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Abstract: It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-
helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only
RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria
and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that
of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S,
and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle.
Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the
peptidyl transferase centre and any vestiges of the anti-Shine–Dalgarno sequence). Interestingly, we
detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.
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1. Introduction

Before the emergence of catalytic proteins and DNA for heredity as separate molecules,
RNA was the first biological molecule. Two of its characteristics, while prone to mistakes,
allowed life to arise in a hypothetical “RNA world”: it could store information and act
as a catalyst for processes like self-excision [1–3]. Test tube experiments have showed the
various catalytic properties of RNA, reinforcing the idea that the first biochemical systems
could have been entirely centred on that molecule [4].

Since RNA is the most versatile of all the biological macromolecules, and based on
physicochemical theoretical works, RNA is thought to have originated the genetic code
~4.36 + 0.1 billion years ago [5–9]. Eigen and Schuster [10] glimpsed that the primeval
genetic code (PGC) consisted of ribonucleotide chains following the pattern RNY, in which
R means purines (A/G) and Y means pyrimidines (C/U), while N symbolises any of
the nucleobases (A/C/G/U) in accordance with the parity rule R:Y. It was also shown
that RNY is the main pattern in ribosomal RNA (rRNA) subunit 5S (5S rRNA) for more
than 200 varied species [11], and that only primitive transfer RNA (tRNA) molecules with
the RNY pattern are susceptible to being efficiently replicated, translated, and therefore
amplified [12].

Early RNA genes could have been very short, reaching a maximum length of 50 to
100 nt, with most probably configured into mini-helixes whose strands must are stable and
therefore equivalent to each other in topology and chemical composition [5–7,10,13–19].
These probably functioned as proto-tRNAs [20–23]. Indeed, these proto-tRNAs have been
found to be concatenated to form all the rRNAs [24], including the peptidyl transferase
centre (PTC) of the ribosome [25–27]; the concatamers can be translated into functional,
modern-like proteins [28]. It has been proposed that the Ur-gene was composed of RNY
sequences, while the RNA was folded in hairpins and mini-helixes resembling proto-tRNAs,
which were able to bind prebiotic amino acids (aa) [5–7,10,29] that were also encoded by
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RNY triplets i.e., aa encoded by the aforementioned PGC. Actually, the mini-helix is thought
to be the most ancient historical domain of tRNAs (3.6–3.7 BYA) [30].

We previously obtained the phenotype of amino acids and proteins corresponding to
the evolution of genetic code [29,31], but RNA evolution was simply ignored. In this work,
we determine the 2D and 3D structures of early RNA molecules based on the PGC. We find
that those RNAs can indeed fold into short hairpins, and we even capture the anticodon
loop of some of the earliest tRNA isoacceptors able to carry prebiotic aa.

2. Methods

We retrieved the RNAome from phylogenetically distant organisms, from which the
triplets that did not belong to the early genetic code (RNY) were discarded. The sequences
were then grouped according to type; then, each fragment was assembled into its original
order in cases that the original gene had more than one fragment encoded by RNY triplets.
To generate negative controls, the sequences were shuffled thrice. If more than one organism
contained at least one RNA fragment encoded by RNY triplets, the fragments of each RNA
type were arranged according to the original order in the gene; the RNAs were then aligned
with each other to obtain a consensus sequence, and the corresponding logo sequences were
generated. It is worth recalling that Ts were replaced by Us. Finally, we obtained the 2D
and 3D structures of the RNAs encoded by RNY triplets. Each of the steps that we followed
is detailed below, and a graphical flowchart can be found in Supplementary File S1.

