1. Negative Control Simulation

Figure 3 shows the comparison of the KIS method and negative control for determining
the breeding values of boars in all generations. The comparison reflected that the breeding
value of the boars in the KIS method increased in succeeding generations. Moreover, the
breeding values of boars corresponding to the negative control remained unchanged except
for in the F1 generation. This may be because the F1 boars were mainly heterozygotes, and
heterozygotes were assigned a value of 1 during calculation. The same phenomenon was
consistent in the selected group of sows.

method

method il T|
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B GBLUP B cBLUP
W ws | «s
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Figure 3. The comparison of the KIS method with negative control and general breeding methods for
breeding values of boars and sows.

3.2. Feasibility Test

The comparison of the KIS method with conventional breeding methods for deter-
mining the breeding values of boars and sows is illustrated in Figure 3. The breeding
values corresponding to all breeding methods increased in succeeding generations. The
TBV method had the highest breeding values among all generations, followed by the KIS
method, whose value was higher than those of the BayesB and GBLUP methods. The
results of the significance tests for breeding values are presented Table 1. The significance
test results show no significant difference between the breeding values corresponding
to the various breeding methods until the G3 generation (generation 3). In contrast, G4
generation (generation 4) onwards, there was a considerable difference between TBV and
other breeding methods.

3.3. QTLs with Different False Negative Rates

The breeding values corresponding to the KIS method at different deletion rates are
shown in Figure 4A,B. The breeding values corresponding to the KIS method increased
in succeeding generations at different absence rates, and there was no apparent regularity
in the scale of breeding values between absence rates. The significance test results are
presented in Table 2; the differences in breeding values corresponding to absence deletion
rates were not significant in any generation.

Data corresponding to the KIS method with zero absence rate were selected for
comparison with general breeding methods; the results were the same as those shown
in Figure 3. Figure 4C,D shows the results of the comparison of four different absence
rates with QTL effects taken into consideration. The results of the significance test (Table 2)
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indicate that there was no significant difference between the breeding values associated
with varying rates of absence until generation G3, while the breeding values related to a 30%
absence rate in generation G4 were significantly different. The breeding values associated
with a 20% absence rate in generation G5 also show significant differences compared to the
other absence rates.

Table 1. The results of the significance tests for breeding values. The same letter (A,B) used in the
labeling of different methods indicates no significant difference, while different letters indicate a
significant difference between the two methods.

50

Generation
Method F1 F2 G1 G2 G3 G4 G5
etho
KIS 55.068 B 56.049 A 57.165 B 58.196 B 59.318 B 60.396 B 61.446 B
Negative control 45.003 A 53.809 A 53.958 A 54179 A 53.873 A 54.262 A 54.011 A
GBLUP 53.685 A 55.624 A 56.949 A 57.648 A 58.585 A 59.396 B 60.199 B
BayesB 53.952 A 55.665 A 56.638 A 57.594 A 58.583 A 59.136 B 59.930 B
KIS 55.068 A 56.049 A 57.165 A 58.196 A 59.318 A 60.396 AB 61.446 AB
TBV 55.207 A 57.896 A 59.439 A 60.858 A 62.190 A 63.410 A 64.576 A
65- 85-
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©
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Figure 4. The results of comparing four different absence rates for equal-weight KIS method for boars
(A) and sows (B); The results of comparing four different absence rates with QTL effects taken into
consideration for weighted KIS method for boars (C) and sows (D).

3.4. QTLs with Different Pseudo-Positive Rates

The results of the pseudo-positive test are shown in Figure 5A,B. The comparison of
breeding values for different pseudo-positive rates shows that the breeding value decreased
as the pseudo-positive rate increased in succeeding generations. The significance test shows
that the differences between breeding values corresponding to different pseudo-positive
rates were not significant in any generation. The results of the significance tests for breeding
values are shown in Table 3.



Genes 2023, 14, 807 8 of 15

Table 2. The results of the significance tests for breeding values in false negative simulation. The
same letter used in the labeling of different methods indicates no significant difference, while different
letters indicate a significant difference between the two methods.

