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Abstract: Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance
between the production of reactive oxygen species (ROS) and the body’s ability to neutralize them
arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have
been linked to reduced sperm motility and decreased fertilization ability. This literature review
discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such
as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The
investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA
damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation.
Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and
differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS
during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally,
this review addresses a valuable insight into the mechanisms of male infertility provided by these
advances and how they have led to new treatment possibilities. Overall, the use of biomarkers
to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches,
enhancing our understanding of male infertility mechanisms.

Keywords: oxidative stress; sperm DNA damage; epigenetic alterations; omics; infertility

1. Introduction

Male fertility can be affected by oxidative stress (OS), a condition in which a redox
imbalance occurs between the production of reactive oxygen species (ROS) and the cells’
antioxidant protection systems. In physiological concentrations, ROS are necessary for
proper spermatic functions such as the acrosome reaction, capacitation, and sperm–oocyte
fusion [1]. However, an excess of ROS leads to OS, causing structural and functional
damage to sperm cells, including lipid peroxidation, protein oxidation, and DNA damage,
resulting in compromised male fertility and a risk of genetic mutations in offspring [2,3].
Elevated ROS concentrations, found in seminal fluid samples from infertile men, are
often due to pathological conditions or environmental factors such as infections, smoking,
alcoholism, and diet [4–7].

Exposure to environmental pollutants can affect sperm parameters and sperm DNA
quality, resulting in cell apoptosis [8].

Insecticides, pesticides, and environmental toxins (heavy metals, bisphenol A, and
dioxins) lead to a reduction in male fertility, causing an alteration in sperm DNA both
directly and indirectly, through the production of ROS, with a consequent reduction in
the number of ejaculated spermatozoa and the presence of morphologically abnormal
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spermatozoa in seminal fluid [8–12]. Associations have also been found between the
urinary concentrations of particular oxidative substances and sperm apoptosis [13,14].

Spermatozoa are vulnerable to oxidative attack due to both the lack of an adequate
range of defensive enzymes resulting from the restricted distribution of cytoplasmic space
and the susceptibility of sperm membrane lipids caused by significant amounts of polyun-
saturated fatty acids. Under stressful conditions, spermatozoa undergo an intrinsic apop-
totic pathway characterized by the generation of mitochondrial ROS, the loss of mitochon-
drial membrane potential, caspase activation, phosphatidylserine exposure, and oxidative
DNA damage [15].

Antioxidant defense is essential for an adequate sperm–oocyte interaction. Under
physiological conditions, ROS are converted by the action of the antioxidant enzyme SOD
into hydrogen peroxide, which is metabolized by CAT and GPX into water and oxygen, thus
lowering intracellular stress [16]. The imbalance of these antioxidant defense mechanisms
is correlated with an impairment of ejaculate quality, with testicular morphological changes
leading to male infertility [17].

The environment, lifestyle, and the resulting OS can also induce epigenetic varia-
tions, post-translational modifications of histones, coding and non-coding RNAs, and
DNA methylation, which are closely linked to spermiogenesis alteration and male infertil-
ity [18]. A distinctive sign of spermiogenesis is the change in the structure of the chromatin,
resulting from the exchange of the majority of histones with protamines, which occurs
precisely following the information of the epigenetic memory, and this is important for the
compaction of the nuclear chromatin, the maturation of the spermatozoa, and fertility [19].
During the histone-to-protamine transition, epigenetic regulators work together to facilitate
the reorganization of the paternal genome in highly condensed sperm nuclei through
histone modification. It has been hypothesized that the changes induced in the sperm
epigenome are profound, physiological, dynamic, probably irreversible, and therefore lead
to infertility [20]. OS and genetics can therefore compromise the quality of sperm and its
ability to fertilize the oocyte.

It is known that OS disrupts DNA integrity through the aberrant recombination
of repetitive sequences. If these mutations occur at the level of genes involved in sper-
matogenesis such as Y repetitive sequences, then an impact on reproductive health is
achievable [21]. Similarly, translocations of chromosome 15 are correlated with infertil-
ity. Chromosome 15 includes several genes involved in spermatogenesis, such as cation
channel sperm-associated protein (CATSPER) and the related sensorineural hearing loss
(STRC). Translocations in these genetic portions due to OS are correlated with a lack of
sperm motility, and therefore infertility, and are also associated with hearing loss [22–24].

Various methodologies have been developed to evaluate the levels of specific OS
biomarkers in men with fertility complications.

A biomarker is the assessment of a biological, pathological, or pharmacological process.
In the fertility context, a biomarker is a biological measurement that provides information
about reproductive health or the ability to conceive.

OS biomarkers are molecules or enzymes indicating increased levels of OS and cellular
damage associated with it [25]. Traditionally, OS biomarkers used in male infertility
include DNA damage, lipid peroxidation, and antioxidant enzyme activity (Figure 1).
However, these biomarkers are not always reliable and can be influenced by various factors,
such as age, behavioral factors (e.g., nutrition and lifestyle), and concomitant pathologies.
Therefore, in recent years, numerous research has been conducted to identify new OS
biomarkers related to male infertility.
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Figure 1. The main consequences of oxidative stress in sperm due to the formation of reactive oxygen
species (ROS) and/or reduction of antioxidant enzyme activity.

This evidence-based study aims to provide a comprehensive view on oxidative
biomarkers in male infertility and new methodologies and techniques developed to evalu-
ate OS in infertile men. A transcriptome analysis to identify genes regulated during OS,
providing information on the metabolic pathways involved in the antioxidant response,
will also be conducted. The application of these new methodologies has provided im-
portant information on the mechanisms underlying male infertility and has opened new
perspectives for treatment. Additionally, evaluating biomarkers can help identify patients
who may benefit from specific treatments.