2.1. Data Sources

From https://ftp.ncbi.nlm.nih.gov/genomes/refseq/ accessed on 4 October 2023, we
obtained all the RNAs (*RNA*.fna) of 13 bacteria (bac.) [Aquifex aeolicus VF5 (NC_000918.1)
→ “AqfxV”, Bacillus subtilis 168 (NC_000964.3) → “Basub”, Borreliella burgderfori B31
(NC_001318.1)→ “Bobur”, Deinococcus radiodurans R1 (NC_001263.1 y NC_001264.1)→
“Derad”, Escherichia coli K12 MG1655 (NZ_CP025268.1)→ “EcoK12”, Mycoplasma genital-
ium G37 (NC_000908.2)→ “Mygen”, Ca. Pelagibacter ubique HTCC1062 (NC_007205.1)→
“Peubi”, Shewanella piezotolerans WP3 (NC_011566.1)→ “Shpz3”, Streptococcus agalactiae
A909 (NC_007432.1)→ “SagA”, Synechococcus CC9902 (NC_007513.1)→ “SynCC”, Thermo-
toga maritima MSB8 (NC_000853.1)→ “Thmar”, Thermus aquaticus Y51MC23 (NZ_CP010822.1)
→ “TaqY51”, Thermus thermophilus HB8 (NC_006461.1),→ “Ther2”] and 13 archaea (arc.)
[Acidianus hospitalis W1 (NC_015518.1) → “Aciho”, Ca. Nitrosopumilus sediminis AR2
(NC_018656.1)→ “Nised”, Haloarcula marismortui ATCC 43049 (NC_006396.1 y NC_006397.1)
→ “Hamar”, Haloferax volcanii DS2 (NC_013967.1)→ “Hxvol”, Haloquadratum walsbyi DSM
16790 (NC_008212.1)→ “Haqwa”, Korarchaeum cryptofilum OPF8 (NC_010482.1)→ “Kocry”,
Methanocaldococcus jannaschii DSM_2661 (NC_000909.1) → “Mejan”, Methanosarcina ace-
tivorans C2A (NC_003552.1)→ “Macet”, Pyrococcus furiosus DSM 3638 (NC_003413.1)→
“Pyfur”, Sulfolobus acidocaldarius DSM 639 (NC_007181.1)→ “Sacid”, Thermococcus gamma-
tolerans EJ3 (NC_012804.1)→ “Thgam”, Thermococcus sibiricus MM739 (NC_012883.1)→
“Thsib”, Thermoplasma volcanium GSS1 (NC_002689.2)→ “Tmvol”].

2.2. Reconstruction of Sequences of Ancient RNAomes

To reconstruct the original arrangement of the RNAome, all RNAs were assembled
one after the other, i.e., coding-wise (CW) with an ad hoc program, just as they are reported
in the file *RNA*.fna, allowing a posterior alignment.

To generate an ad hoc filter for our arrangements, we also generated a random se-
quence from each assembled RNAome, shuffling the nucleotides thrice to eliminate the
biological sense and information of the sequence. From each RNAome, and from its
corresponding shuffled control, we discarded all triplets except those of the RNY type.

2.3. Grouping and Assembly of RNAs

Using BLASTn [32] as a standalone version, we used the biological RNAomes that
we constructed (previously mentioned) by concatenating all the RNA sequences of each
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organism and their corresponding controls (the shuffled sequences) as queries. This allowed
us to obtain the RNAs encoded by the PGC using the file *RNA*.fna* of every organism as
the databases. Since RNY possesses only a quarter of the number of triplets as the SGC,
we adjusted the parameters to allow as many outcomes as possible from those commonly
used in BLAST searches, while preserving the maximum E-value at 10. To determine a
cut-off value for the RNAs retrieved, numerical comparisons of the E-values of each of the
biological RNAomes in RNY with their corresponding controls (those previously shuffled)
were performed, thus setting the cut-offs for each organism.

The length of the RNA molecules was not selected beforehand but was the result of
using a BLAST alignment for two sequences so that the fragments were retrieved as they
were encoded by RNY triplets in the RNA molecules of each organism.

We grouped all the retrieved fragments according to the RNA molecule to which each
one belongs; for instance, all fragments belonging to 5S rRNA were grouped together, all
RNA fragments of A-type RNase P were grouped together, etc., and this was performed for
each organism. Additionally, the tRNAs were sorted according to their cognate aa and the
anticodon of each, which we identified using the programs ‘tRNA finder’ [33] and ‘tRNA
scan’ [34]. Note that we provide the anticodon, and not the codon, of each aa.