Generation
F1 F2 G1 G2 G3 G4 G5
False Negative Rates
0% (equal) 55.068 A 56.049 A 57.165 A 58.196 A 59.318 A 60.396 A 61.446 A
10% (equal) 55.014 A 56.242 A 57.620 A 58.552 A 59.498 A 60.633 A 61.768 A
20% (equal) 54.887 A 56.222 A 57.497 A 58.702 A 59.665 A 60.559 A 61.536 A
30% (equal) 55.137 A 56.462 A 57.636 A 58.582 A 59.462 A 60.473 A 61.499 A
0% (weight) 55.807 A 57.131 A 58.755 A 60.199 A 61.466 A 62.903 A 64.040 A
10% (weight) 54.789 A 55.891 A 56.724 A 57.622 A 58.589 A 59.534 AB 60.148 AB
20% (weight) 54.765 A 55.707 A 56.476 A 57.594 A 58.342 A 59.278 AB 59.843 B
30% (weight) 54.936 A 55.739 A 56.601 A 57.490 A 58.252 A 59.106 B 59.954 B
65 65
A B
g, eo- false_postive g, eo- false_postive
5 M 0% £ M 0%
3 I 20% 2 [ 20%
5 M 30% 5 M 30%
-g Ssﬁﬁﬂi B ; SSHHNNN )
50 - T T T P T - o w e oy ow
Lok 90 0 0 0 O LoL 0 0 0 O o
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C D
65- 65-
g, method g, method
% 60- . BayesB % 60- . BayesB
3 [ eBLUP 2 [ eBLUP
S M xis 5 M «is
o M T8V » M TBV
éss“ﬂﬂﬂ §55- NHN
50 - B T R T g S0 e T e ey o
W w [ [} Q [ Q W e Q [ Q Q Q

generation generation

Figure 5. The comparison of breeding values for different pseudo-positive rates for boars (A) and
sows (B); The comparison of the KIS method with general breeding methods for breeding values for
boars (C) and sows (D).

Table 3. The results of the significance tests for breeding values in the pseudo-positive simulation.
The same letter used in the labeling of different simulations indicates no significant difference, while
different letters indicate a significant difference between the two simulations.

Generation
F1 F2 G1 G2 G3 G4 G5
Pseudo-Positive Test

0% 55.068 A 56.049 A 57.165 A 58.196 A 59.318 A 60.396 A 61.446 A

10% 55.109 A 56.088 A 57.146 A 58.155 A 59.193 A 60.087 A 60.780 A

20% 54.733 A 56.124 A 57.032 A 57.928 A 58.946 A 59.749 A 60.649 A

30% 54.641 A 55.666 A 56.673 A 57.777 A 58.757 A 59.703 A 60.646 A

GBLUP 53.685 A 55.624 A 56.949 A 57.648 A 58.585 A 59.396 B 60.199 B
BayesB 53.952 A 55.665 A 56.638 A 57.594 A 58.583 A 59.136 B 59.930 B

KIS (30%) 54.641 A 55.666 A 56.673 A 57.777 A 58.757 A 59.703 B 60.646 B

TBV 55.207 A 57.896 A 59.439 A 60.858 A 62.190 A 63.410 A 64.576 A
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The result of the comparison of the KIS method with the other selection methods is
presented in Figure 5C,D. In addition, data on breeding values relating to the KIS method
with a 30% false positive rate were compared with those of the conventional methods and
showed that the KIS method was less effective than the TBV method but better than the
rest of the selection methods. The results of the significance tests for breeding values are
presented in Table 3. The significance test results showed no significant difference between
the breeding values corresponding to the various breeding methods until the G3 generation.
In contrast, G4 generation onwards, there was a considerable difference between TBV and
other breeding methods.

3.5. QTLs with Different Quantitative Gradients

The results of the three quantitative gradients regarding the number of different QTL
tests are presented in Figure 6, and the significance test results are shown in Table 4. The
results of breeding values show the same regularity regardless of the quantitative gradient,
i.e., the KIS method is less effective than the TBV method but better than the other methods.
Furthermore, the results of the significance test showed that the TBV method showed
significant differences compared with the other selection methods only at generation G5
when the number of QTLs was small. In contrast, the TBV method showed significant
differences compared with the other selection methods at generation G1 as the number of
QTLs increased. The KIS method showed no substantial compared differences with the
BayesB and GBLUP methods in any generation.