2. Critical Steps of Spermatogenesis

Spermatogenesis is a complex process that leads to the formation of numerous mature
haploid spermatozoa capable of crossing the female reproductive tract and fertilizing the
oocyte. It is divided into three distinct phases: Initially, spermatogonia proliferate to give
rise to primary spermatocytes, which then undergo two meiotic divisions resulting in
the production of haploid spermatids. The final phase of the process, spermiogenesis,
involves the maturation and final morphological transformation of spermatids into mature
spermatozoa [26].

Spermatogenesis begins with spermatogonial stem cells, which through several mitotic
divisions increase their population, leading to the formation of spermatogonia. Subse-
quently, these sperm cells undergo two successive meiotic divisions during which the chro-
mosomes duplicate and undergo homologous recombination, resulting in the formation of
genetically different tetraploid spermatocytes. A second meiotic division follows, leading
to the production of round haploid spermatids. These round cells undergo spermiogenesis,
during which remodeling of the spermatozoa occurs and they acquire an acrosome and a
flagellum, essential for sperm motility and crossing the zona pellucida of the oocyte [27].

During spermatogenesis, the sperm undergoes molecular remodeling at the nuclear
level essential to reduce cell volume and protect the genetic content [28]. Starting from
this phase, DNA begins to be highly compact through the replacement of histones with
protamines in the spermatid nucleus [29,30]. Over the process of protamination, histones
are first hyperacetylated and then replaced with transition proteins (TP1 and TP2), which
are finally removed and replaced with protamines [31].
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In mammals, this process occurs in the seminiferous tubules of the testis, and as the
germ cells pass through each stage, they are translocated from the base of the seminiferous
epithelium to the luminal border. At the end of the spermatogenesis, spermiation occurs,
through which mature haploid spermatozoa are released into the lumen of the seminiferous
tube. The process is characterized by supporting cells, such as Sertoli cells, which pro-
vide structural and nutritional support during spermatogenesis and directly facilitate the
translocation of germ cells within the epithelium. Furthermore, cytoskeletal elements are
essential for motility, differentiation, migration, adhesion, and intracellular trafficking [27].

Although ROS, along with various factors in spermatozoa, increase the production
of intracellular cAMP, which activates protein Kinase A (PKA), thereby inducing an in-
crease in tyrosine phosphorylation, the main driving force behind sperm hypermotility
and subsequent acrosome reaction [32], mature spermatozoa and the different stages of
spermatogenesis are particularly susceptible to damage caused by ROS [33].

Since the process of chromatin condensation, involving the replacement of histones
with protamines essential for correct sperm functionality, occurs in the spermatid nucleus,
it is particularly susceptible to damage induced by ROS [30,33,34].

ROS can alter sperm DNA, causing DNA strand breaks, epigenetic mutations, and
polymorphisms. If the damage is mild, then spermatozoa are able to repair it; however,
extensive damage leads to DNA fragmentation and apoptosis, decreasing the quality
of the seminal fluid [35]. Furthermore, the sperm membrane contains high levels of
polyunsaturated fatty acids, which are the main targets of ROS, thereby reducing sperm
motility [36].

3. Male Oxidative Stress Infertility (MOSI) Biomarkers

There is no doubt that standard semen analysis by verifying the morphology, number,
and motility of the spermatozoa remains the point of reference for the diagnosis and treat-
ment of male infertility; however, the awareness that OS affects normal fertility increasingly
drives clinicians and researchers to investigate the oxidative state of infertile patients to es-
tablish targeted therapy. Agarwal et al. (2016) [37] proposed the term male oxidative stress
infertility, or MOSI, as a new descriptor for infertile men with altered semen parameters,
which also includes patients previously classified as having idiopathic male infertility.

It is estimated that infertility appears in 25–80% of infertile men with low levels
of antioxidants in sperm. Considering that spermatozoa are exposed to both internally
produced ROS and those present in the seminal plasma due to external factors such as
smoking, alcohol, heat, and others, determining their levels is of fundamental importance
as they can be a cause of reduced sperm quality with a decrease in motility and vitality and
increased sperm DNA fragmentation [38–40].

The standard of excellence for OS biomarkers is 8-hydroxy-2′-deoxyguanosine
(8-OHdG), a product of DNA peroxidation [41]. 8-OHdG can be measured in the plasma,
semen, and urine and has been shown to be significantly higher in infertile men than in
fertile men [42]. This indicates increased DNA damage and the deterioration of sperm
function. Some studies have demonstrated a correlation between 8-OHdG levels and the
severity of male infertility, suggesting that it could be used as a prognostic biomarker to
predict the response to treatment. The standardization of probes to detect DNA oxidation
in the form of 8-OHdG has been used as a biomarker of OS in a reproductive context [43].

In addition to these biomarkers, various other molecules and enzymes have been
identified to evaluate OS in male infertility. Alterations in the expression of antioxidant
enzymes, such as superoxide dismutase (SOD), which catalyzes the cleavage of superoxide
anion radicals into hydrogen peroxide, catalase (CAT), and glutathione peroxidase (GPx),
which decreases the hydrogen peroxide content in cells through the formation of water and
oxygen [44] (Figure 2), have been reported in infertile patients [45] and correlate with a
reduced fertilizing capacity [46] due to DNA fragmentation and sperm abnormalities [47].
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Furthermore, proteomic studies have shown that the expression of proteins associated
with spermatogenesis and the regulation of oxidative stress (OS) is altered in infertile men
with high levels of seminal reactive oxygen species (ROS).