2.4. MSAs of RNAs

Not all forms of RNA recovered have RNY triplet-encoded segments in more than one
organism. In fact, only ribosomal RNAs (rRNAs) can be aligned with each other because
several organisms contain more than one copy of the same gene, and the RNY-encoded
portions are at similar positions. To align the small fragments encoded by RNY triplets
of the ribosomal genes, we used the CHAOS-DIALIGN software (version 2.2.2) [35], as it
works best with fragmentary sequences in local alignments. From the multiple sequence
alignments (MSAs) generated, we obtained the consensus sequence using the UGENE
suite [36].

2.5. Sequence Logos

We generated a graphical representation, in the form of sequence logos [37], of the
MSAs of the RNA molecules encoded by RNY triplets.

2.6. Representation in 2D of the Recovered Fragments

We predicted the secondary structure of all our individual RNA sequences, or their
consensuses, within the webserver RNAfold of the ViennaRNA suite [38], selecting the
structure with the minimum free energy (MFE) under the Andronescu model, avoiding
isolated base pairs, and leaving all other parameters the same. The 2D structures were
visualised with the tool forna [39].

2.7. Representation in 3D of the Reconstructed Fragments

For RNA molecules encoded by RNY triplets, we adopted the Vienna format (dot-
bracket notation) provided by the 2D-structure prediction program to construct de novo
the corresponding 3D structure on the automated modelling server RNAcomposer (version
1.0) [40]. The structures were visualised using Chimera software (version 1.14) [41].

2.8. Negative Controls

To generate control sequences, we shuffled each of the RNY-encoded fragments
(or their consensus sequences) thrice and obtained their thermodynamic descriptions and
2D and 3D structures, as was performed for the biological sequences.

3. Results and Analyses

We used the genomes of 26 organisms with different lifestyles (13 bacteria and
13 archaea) based upon the latest update of the tree of life (ToL), which places eukary-
otes among the latter [42–47].
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There are several challenges in modelling an RNA molecule de novo, and the difficulty
increases as the length does by virtue of the fact that RNA folding depends on numerous
parameters [48]. Accordingly, the folding of RNY-encoded fragments did not entail addi-
tional difficulties, as they are mostly short and self-complementary; however, this detail is
particularly interesting because several authors have considered early RNAs to be folded
like hairpins or mini-helixes.

Table S1T in Supplementary File S2 lists the MFE of the RNA fragments encoded by
RNY triplets, as well as the corresponding controls (shuffled sequences). Notice that the
MFEs of the majority of the negative controls are higher than the biological sequences from
which they come, i.e., the biological structures are more stable than their controls. In some
cases, the MFEs of the biological sequences and the negative controls are zero (or just
slightly lower than the biological one), which indicates that the results are not artefactual.

In some organisms, the three rRNAs and nine tRNAs have well-defined portions
encoded by RNY triplets. Moreover, the RNA moieties of some signal recognition particles
(SRP-RNA), RNases P (RNA-P), and RNAs 6S, retain small antique portions. All figures
not shown in the main text can be found in Supplementary File S3.

The 5′ end is always the first nucleotide in 2D structures; however, we placed each 3D
RNA structure with the 5′ position towards the viewer and labelled both ends (5′ and 3′) in
Supplementary File S3 (so as not to clutter the main text).

3.1. Ribosomal RNAs

The ribosome is a ribonucleoprotein lair formed by two subunits—a large ribosomal
subunit (LSU) and a small ribosomal subunit (SSU)—in which, in turn, peptide growth
is enabled entirely by RNA and the structural scaffold is provided by ribosomal proteins.
The 16S rRNA couples with the messenger RNA (mRNA) to be translated into proteins
according to the codons in it. The most critical portion of the translation is the peptidyl
transferase centre (PTC), embedded in 23S rRNA; the PTC is formed by the A site and P
site, while the important E site does not belong to the PTC. Finally, 5S rRNA keeps the
tRNAs positioned at the A and P sites until translation finishes. Both 23S and 5S rRNAs
belong to the LSU, while 16S rRNA belongs to the SSU [49–53].