65-

oo

QTL100-500

80- QTL 100-350
method method
| BayesB h | BayesB
[ eBLUP 55~ [ eBLUP
B Kis B s
M T8V M TBv

50-
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& 3 & 8 3 8

boar's breeding value

generation generation
70-
QTL 150-400 2 QTL 200-500
s
method o method
c
M BayesB T 65 B BayesB
= GBLUP g = GBLUP
KIS a8 KIS
W v » B v
S 60-
o]
55-
& g & 8 3 8

generation generation

Figure 6. The comparison of the KIS method with general breeding methods for breeding values in
different QTL quantitative gradients.
3.6. Scale of Foundation Population

Figure 7A,B illustrates the results of the foundation population size simulation. The
comparison reflected that breeding values increased as the scale of the foundation pop-



Genes 2023, 14, 807

10 of 15

ulation increased, however, the difference in breeding values between the foundation
population scales was not significant. Only at a foundation population size of 100 in the G5
generation, the breeding value was significantly different from those of the other founda-
tion population scales. The results of the significance tests for breeding values with scales
of different foundation population is shown in Table 5.

Table 4. The results of the significance tests for breeding values with QTL quantitative gradients.
The same letter used in the labeling of different simulations indicates no significant difference, while
different letters indicate a significant difference between the two simulations.

Generation
— - F1 F2 G1 G2 G3 G4 G5
QTL Quantitative Gradients
GBLUP (QTL 100-350) 48.941 A 51.324 A 52.115 A 53.249 A 54.355 A 55.065 A 56.156 AB
BayesB (QTL 100-350) 49.161 A 51.138 A 52.353 A 53.312 A 53.979 A 54.609 A 55.551 B
KIS (QTL 100-350) 50.320 A 51.661 A 52.970 A 54.012 A 55.304 A 56.204 A 57.185 AB
TBV (QTL 100-350) 50.372 A 53.380 A 54931 A 56.339 A 57.617 A 58.834 A 59.977 A
GBLUP (QTL 150-400) 52.4935 A 53.8096 B 54.6248 B 55.8352 B 56.4513 B 57.2635 B 58.1057 B
BayesB (QTL 150-400) 52.5697 A 53.9613 B 54.6381 B 55.6529 B 56.6019 B 57.3517 B 57.8415 B
KIS (QTL 150-400) 53.6179 A 54.5528 AB 55.5732 B 56.5278 B 57.4771 B 58.5359 B 59.4759 B
TBV (QTL 150-400) 53.4380 A 56.2417 A 57.8186 A 59.1561 A 60.5100 A 61.7221 A 62.9629 A
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Figure 7. The breeding values corresponding to the KIS method at different scales of foundation
population for boars (A) and sows (B); The breeding values corresponding to the KIS method at
different selection proportions for boars (C) and sows (D).

3.7. Selection Proportion

The selection proportion simulation experiment results are presented in Figure 7C,D
and show that the breeding value is essentially inversely proportional to the selection
proportion in both males and females. In addition, the significance test results showed that
the effect of different selection proportions on breeding values does not differ significantly
in all generations. The results of the significance tests for breeding values with different
selection proportions are shown in Table 5.
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Table 5. The results of the significance tests for breeding values with different selection propor-
tions.The same letter used in the labeling of different simulations indicates no significant difference,

while different letters indicate a significant difference between the two simulations.

Generation

F1 F2 G1 G2 G3 G4 G5
Simulation Test
Popsize 2000 55.391 A 56.751 A 58.575 A 60.159 A 61.646 A 63.016 A 64.532 A
Popsize 1000 55.363 A 56.690 A 58.272 A 59.692 A 60.943 A 62.250 A 63.591 AB
Popsize 500 55.130 A 56.260 A 57.748 A 58.893 A 60.252 A 61.464 A 62.400 AB
Popsize 200 55.068 A 56.049 A 57.165 A 58.196 A 59.318 A 60.396 A 61.446 AB
Popsize 100 54.641 A 55911 A 56.907 A 57.583 A 58.345 A 59.235 A 60.039 B
SI_3_10 55.411 A 56.738 A 57.999 A 59.044 A 60.615 A 61.564 A 62.152 A
SI_5_20 55.068 A 56.049 A 57.165 A 58.196 A 59.318 A 60.396 A 61.446 A
SI_10_30 55.219 A 56.186 A 57222 A 58.179 A 59.157 A 59.483 A 60.948 A
SI_15_40 55.051 A 56.009 A 56.810 A 57.689 A 58.574 A 59.483 A 60.184 A
SI_20_50 54.978 A 55.899 A 56.666 A 57.329 A 57.968 A 58.675 A 59.303 A