Agarwal and colleagues (2019) [48] assessing the overexpression of 248 proteins in
idiopathic infertile men found overexpressed proteins regulated by two transcription factors
(TFs), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A)
and nuclear factor erythroid 2-related factor 2 (NFE2L2), which are the co-activator and
activator of antioxidant enzyme transcription, respectively. PPARGC1A is implicated in
ROS detoxification and serves as a co-activator of transcription, involved in activating
antioxidant defense systems [49]. Similarly, NFE2L2 acts as a transcriptional activator of
cellular antioxidant enzymes [50].

According to Agarwal et al. (2019) [48], because transcription and translation are
minimal in ejaculated spermatozoa, they hypothesized that the overexpression of certain
proteins, regulated by the TFs PPARGC1A and NFE2L2, is due to increased activity of these
transcription factors during spermatogenesis. Meanwhile, Fujii and Imai (2014) [51] de-
scribed GPX4 as playing an essential role in spermatogenesis, and therefore male infertility,
by identifying that mitochondrial GPX4 variants determine structural abnormalities in the
central part of the sperm. Furthermore, the absence of GPX4 at the sperm nuclear level
is correlated with impaired chromatin condensation, nuclear instability, and subsequent
DNA damage [52]. Finally, mitochondrial peroxiredoxin-5 (PRDX5) is also involved in the
antioxidant defense mechanism in sperm mitochondria [53]. Therefore, alterations in the ex-
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pression of spermatogenesis-related proteins mediated by seminal ROS may be associated
with infertility and screened as biomarkers of infertility associated with oxidative stress.

An innovative method to evaluate the levels of oxidation–reduction potential (ORP)
in whole seminal fluid is the MiOXSYS (male infertility oxidative system) technology [37].
ORP is a useful clinical biomarker for the direct measurement of OS in biological samples.
In a recent multicenter study on 2092 semen samples, ORP was negatively correlated with
count, motility, and normal forms of spermatozoa [54]. Furthermore, a prospective observa-
tional study revealed that seminal ORP significantly influences reproductive outcomes in
cases of artificial reproductive technology (ART), acting as a biomarker of good fertilization,
blastocyst development, and implantation [55]. However, some authors have suggested
that the elimination of seminal plasma may cause the increased sensitivity of spermatozoa
to OS inducers, which could influence the outcome, resulting in misleading results.

Another promising biomarker involved in the regulation of sperm function is nitric
oxide (NO) and its derivatives [41]. NO is an important chemical messenger that plays
important functions in regulating junctions, controlling cytokine and hormone levels in the
testes, as well as supporting the development of germ cells [56].

However, high concentrations of NO and heat-induced nitric oxide synthase (iNOS),
an enzyme involved in the production of NO, have been shown to be increased in infertile
patients compared to fertile ones and responsible for sperm DNA damage and decreased
sperm motility [57,58].

Although low concentrations of NO are essential for motility and the capacitation
process, high concentrations of NO can induce DNA damage in different ways [59]. In
fact, it can create DNA strand breaks caused by the formation of NO-dependent reactive
species such as peroxynitrite, which directly attack the DNA and cause failure to correct
single-strand breaks, leading to the formation of double-strand breaks, which are probably
responsible for cell death. Furthermore, NO can act indirectly on DNA by interacting
with other cellular factors and biological processes that alter DNA, such as the activation
of endonucleases, the induction of apoptosis, and the inhibition of DNA repair enzymes.
The presence of NO can induce DNA deamination, such as the deamination of guanine to
xanthine, which causes depurination to form basic sites in DNA, resulting in single-strand
breaks or incorrect repairs [60].

Therefore, it has been hypothesized that measuring the levels of NO and its derivatives
in plasma and seminal fluid may provide significant information on OS and sperm function.
Some preliminary studies have shown increased levels of NO and its derivatives in infertile
patients compared to fertile ones, suggesting that they may be useful in diagnosing male
infertility [61–63].

Increased glucose and lipid levels can also be considered as markers of fertility. In
fact, their high levels can cause an excessive supply of energy substrates to the metabolic
pathways of adipose and non-adipose cells, which leads to a high production of ROS [64].
OS is directly related to the presence of the glucocorticoid, which causes an increase in the
flow of electrons at the level of the electron transport chain, which by directly influencing
the hypothalamic–gonadal axis can directly affect the reproduction and functionality of the
sperm [65,66].

Another important factor related to fertility is the level of trace elements, in particular
zinc, copper, and magnesium, which play a fundamental role in the process of male
reproductive development [67]. In fact, the imbalance of these elements is correlated with
the increase in OS, affecting the reduced motility of spermatozoa. Zn, which is known for
its antioxidant properties, has an important role in sperm motility, as it is involved in the
formation of the disulfide bridge during sperm maturation [68]. Similarly, low levels of Mg,
probably due to the presence of chelating agents, can be the cause of premature ejaculation
and infertility [67].

Malondialdehyde (MDA) is the main indicator of lipid peroxidation [69]. The presence
of ROS causes peroxidation cycles, resulting in the fragmentation of sperm DNA and the
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oxidation of membrane lipids present in sperm. Elevated levels of MDA are closely related
to a decrease in sperm motility, thus indicating the negative impact of OS on motility [70].

It follows that the evaluation of the oxidative state and antioxidant defenses assessed
by a methodology easily reproducible in the laboratory can be considered an important
tool for the diagnosis of male infertility.

4. Established Methods to Detect OS Biomarkers

Numerous analytical techniques, in recent years, have been used to develop methods
for quantifying oxidative stress.

In past years, 8-OHdG was examined by HPLC coupled with electrochemical detection,
but this method was abandoned as it was strongly influenced by the possible spontaneous
formation of this molecule during the sperm DNA extraction phase [71]. Currently, 8-OHdG
in sperm is measured by direct immunofluorescence with the use of specific antibodies
labeled with FITC fluorochrome. The result is then quantified by flow cytometry [72].
However, fluorescence can also be monitored by fluorescence microscopy. Despite the
high precision of modern flow cytometry equipment and the sensitivity of fluorescence
techniques, the costs of such instruments can be limiting. Additionally, the experience and
skills of the operator are crucial for correctly interpreting the results.