The three types of rRNA have portions encoded by RNY triplets. In some cases,
only one organism has a recognisable sequence of this type, but for most of them the
ribosomal RNAs from several organisms have PGC-encoded portions, so it makes sense
to generate sequence alignments to obtain consensuses that can be modelled in 2D and
3D. In all cases, we can see that the biological sequence is more stable than its control
(Figures 1–3 here below and Supplementary File S2), and they tend to conform into short
or complex helixes.

Only the 5S rRNA of the archaeon “Mejan” has a portion encoded by RNY triplets at
the end of the molecule, and this fragment is folded like a hairpin (Figure 1A). On the other
hand, the 5S rRNAs of many of our bacteria have RNY-encoded regions in the first quarter
and also mostly in the third quarter of the molecule (Figure 1B).

The portions encoded by RNY triplets in both 16S and 23S rRNAs are punctually
dispersed throughout both types of sequences (Figures S2 and S3 in Supplementary File S3,
all the corresponding logo sequences and their corresponding controls can be found).

As we can observe, the RNY-encoding of 16S rRNA conforms to a clearly defined
region, with weak nucleotides (A and T/U) flanked by strong nucleotides (G and C) in the
middle of the sequence in both archaea (Figure S2A in Supplementary File S3) and bacteria
(Figure S2B in Supplementary File S3); additionally, the 3′ end in bacteria is slightly less
defined than in archaea.

On the other hand, RNY triplets recovered only a tiny fragment (60 nt) of 23S rRNA, with less
conservation in the archaeal (Figure 3A) than in the bacterial (Figure 3B) reconstructions.
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sequences of the bacterial alignment; the MFE is also indicated in each case. On each panel,
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3.2. RNase P, SRP, and 6S

The RNA moieties of some types of RNase P (Figure 4), some types of SRPs (Figure 5),
and one 6S RNA (Figure 6), have at least one portion encoded by RNY triplets. Each of these
fragments is present in only one, although not the same, of the 26 organisms selected here.

RNase P is a ubiquitous ribonucleoprotein that catalyses the maturation of tRNAs by
removing their extraneous 5′ sequences. All species require the RNA moiety of the RNase P
(RNA-P), but whereas in bacteria and archaea the protein portion is totally or just marginally
dispensable, respectively, eukaryotes cannot survive without the proteins of their RNase
P [54–56]. The RNA-Ps of the archaeon “Hxvol” (Figure 4A) and of the bacterium “Mygen”
(Figure 4B) each have one portion encoded by RNY triplets. The archaeal RNA-P fragment
is more stable than its control, whereas the MFE of the second bacterial RNA-P fragment is
zero, as is that of its shuffled control (Supplementary File S2). On other hand, the RNA-P of
the bacterium “SynCC” has two fragments encoded by the PGC. In Figure 4C, we observe
the concatenation of both fragments in the same order as they appear in the original RNA
molecule, and this construct is more stable than its corresponding control. When each
fragment is modelled individually (Supplementary File S2), we see that the first one is
more stable than its control, and that the stability of the control of the second fragment
is just slightly higher than that of the biological sequence. All those RNA-P fragments
encoded by RNY triplets, whose MFE is different from zero, tend to form mini-helixes or
hairpin-like structures.
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The signal recognition particle (SRP) is a widely distributed GTP-dependent ribonu-
cleoprotein that helps direct the protein synthesis towards the membrane when needed.
This SRP-RNA serves as the scaffold on which all its proteins will be assembled. SRP has
so far been described in two variants in bacteria and one in archaea, as well as many more
versions in eukaryotes. The SRP-RNA has several self-complementary regions that can fold
into a few or many helixes [57,58]. The RNY triplets partially encode the RNA moieties
of the SRP of the archaeon “Kocry” (Figure 5A) and of the bacterium “Basub” (Figure 5B).
The archaeal SRP-RNA is much more stable than its control (Figure S5A in Supplementary
File S3); the bacterial SRP-RNA and its control (Figure S5B in Supplementary File S3) have
an MFE of zero, although the entropy is slightly higher than in the shuffled sequence.