3.8. Simulation Results of Dominance and Epistatic Effects

Figure 8 presents the results of considering only dominant effects, only epistatic effects,
and both dominant and epistatic effects, from top to bottom, and the number of QTL from
10% to 30%, from left to right. Notably, when accounting for both dominant and epistatic
effects, a declining trend in breeding values was observed for each generation as the number

of QTL increased.
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Figure 8. The result of simulation for non-additive effects. In the figure, from top to bottom,
the addition of dominant effects, the addition of supernumerary effects, and the addition of both
dominant and supernumerary effects; from left to right, the proportion of the number of non-additive
effect QTL to the number of additive effect QTL, from 10% to 30%.
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Compared to the conventional breeding method, individuals selected through the
KIS method exhibited superior performance in terms of true breeding values, with overall
higher breeding values than those selected by the conventional method, albeit with a slight
reduction in just a few generations. Importantly, individuals selected based solely on true
breeding values achieved the highest scores, and all KIS scores were inferior to these. In
addition, the results of the significance test show that there is no significant difference in
breeding value among KIS method and conventional breeding methods. The results of
the significance tests for breeding values with different selection proportions are shown in
Supplementary Table S1.

4. Discussion

In this study, we aimed to assess the effectiveness and stability of the KIS method in
a breeding program. The KIS method is distinct from previous selection methods in the
following ways: (1) The selection criteria are established by identifying an ideal individual,
(2) The measurement of phenotypic traits is not a crucial aspect of the breeding process,
and (3) A large reference population is not necessary, making the KIS method appropriate
for small pig populations.

The effectiveness of genomic selection is dependent on the linkage disequilibrium
between causative mutations and the SNP markers (generally numbering approximately
50,000) utilized in genomic predictions [16]. The dairy cattle industry has widely adopted
this technology, with over 4 million animals genotyped via SNP arrays. Despite its success
in narrowly defined populations, such as Holstein-Friesian dairy cattle [9]. However,
in the field of pig breeding, the use of whole-genome markers is not feasible due to the
multitude of indigenous pig breeds in China. Furthermore, the SNP markers predominantly
utilized are derived from breeds such as Duroc, Landrace, and Large White, which exhibit
a significant genetic distance from the indigenous pig breeds of China [17].

Under almost all the mentioned simulation conditions above, the selection effective-
ness of the KIS method was better than that of the GBLUP and BayesB methods but lower
than that of the TBV method across all generations. This may be due to the limited sample
size in the simulation population, which hinders the full potential of the GBLUP and Bayes
methods and reduces their accuracy, this also demonstrates that the KIS method has its
own unique features in the case of small population size.

In the negative control simulation experiment, the breeding value of F1 was signifi-
cantly lower than that at other ages. This may be because the F1 generation mainly included
heterozygotes, and the heterozygotes were assigned a value of 1 during calculation.

In the simulation experiment for false negatives, the performance of individuals
selected through the equally weighted KIS method showed no decrease in their true
breeding values as the rate of absence increased. However, this result was not in line
with expectations as the individuals selected by the equally weighted KIS method were
observed to have a higher abundance of favorable gene loci, however, the total of these
loci did not yield the highest values in terms of breeding values, in the scenario of low
absence rates. This discrepancy could also be due to a truncated selection mating strategy,
as the breeding values of offspring produced through different mating combinations are
not always positively correlated with the breeding values of their parents. When assigning
equal weights, certain QTLs with large effects may not be favored solely based on the
number of favorable genes they possess. However, by removing part of QTLs with minor
effects, the weights of these large-effect QTLs are amplified, which could help explain this
phenomenon. In other words, removing part of the influence of small-effect QTLs through
the equal-weighted approach may enable the large-effect QTLs to receive the recognition
they deserve.