The activity of antioxidant enzymes, such as CAT, SOD, and GSH, are measured by
colorimetric tests, using specific reagents and a spectrophotometer on plasma samples [73].
Spectrophotometers measure absorbance at different light wavelengths, enabling the de-
termination of substance quantity in a solution. Due to its affordability, speed, and lack
of reliance on specialized equipment, this procedure can be conducted in any clinical or
research laboratory.

The methodological breakthrough in protein detection has been achieved through
the combination of mass spectrometry with liquid chromatography (LC–MS/MS) [48].
This technique is widely used in biochemistry, molecular biology, and pharmacology
to characterize proteins, metabolites, and other chemical compounds [74]. In short, the
chromatograph separates the compounds present in the sample, while two or more mass
spectrometers in series act as detectors. Compounds are selected and fragmented within
the first mass analyzer, and the resulting fragments are further analyzed in the second mass
analyzer [75].

This technique offers extremely high sensitivity and specificity, allowing for more
detailed information on the structure and chemical composition of the molecules under
study. This leads to a significant reduction in diagnostic errors.

The innovative method MiOXSYS involves the potential for electrons to move from
one species to another. To reduce the oxidative effect of toxins and prevent the ability of
oxidants to acquire electrons from other structures and cause DNA damage, antioxidants
donate electrons to oxidant species. Therefore, measuring ORP levels, and the relationship
between oxidants and antioxidants, allows for a comprehensive measurement of OS [76].
Subsequently, an ORP cutoff value of 1.34 mV/106 sperm/mL has also been recognized, be-
yond which reproductive capabilities are compromised [77]. Measurements are performed
on completely liquefied seminal samples [78]. The test, performed on seminal fluid within
30 min of emission, involves applying a small portion of semen to a sensor inserted into
the analyzer, and is capable of providing a result after just 2 min. Unlike other markers of
OS, this method allows for the direct evaluation of the ORP of seminal fluid, presenting
numerous advantages, including a short duration, simplicity of execution, and the small
volume of sample required [79].

Glucose and lipid levels are measured in blood samples, using specific kits. In par-
ticular, the enzyme glucose oxidase allows us to evaluate fasting plasma glucose; instead,
lipids are measured as total cholesterol (TC) and serum triglyceride (TG). Through an
enzymatic colorimetric method, TC is measured using two enzymes: cholesterol esterase
and cholesterol oxidase. Finally, TGs are assayed using glycerol phosphate [80].



Genes 2024, 15, 539 8 of 22

The analysis of trace elements in seminal fluid is obtained using the atomic absorp-
tion spectrophotometer (AAS) with the use of high-purity reagents [81]. AAS utilizes the
interaction between light and matter to quantitatively determine the presence of a metal
in a solution. Based on the principle that each element in the periodic table has a specific
structure of orbitals and electrons, this technique allows for the identification and quantifi-
cation of the number of atoms of an element in the solution by measuring the amount of
light absorbed at precise wavelengths, which is characteristic of the orbital configuration of
that element. Also in this case, limits are related to the equipment.

Lastly, malondialdehyde (MDA) is quantified by a colorimetric method, using the
reaction of thiobarbituric acid, which allows for the detection of TBARS, i.e., thiobarbituric
acid reactive substances. These substances are formed during lipid peroxidation and are
highlighted by a pink product following the reaction. The color intensity at 535 nm is
directly proportional to the concentration of TBARS in the sample. Since TBARS are mainly
represented by MDA, they provide a measure of MDA in semen [82,83].

5. New Oxidative Biomarkers in Male Infertility
5.1. NGS Polymorphisms

Many researchers agree on the need to conduct innovative investigations that can
provide more data for the evaluation of the real reproductive health state, increasingly using
emerging technologies. OS dosage represents a very valid infertility screening approach,
especially in cases of idiopathic male infertility. Furthermore, advances in molecular biology
and bioinformatics now highlight alterations in genes involved in redox mechanisms in
infertile males.

It is known that OS is correlated with alterations in genetic material. Several studies
demonstrate that free radicals induce changes in the genetic material, that is, polymor-
phic variations [84]. In 50% of cases of idiopathic non-obstructive azoospermia (INOA),
it has an unidentified genetic basis, and this suggests that the polymorphism of genes
in autosomal chromosomes may also play an important role in spermatogenesis [85]. In
the study conducted by Cannarella and co-workers (2020) [25], 15 genes involved in the
process of spermatogenesis were analyzed in patients with idiopathic oligozoospermia
or NOA. Among the different genes analyzed, we find those that induce meiotic arrest
(testis expressed gene 15 meiosis and synapsis associated (TEX15), synaptonemal complex
central element protein 1 (SYCE1), testis expressed 11 (TEX11)) or maturation arrest at
the spermatocyte stage (nuclear receptor subfamily 5 group A member 1 (NR5A1), synap-
tonemal complex protein 3 (SYCP3), zinc finger MYND-type containing 15 (ZMYND15),
meiosis specific with OB-fold (MEIOB), and heat shock transcription factor 2 (HSF2)). For
example, NR5A1 regulates the expression of steroidogenic genes such as 3 beta- and steroid
delta-isomerase (3β-HSD) in Leydig cells.

The impact of external factors such as metal nanoparticles, which induce OS, on the
expression of genes associated with steroidogenesis have been evaluated [86,87]. The
analysis by Hussein and colleagues (2016) [88] determined that exposure to zinc oxide
nanoparticles reduced the expression of nuclear receptor subfamily 5 group A member 1
(NR5A1), hydroxysteroid 17-beta dehydrogenase (17β-HSD), 3 beta- and steroid delta-
isomerase (3β-HSD), and testosterone, thus compromising male fertility.