The 6S RNA molecule is a widespread small global regulator of bacterial transcription
that mimics B-form DNA and then binds to the active site of RNA polymerase (RNApol),
thus blocking the transcription and enabling the release of the enzyme RNApol. It folds
into a single, long self-complementary structure with some internal loops along the length
of the molecule [59–64]. The molecule 6S RNA of the bacterium “Basub” is the only one of
its kind with a portion encoded by RNY triplets (Figure 6), and it has a slight hairpin-like
folding; although the paired bases are too few to achieve this, their entropy is certainly
lower than that of its corresponding control.

3.3. tRNAs

The tRNAs are molecules ranging from 76 to about 90 nt in length that fold into a 2D
cloverleaf or a 3D L-shape. The tRNAs serve as the physical adaptors between the genetic
code “read” by the anticodon in the middle of the molecule and the phenotype in the
form of the corresponding aa charged in the distal 3′ portion [65–67]. We found 12 tRNAs
with one portion each encoded by RNY triplets (Figure 7, with only a few examples; the
complete catalogue 7A to 7L is in Supplementary File S2); five of them can fold into small
hairpins (sort of helix-like), while the other tRNA fragments remain unfolded.
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Figure 7. The 2D and 3D structures of RNY−encoded portions of some tRNAs. In (B), Asn-5′GUU
from “Thgam”; in (E), Cys-5′GCA from “Derad”; in (H), Gly-5′UCC from “Derad”; in (I), Gly-5′GCC
from “Peubi” with the anticodon circled in red; in (K), Thr-5′GGU from “SagA” with the anticodon
circled in red. The complete catalogue is in Supplementary File S2.

In most cases, the biological sequences are more stable than their corresponding
controls, such as the tRNA of the archaea “Haqwa” for Gln-UUG (Figure S7A in Supple-
mentary File S3 or of “Thgam” for Asn-GUU (Figure S7B below). Some other cases are
only slightly more stable than the controls, such as the tRNA of the bacterium “Derad”
for Cys-GCA (Figure S7E in Supplementary File S3). On a few occasions, the MFE of the
biological sequence is zero, as is that of its control sequence, as in the case of bacteria
“Bobur” for Gln-UUG (Figure S7D in Supplementary File S3) or “Derad” for Gly-UCC
(Figure S7H below).

Remarkably, three of the RNY-encoded fragments capture the anticodons of their
corresponding tRNAs. To wit, Gly-tRNA_GCC of the bacterium “Peubi” (Figure S7I below)
and Thr-tRNA_GGU of the bacterium “SagA” (Figure S7K below) totally capture the
anticodons (letters underlined in the text and circled in red in the corresponding figures)
that are located just in the middle of the fragments and therefore at the loop of hairpin.
Moreover, the bases of the anticodons point outwards as in the full tRNA molecules; each
of the activating amino acids of these anticodons is also encoded by the PGC (Gly and Thr).
This contrasts with Gly-tRNA_UCC of the bacterium “Derad” (Figure S7H below) because,
even if Gly were encoded very early, the PGC would not include the anticodon UCC. On
the other hand, the fragment of tRNA-Gln_CUG of the bacterium “Derad” (Figure S7F
in Supplementary File S3) encoded by RNY triplets remains unfolded, as we mentioned
earlier; the contrast relies on the fact that the anticodon is only partially included (only the
letters underlined) in the fragment encoded by the PGC and that glutamine is not encoded
by RNY triplets.

Finally, in several cases the control sequence is even more stable than the biological
one but has a minor difference, as with the tRNA of the bacterium “SagA” for Asn-GUU
(Figure S7H below) or “Thmar” for Phe-GAA (Figure S7L in Supplementary File S3).