The simulation results for false positives were as anticipated, with a decrease in
breeding values as the false positive rate increased. Despite this, the KIS method was
generally consistent with both the GBLUP and BayesB methods, even when the false
positive rate reached 30%.
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The patterns observed in the three distinct QTL quantitative gradients were not
completely congruent with prior simulations. While the patterns of the breeding values
remained unchanged, the results of the significance tests revealed that as the number of
QTLs increased, the TBV method demonstrated significant disparities compared to the
other methods at earlier generations. For instance, in the first QTL quantitative gradient
(350-100), significant differences were only noted in generation G5, while in the third QTL
quantitative gradient (500-200), significant disparities appeared as early as generation G1.
This may be attributed to the increase in the breeding value of the ideal individual with an
increasing number of simulated QTL and the consequent loss of more QTL loci during the
transmission hybridization process.

In practice, balancing breeding effectiveness with production costs requires controlling
the scale of the foundation population within acceptable limits. Results from simulation
studies indicated that increasing the size of the foundation population leads to a corre-
sponding increase in breeding effectiveness. However, statistical significance tests of the
KIS method revealed little difference between different foundation population scales in
generations other than the fifth, where a foundation population size of 100 led to a sub-
stantial difference. Additionally, the results of the seed reservation simulations were as
expected, with breeding values rising with each generation as reservation rates decreased.
These results suggest that breeders using the KIS method have the flexibility to tailor the
reservation rate and foundation population scale to meet specific requirement.

When dominant and epistatic effects were considered in the simulation, the selection
effect of KIS gradually decreased as the proportion of dominant and epistatic effects
QTL number increased, probably because the proportion of additive effects gradually
decreased when dominant and epistatic effects were taken into account in the design of
ideal individuals.

When considering only additive effects, we calculated the coefficient of variation
corresponding to four different methods within the same generation, and the results are
shown in the Supplementary Table S2. In the table, the coefficient of variation for the KIS
method is very close to that of the TBV method. After the G2 generation, the CV for the
KIS method is slightly higher than that of the TBV method, which may be due to the fact
that the KIS method did not assign weights to each locus during selection.

The simulation study presented in this paper showcases the effectiveness of the KIS
method in selecting individuals for breeding. Our model selectively bred individuals from
the same generation, under similar environmental conditions, and with a focus on a few key
traits. This method has proven to be effective in enhancing genetic gain while minimizing
the risk of negative traits being unintentionally selected for. However, it is important to
note that our model only considered individuals from the same generation and under
similar environmental conditions, without accounting for external factors such as field
effects and maternal effects. In the process of hybrid breeding, selection is carried out in
the same generation and the same gender, considering only the genotypes and excluding
the influence of environmental effects.

5. Limitations and the Future of Applying the KIS Method

The effectiveness of the kinship index based selection (KIS) method is limited by the
accuracy and coverage of functional genes in pigs. Previous studies have reported on
the association of functional genes with traits in pigs, and databases, such as The Farm
animal Genotype-Tissue Expression TWAS server (http://twas.farmgtex.org/) [18] and
PigVar [19], exist which combine non-redundant variations and evolutionary selective
scores. Results from the simulation study indicated that the mating method used may
impact selection by the KIS method and that the truncated selection method used may not
be the most optimal. Previous research has suggested that incorporating advantageous
effects into the mating method can balance genetic progression and genetic diversity, albeit
with some loss of genetic progression [20-22]. In the KIS method, a truncation selection
approach is adopted. After the selection of males and females is completed, they are


http://twas.farmgtex.org/

Genes 2023, 14, 807 14 of 15

randomly paired without considering the impact of inbreeding coefficients on breeding
results. In actual breeding processes, conventional mating methods can be used to avoid
rapid increases in inbreeding coefficients, some mating methods have been mentioned in
the previous text. In subsequent studies of the KIS method, we will continue to research
mating methods for improvement. In future studies, the authors aim to provide a database
of beneficial genotypes and mating methods to support the KIS method.

6. Conclusions

The KIS method solves the problem of phenotypic determination and establishment of
genomic reference populations in the breeding process by establishing an ideal individual;
it is a breeding method that is easy to implement, has a wide range of applications, and
has high accuracy. The application value of the KIS method will continue to improve as
research on pig functional genes progresses.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/ genes14040807 /s1, Table S1: The result of significance
tests for non-additive effect simulations. Table 52: The result of variation corresponding to four
different methods within the same generation.
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