Heat shock factors (HSFs) are transcriptional regulators of heat shock protein (HSP),
involved in cellular protection against proteotoxic damage [89]. In particular, heat shock
transcription factor 1 (HSF1) and heat shock transcription factor 2 (HSF2) are involved in
cell differentiation and spermatogenesis. The constitutively active expression of HSF1 has
been assessed to block spermatogenesis and induce programmed cell death. In contrast, low
levels of HSF2 expression result in increased apoptosis and reduced sperm count. Therefore,
HSF1 and HSF2 could represent a marker to identify the accumulation of damaged proteins
and the induction of cell death [90].

Some novel targets of male infertility were reported by Cannarella and co-workers
(2020) [25]. They provided updated insights into the molecular biology of spermatogenesis,
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underlining the role of the molecular factors involved in oocyte fertilization and embryo
growth that are produced during spermatogenesis and carried out by the sperm cell. The
authors highlighted the overall contribution of the sperm genome (including epigenetic
regulation), transcriptome, and proteome to embryo formation and development, which
needs to be investigated to identify novel molecular targets responsible for male infertility.

Currently, among the most used techniques in the study of genetic polymorphisms of
interest, next-generation sequencing (NGS) occupies an important place. This term refers to
the set of nucleic-acid-sequencing technologies that possess the ability to sequence millions
of DNA fragments in parallel [91]. For these reasons, NGS technologies have changed
the way we approach genome analysis. The analysis of some gene polymorphisms can
quickly provide more in-depth answers, even for unexplained infertility [92]. In fact, the
NGS technique allows for the simultaneous analysis of a panel of genes for the study of the
main causes of male infertility including azoospermia, asthenozoospermia, and defects in
sperm morphology [93].

Polymorphic variations, induced by OS, can lead to oligozoospermia or azoospermia
and can be identified through NGS.

In the study conducted by Salvi and co-workers (2022) [94], data on the Genome Wide
Associations Studies (GWAS) platform were used to identify the presence of polymor-
phisms associated with infertility. The results found polymorphic variants, associated with
infertility, in the major histocompatibility complex, class II, DR alpha (HLA-DRA) gene:
rs8084 and rs7192, which control spermatogenesis in men and are involved in cell adhesion
and motility at the level of spermatocytes and spermatids. Another polymorphism in the
same gene is rs7194, which is associated with non-obstructive azoospermia [95].

Several studies have found a cause of idiopathic male infertility in the strong corre-
lation between OS levels, due to high fluoride levels, and the expression of glutathione
S-transferase (GST). GST is a gene family of isozymes that catalyze the conversion of hydro-
gen peroxide to water [96]. A target of OS at the sperm level is the mitochondrion, which
reduces the source of ATP and therefore sperm motility [97].

The study conducted by He and co-workers (2023) [98] demonstrated that genetic
variations in human GTS, in particular in the glutathione S-transferase mu 1 (GSTM1),
glutathione S-transferase theta 1 (GSTT1), and glutathione S-transferase pi 1 (GSTP1) genes,
are correlated with sperm motility and concentration. The authors highlighted that the
present GSTM1 and GSTT1 genotypes, as well as the wild-type GSTP1 genotype, are
associated with high levels of 8-OHdG and MDA and low levels of antioxidant activity.

Therefore, we can say that the search, through NGS, for genetic variants could repre-
sent a good biomarker of idiopathic male infertility.

Furthermore, the application of this technique to the transcriptome has focused at-
tention on the potential functional role of new types of non-coding RNAs, which could
become innovative diagnostic markers and/or therapeutic targets in the near future. The
formation of a mature spermatozoon requires the expression of a number of coding and
non-coding genes. The altered expression of exosomes including tRNA, piwi-RNA, and
ribosomal RNA can lead to arrested spermatogenesis [99].

The expression of genes such as protamine 2 (PRM2) and deleted in azoospermia
(DAZ), which can be affected by lifestyle and used as molecular markers in NOA patients,
has been evaluated to predict the absence of mature spermatozoa [100]. Indeed, the low-
protein diet in a study conducted on male mice was associated with changes in small
RNA profiles in epididymosomes and mature spermatozoa, suggesting the interaction and
transfer of extracellular vesicles to the sperm during epididymal transit [101].

Therefore, although the quantity of sperm RNA is negligible, it is important for
investigating the causes of male infertility. New results from microarray, NGS, and RNAseq
techniques led to the discovery of new transcripts in sperm, useful as clinical markers of
male infertility [102].
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5.2. Differentially Expressed Genes (DEGs)

Another type of potential biomarker of male infertility is described in an interesting
recent study aimed to identify some DEGs involved in non-obstructive azoospermia (NOA)
and overall male infertility [103,104] through transcriptome sequencing to detect differences
in mRNA expression in testicular tissue [105]. The authors demonstrated that of the
25 DEGs investigated, 8 genes (testicular haploid expressed gene (THEG), spermatogenesis
associated 20 (SPATA20), rhophilin associated tail protein 1 like (ROPN1L), glutathione
S-transferase F1 (GSTF1), serine kinase 1B (TSSK1B), calcium binding protein, spermatid
associated 1 (CABS1), adenosine deaminase domain containing 1 (ADAD1), and RIMS
binding protein 3 (RIMBP3)) are involved in the spermatogenic process or in specific phases
of spermatogenesis, and hypothesized that the alteration in the expression of these genes
leads to impaired spermatogenesis and, therefore, to male infertility.

In particular, the serine kinase 1B (TSSK1B) gene participates in spermatogenesis and
it is responsible for proper morphogenesis and differentiation after meiosis when spermatid
elongation occurs [106].