4. Discussion

Though not all organisms have RNA with RNY-encoded portions, and although
such fragments are very small and can barely be aligned, it is noteworthy that all the



Genes 2023, 14, 2158 9 of 13

RNA molecules directly involved in the modern translation process withhold a snippet
encoded by the PGC. We found that such RNY triplet-encoded RNA snippets can fold
into small hairpins shorter than the size proposed for early functional genes (or even for
proto-tRNAs) able to shape all the other biomolecules [24], suggesting an earlier stage
in the evolution [68] that probably constituted the beginnings of these RNA molecules.
Moreover, when we compare the predicted structure of the sequence encoded by RNY
triplets of Gly-tRNA_GCC with its modern structure (PDB ID 4mgn), we observe that not
only the whole structures, but even the anticodon bases of both, are in almost the same
outward positions (Figure 8). In contrast, in the case of the Gly-tRNA_UCC fragment,
the anticodon is not retrieved, a fact already reckoned with in 1981 [20,21] regarding a
differential emergence of tRNA isoacceptors.
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and its anticodon is in deep blue.

It is strikingly important to have discovered that the anticodon stem of tRNA-Gly_GCC
is purely encoded by RNY triplets because the whole tRNA cloverleaf may possibly have
been formed via the ligation of proto-tRNA mini-helixes, 3–31 nt in length (one of which
encoded for glycine_GCC [69]), which resemble some of the other small RNA molecules
found to be encoded using RNY triplets. Without going any further, any modern tRNA
could have its origin in mini-helixes [29,69–71] that could be replicated themselves [72],
combining the operational code in an ancient anticodon helix with the informational code
in an early acceptor helix [19], prior to the appearance of contemporary tRNA specificities,
and quite before the three domains of life diverge [73].

Life most probably originated when proteins began to be translated, for which a well-
established PTC (as well as the respective anti-Shine–Dalgarno sequence) is the sine qua
non [27,74,75]; however, we did not find any of them encoded by RNY triplets, which places
our work in the realm of the protobiotic stage, and the small RNA hairpins encoded by
RNY as the primordial seeds that eventually grew and ligated to each other to form more
recognisable modern RNA molecules.

RNA could then have polymerised and randomly generated short ribonucleic chains
in which the RNY pattern gradually began to prevail, as if it was a quasi-species [6,58] that
evolved through cooperative interaction via cyclic coupling, i.e., hypercycles. Those RNA
short sequences and their limited diversity supported prebiotic, autocatalytic reproduction
by means of hypercycles [5,10,15–18,21]. Lastly, it is safe to assume that the Ur-RNA
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proposed here, encoded by the PGC, emerged before the so-called “First Universal Common
Ancestor” (FUCA), because the PTC cannot be found encoded by RNY triplets [69,70].

RNA evolved as one of the first phenotypic biomolecules and the primordial genotypic
biomolecule, and the PGC of such RNAs followed the pattern RNY. The modern translation
molecules have their origins from short RNA hairpins formed by triplets pertaining to
the PGC. All the small hairpins here described possibly constituted the beginnings of
the corresponding modern RNA molecules and were probably part of a larger pool of
RNA molecules that served as the seeds of more complex molecules. The lengths of our
RNA sequences (20–30 nt) are far from the error catastrophe limit [5], and the Ur-gene is
proposed [20,21] to have a length between 50 and 100 nt.

Speaking of contemporary issues, synthetic genetic codes can be designed to generate
new proteins, and it is known that mutations of tRNA are associated with several diseases.
For instance, cellular and mitochondrial tRNA overexpression and mutation relate to a
wide range of human diseases [76–78], such as breast cancer [79] and neuro-gastrointestinal
encephalopathy [80].

The results presented here provide astounding evidence that our approach can detect
molecular structures from the protobiotic stage >3.7 billion years ago with surprising confidence.
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https://www.mdpi.com/article/10.3390/genes14122158/s1. File S1 contains the graphical flowchart
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and their controls. File S3 contains all the RNA sequence logos, and the 2D and 3D structures of each
of the RNAs declared in this work.