Similarly, SPATA genes have been identified as testis-specific genes that regulate
apoptosis during zebrafish spermatogenesis [107]. Zheng and co-workers (2017) [108]
evaluated its role in the sperm DNA hydroxymethylation of men exposed to bisphenol A
(BPA). BPA exposure negatively affected SPATA20 gene expression. Thus, it is suggested
that SPATA20 regulates the response following sperm DNA damage, thus influencing
ejaculate quality. SPATA20 is a thioredoxin-like protein, which catalyzes sulfide bonds and
regulates the expression of antioxidant enzymes [109]. Therefore, SPATA20 can probably
have a protective role towards the formation of ROS and represents a good marker of OS.

Sertoli cell-only syndrome (SCOS) is the most severe pathological type of non-
obstructive azoospermia. Present studies have analyzed, through RNA sequencing, the
DEGs in patients with SCOS. The authors highlighted that the expression of three DEG
genes (caspase 4 (CASP4), caspase 1 (CASP1), and phospholipase A2 group IVA (PLA2G4A))
were upregulated in SCOS patients. CASP4 and CASP1 are part of the caspase family and
participate in cellular pyroptosis. It is known that there is a direct correlation between
inflammation and OS with cellular pyroptosis as cellular pyroptosis is an inflammatory
form of cell death [110]. CASP4 and CASP1 are pro-apoptotic proteins, which in the pres-
ence of ROS and the consequent OS, induce mitophagy and apoptosis [111]. Testicular
inflammation, and the subsequent OS, induces changes in spermatogenesis and sperm
transport and function [112].

In view of all this, the present studies therefore conclude that these genes could be
used as potential biomarkers for the early detection of NOA.

6. Epigenetic Mechanisms during Spermatogenesis and Epigenetic Factors in OS
Affecting Male Infertility

The occurrence of new technologies has revealed differential expression patterns of
various genes in both immature male germ cells and sperm, which have opened a new
space into the etiology of male infertility.

More and more evidence has demonstrated that epigenetic modifications are important
factors regulating spermatogenesis in all its phases [113]. These alterations also control
the pattern of expression in various genes during spermatogenesis and fertilization under
regular biological conditions [114]. Recent studies reveal that several genes in testicular
cells are regulated through the epigenetic process, which indicates the critical role of
the epigenetic machinery in spermatogenesis, sperm development or maturation, the
fertilization process, and male fertility [25].

Epigenetics represents the process of DNA modification influencing cell differenti-
ation [115]. The definition of epigenetics refers to molecular changes in DNA that can
regulate genetic activity without changing the DNA sequence [116,117]. These modifi-
cations include DNA methylation, post-translational histone modifications, chromatin
rearrangement, and non-coding RNAs (ncRNAs) [118] (Figure 3).
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DNA methylation consists of the binding of a methyl group to carbon 5 of a cytosine
next to a guanine (CpG) by the enzyme DNA methyltransferase (DNMT) and generally
involves the inactivation of gene expression [119]. Sperm DNA hypomethylation of the H19
gene and hypermethylation of the mesoderm-specific transcript (MEST) and small nuclear
ribonucleoprotein polypeptide N (SRNPN) genes have been associated with male infer-
tility [120]. Moreover, alterations in DNA methylation at specific genomic loci have been
associated with difficulty conceiving, and DNA methylation and gene transcription pat-
terns may be predictive of assisted reproductive technology (ART) success rates [121–123].
Patients with a history of oligoasthenoteratozoospermia (OAT) have also been shown
to have higher rates of DNA methylation and altered gene expression in embryos that
underwent preimplantation genetic screening after in vitro fertilization (IVF) [124].

Histones are basic proteins which, by binding DNA, form the main components of
chromatin. Modifications of their N-terminal tails, such as phosphorylation, methylation,
acetylation, and ubiquitination, determine a relaxed or compact structure of the chromatin,
which favors gene expression or not [125–127]. If this crucial process does not occur cor-
rectly due to external stimuli, then reproductive capabilities can be severely compromised.
Sperm cells with reduced levels of protamine content have been shown to have increased
susceptibility to DNA damage and reduced viability [128].

MicroRNAs (miRNAs) refer to single-stranded RNAs about 20 nucleotides long in-
volved in the regulation of gene expression at the transcriptional and post-transcriptional
levels [129]. They inhibit gene expression because they interact directly with messenger
RNA molecules [116], preventing their translation or inducing their degradation [130].
In the last years, several studies have reported new information on the role of a class of
non-coding RNAs on the production and fertilizing potential of sperm [131].

An increasing amount of evidence has shown that the dysregulation of various specific
miRNAs can cause impaired spermatogenesis and male infertility [130]. A few studies
show that the profiles of extracellular miRNAs are related to environmental factors and
lifestyle [132–134].

In the study conducted by Ferrero and co-workers (2024) [135], the expression of the
miRNA and the exposure to environmental contaminants was correlated. Their results
highlighted a reduction in the expression of some miRNAs (including microRNA let-7c
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(let-7c-5p), microRNA let-7f-1 (let-7f-5p), microRNA 23a (miR-23a-3p), microRNA 23b
(miR-23b-3p), and microRNA 320a (miR-320a-3p)), which are strictly regulated during
spermatogenesis. miR-23b-3p and miR-320a-3p can alter the expression of many specific
genes in spermatogenesis such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4
(PFKFB4), hyaluronan mediated motility receptor (HMMR), spermatogenesis associated 6
(SPATA6), testis expressed 15, meiosis and synapsis associated (TEX15), SRY-box transcrip-
tion factor 6 (SOX6), and nucleolar protein 4 (NOL4). Being involved in the spermatogenesis
process, their altered expression due to an increased aberrant expression of miRNA could
compromise male fertility [136].

Long non-coding RNAs (lncRNAs), sequences longer than 200 bp, also play a key role
in the regulation of various cellular processes. lncRNAs regulate the expression of coding
genes through epigenetic modifiers such as DNA methylation and histone modifications.

The expression of lncRNAs may serve as a biomarker of spermatogenesis regula-
tion [137]. Zhang et al. (2015) [138] correlated sperm HOTAIR (Hox transcript antisense
intergenic RNA) levels, which is involved in tumor development and progression, with
sperm Nrf2 (nuclear factor erythroid 2–related factor 2) expression levels. Low levels of
Nrf2 expression are associated with semen quality and a reduction in antioxidant gene
expression [139], particularly in asthenozoospermic and oligoasthenozoospermic patients.
This association may be attributed to low levels of histone H4 acetylation at the Nrf2 gene
promoter, leading to Nrf2 transcriptional inactivation [139,140]. According to this study,
Nrf2 expression is regulated by HOTAIR through the hyperacetylation of histone H4 in the
Nrf2 promoter, indicating a correlation between Nrf2 and HOTAIR expression levels in
spermatocytes. Furthermore, superoxide dismutase (SOD) activity is directly proportional
to reduced HOTAIR expression, thereby increasing OS and compromising sperm viability
and motility.

This supports the evidence that epigenetic phenomena respond to environmental
influences with a much greater plasticity than that inherent in the DNA sequence [141].
In fact, the most interesting and important hypothesis arising from studies on the sperm
epigenome is the potential correlation between environmental influences and impaired
fertility [142].

As predicted, ROS can induce epigenetic changes in sperm DNA, altering DNA
methylation, histone modifications, and miRNA regulation [143–145].

Studies in mice have shown that male germ cells deficient in DNA methyltransferase
3-like (Dnmt3L) activity, crucial for proper DNA methylation, exhibit incomplete gameto-
genesis. Similarly, in humans, global hypomethylation mediated by ROS has been linked
to Sertoli cell-only syndrome, testicular tumors, and hypospermatogenesis [143,146], just
as some oxidizing agents are able to alkylate the protamines present in spermatozoa,
compromising the condensation of spermatic chromatin [145].

Because the epigenome is influenced by the environment, numerous factors contribute
to grow the reproductive pathology, including age, diet, drugs, and exposure to harmful
substances [147,148]. Therefore, there is growing interest in determining which other
epigenetic modifications might play a key regulatory role.

The use of epigenetic changes in DNA as markers to identify male factor infertility is
challenging, as these changes can have little or marginal biological impact and, sometimes,
different changes can lead to similar infertility phenotypes [149]. While determining causal
relationships between these changes and embryological outcomes is objectively difficult,
many sperm epigenetic changes have been associated with sperm abnormalities [115].
DNA methylation as a marker of male infertility is an attractive target, as it remains stable
during spermatogenesis, unlike RNA transcription [150].

Unfortunately, it still remains to be clarified whether epigenetic changes in the sperm
cell cause infertility and/or subfertility or whether the infertility is secondary to another
disease [151].

The clinical implementation of epigenetic testing is promising, but no sufficient valida-
tion studies have yet been reported. However, the epigenetic profiling of sperm cells from
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infertile men is likely to be useful in the near future, both to assess the potential of sperm
cells to contribute to normal embryogenesis and the risks associated with environmental
exposures. We hope that other numerous studies on sperm epigenetic profiling can help
understand the etiologic basis of compromised spermatogenesis [152].

7. Transgenerational Consequences of Epigenetic Changes in Sperm DNA

Modifications in sperm cells, such as DNA methylation and protamination, are thought
to affect transcription during embryogenesis [150], and several studies suggest that these
changes could also cause miscarriages [124].

In fact, environmental and lifestyle factors not only directly influence individuals, but
also have transgenerational consequences, with parents potentially passing these effects on
to their offspring [153].

Patients with a history of OAT have been shown to have altered gene expression
in embryos that underwent preimplantation genetic screening after in vitro fertilization
(IVF) [124].

As a matter of fact, recent studies show that parental exposure to environmental
factors can influence fetal development and the health of offspring. Indeed, a recent study
analyzing the consequences of male exposure to a specific environment before conception
suggest that gene modifications induced by environmental toxins and lifestyle transmitted
paternally can modulate offspring development through epigenetic inheritance [154].

Alterations in sperm DNA, caused by environmental exposure, are linked to both
recurrent pregnancy losses and adverse health outcomes in children, including behavioral
and physical disorders [155,156]. As well as exposure to contaminants, paternal use of
alcohol and drugs (as cannabis and cocaine) can also lead to behavioral and cognitive
alterations in offspring. In fact, excessive alcohol consumption alters the levels of DNA
methylation of paternally imprinted and neurotrophic factor genes, in particular increasing
paternally expressed gene 3 (PEG3). These variations are maintained in the cerebral cortex
and in the ventral tegmental area in the offspring brain [157].

Additionally, the prolonged use of cocaine induces histone modifications, particularly
of histone 3, which alter the expression of genes related to glutamate, stress, neurogenesis,
and neurotrophic factor. These epigenetic changes are accompanied by memory deficits in
both parents and offspring [113].

Data from studies on rodents have shown that preconcpeptional paternal exposure
to delta-9-tetrahydrocannabinol (∆9-THC), the most active cannabinoid, leads to deficits
in cholinergic synaptic function in offspring, along with abnormalities in locomotor activ-
ity, impaired cognitive function, and long-lasting neurobehavioral effects. Additionally,
exposure to ∆9-THC during adolescence in rats has been found to cause intergenerational
effects on DNA methylation status in the nucleus accumbens (NAc) [158].