Author Contributions: Conceptualization, M.V.J.; study design and analysis, M.P.-P. and M.V.J.;
manuscript writing, M.P.-P. and M.V.J.; writing—review and editing, M.V.J.; funding acquisition:
M.V.J. All authors have read and agreed to the published version of the manuscript.

Funding: M.P.-P. is a postdoctoral researcher at the Universidad Nacional Autónoma de México
(UNAM) supported by fellowship 694877 of the Consejo Nacional de Humanidades, Ciencias y
Tecnologías (CONAHCYT). M.V.J. was funded by the Dirección General de Asuntos del Personal
Académico (DGAPA), Universidad Nacional Autónoma de México, UNAM (PAPIIT-IN200823).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors thank Juan R. Bobadilla for his invaluable computer and technical
assistance, and the members of the Theoretical Biology Group for their generous feedback. Authors
thank also to anonymous reviewers for helping to improve this work. Molecular graphics and analy-
ses were performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization,
and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-Splicing RNA: Autoexcision and Autocyclization

of the Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157. [CrossRef]
2. Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA Moiety of Ribonuclease P Is the Catalytic Subunit of

the Enzyme. Cell 1983, 35, 849–857. [CrossRef]
3. Gilbert, W. Origin of Life: The RNA World. Nature 1986, 319, 618. [CrossRef]
4. Brown, T.A. Genomes, 2nd ed.; Wiley-Liss: Oxford, UK, 2002; ISBN 978-0-471-25046-3.
5. Eigen, M.; Gardiner, W.; Schuster, P.; Winkler-Oswatitsch, R. The Origin of Genetic Information. Sci. Am. 1981, 244, 88–119.

[CrossRef] [PubMed]
6. Wächtershäuser, G. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery. Life 2014, 4, 1050–1091.

[CrossRef]
7. Chatterjee, S.; Yadav, S. The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the

Evolution of Translation and the Genetic Code. Life 2019, 9, 25. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/genes14122158/s1
https://doi.org/10.1016/0092-8674(82)90414-7
https://doi.org/10.1016/0092-8674(83)90117-4
https://doi.org/10.1038/319618a0
https://doi.org/10.1038/scientificamerican0481-88
https://www.ncbi.nlm.nih.gov/pubmed/6164094
https://doi.org/10.3390/life4041050
https://doi.org/10.3390/life9010025
https://www.ncbi.nlm.nih.gov/pubmed/30832272


Genes 2023, 14, 2158 11 of 13

8. Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.-J.; Mojzsis, S.J.; Omran, A.; Pasek, M.A.; Trail, D. When Did Life
Likely Emerge on Earth in an RNA-First Process? ChemSystemsChem 2020, 2, e1900035. [CrossRef]

9. Lehman, N. The RNA World: 4,000,000,050 Years Old. Life 2015, 5, 1583–1586. [CrossRef]
10. Eigen, M.; Schuster, P. The Hypercycle—A Principle of Natural Self-Organization Part C: The Realistic Hypercycle. Naturwis-

senschaften 1978, 65, 341–369. [CrossRef]
11. Eigen, M.; Lindemann, B.; Winkler-Oswatitsch, R.; Clarke, C.H. Pattern Analysis of 5S rRNA. Proc. Natl. Acad. Sci. USA 1985,

82, 2437–2441. [CrossRef] [PubMed]
12. Lehmann, J. Amplification of the Sequences Displaying the Pattern RNY in the RNA World: The Translation → Transla-

tion/Replication Hypothesis. J. Theor. Biol. 2002, 219, 521–537. [CrossRef]
13. Eigen, M.; Winkler-Oswatitsch, R. Transfer-RNA: The Early Adaptor. Naturwissenschaften 1981, 68, 217–228. [CrossRef]
14. Eigen, M.; Winkler-Oswatitsch, R. Transfer-RNA, an Early Gene? Naturwissenschaften 1981, 68, 282–292. [CrossRef] [PubMed]
15. Delaye, L.; Lazcano, A. Prebiological Evolution and the Physics of the Origin of Life. Phys. Life Rev. 2005, 2, 47–64. [CrossRef]

[PubMed]
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