From a comprehensive literature review, it emerges that paternal exposure to BPA
causes changes in sperm count and motility in both the father and offspring, as well as
transgenerational heart and behavioral disorders. These findings have led to considering
sperm as carriers of epigenetic memory, suggesting that this message, whether a simple
phenotypic variation or a disease, can be transmitted across generations [159].

To conclude, an analysis conducted by Pabarja and co-workers (2021) [160] evaluated
the synergistic effect of nicotine and alcohol on 25 adult mice and F1, which not only
altered the quality of seminal fluid but also caused epigenetic modifications. Concurrently,
their direct effect on the increase in ROS production was also evaluated. Indeed, serum
MDA levels, as end products of lipid peroxidation and markers of OS, were significantly
increased in all offspring.

Therefore, investigating sperm epigenetic alterations not only allows us to determine
the cause of reduced male fertility but also to define its effect on future generations.



Genes 2024, 15, 539 14 of 22

8. Insights into Future Redox Biomarker Research: Integrated Analysis of Omics Data
for Male Infertility

Omics studies encompass various areas of research: genomics (focusing on genes),
transcriptomics (examining transcription products), proteomics (analyzing proteins), and
metabolomics (studying metabolites). [161]. Each one is complex and employs techniques
that use large data sets that require technical expertise to analyze and highlight significant
biological insights. Indeed, one of the major needs for a successful study in these areas
is the collaboration of molecular biologists, geneticists, statisticians, and computational
biologists. There are numerous databases available. Among these are the web servers
“DiseaseConnect” (http://disease-connect.org, accessed on 23 January 2024), “RD-Connect
Genome-Phenome Analysis Platform” (https://platform.rd-connect.eu/, accessed on 23
January 2024), and “Omics Database Generator” (https://github.com/jguhlin/odg, ac-
cessed on 23 January 2024).

A true multi-omics approach to studying spermatogenesis requires integrating data
from each of these fields to gain deeper insight into the mechanisms that cause infertil-
ity [162]. Progress depends on improving the accessibility and functionality of public and
interactive databases, as well as training researchers specialized in this type of data analysis.
The databases use large-scale omics data to identify common genes and pathways to help
identify related pathologies. This type of integrative analysis is important for the further
understanding of the overall pathology, risks, and treatments of infertile males [163].

The omics approach holds promise for identifying unknown genetic factors and diag-
nosing male fertility issues in the near future. [164]. Among them, metabolomics is expected
to become a very powerful tool for diagnostic testing [165]. Studies by Minai-Tehrani and
colleagues in 2016 linked altered levels of oxidative stress (OS), glycerylphosphorylcholine,
citrate, and lactate to male infertility [166]. Additionally, disciplines like glycomics and
lipidomics have been shown to identify other diagnostic targets, such as elevated levels of
arachidonic acid and other fatty acids in sperm [167]. Moreover, there is a suggestion that
the seminal plasma glycome profile may correlate with male reproductive potential [168].

9. Conclusions and Future Perspective

The use of OS biomarkers may be advantageous for the diagnosis and treatment of
male infertility. Accurate measurements of OS levels can provide valuable information
about the severity of infertility and response to treatment. Based on the above, methods for
assessing oxidative stress can be categorized as the direct analysis of reactive oxygen species
(ROS) and methods capable of detecting ROS-induced alterations in proteins, lipids, and
DNA. The current evidence shows that, in the absence of expensive tools for the detection
of DEGs, proteins, or gene polymorphisms, the most immediate, simple, and cost-effective
evaluation of oxidative status in seminal plasma is provided by the innovative MiOXSYS
method, representing a system with high predictive value for male infertility. The ORP is
an advanced measure of sperm function for oxidative stress, reliably predicting anomalies
in elevated OS. Despite some limitations needing clarification, abnormal ORP levels can
help identify altered sperm function, particularly in cases of idiopathic infertility. Ongoing
studies aim to better understand the clinical significance of this new, reproducible measure
of OS in assisted reproductive technology. In addition to assessing standard seminal
fluid parameters, this method evaluates both ongoing damage and the effectiveness of
antioxidant therapy. Consequently, it enables monitoring of effects, the adjustment of
dosage or molecules, i.e., antioxidants in the short term, thereby preventing damage and
enhancing patient management. Despite studies on the effects of antioxidant therapies still
being controversial and further randomized controlled trials being necessary [169], some
evidence from in vitro studies and animal models [170,171] provides interesting data on
their efficacy and the type of formulation to be used.

However, further research is needed to evaluate the reliability and effectiveness of
all the mentioned biomarkers. Above all, it is necessary to develop standardized and
comparable measurement methods to ensure accurate and reproducible results so as to

http://disease-connect.org
https://platform.rd-connect.eu/
https://github.com/jguhlin/odg


Genes 2024, 15, 539 15 of 22

associate oxidation–reduction potential with multiple biomarkers in clinical practice for
greater understanding and management of infertility.

Furthermore, longitudinal studies are needed to evaluate the effect of treatment on
the trend of OS biomarkers over time.

Only through further research in this field will it be possible to improve the diagnosis
and treatment of male infertility and provide hope to patients affected by this condition.

The constant and growing attention to omics technologies in the field of male repro-
ductive health and the effects that OS produces on spermatozoa are supported by the
increase in studies and scientific publications on the subject. Among them are those aimed
at identifying biomarkers for the diagnosis of infertility and treatment options. However,
these are relatively new fields of investigation, and the challenges are not lacking. While
techniques, protocols, and analysis systems for genomics are already well established, for
other omics there is still a long way to go. For example, it is already possible to sequence the
genome of a single cell, but it is still not possible to analyze the proteome or metabolome at
this level. The move to an integrative study of infertility on multiple omics levels would
contribute to the understanding of the underlying pathological mechanism and would
allow for the development of new diagnostic and therapeutic options.
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