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Abstract: Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae
family. However, few complete chloroplast genome sequences of this genus have been reported.
Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total
of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight
ribosomal RNA genes. The base composition analysis showed that the overall GC content was
36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency
(RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while
most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified
and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple
sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic
relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and
the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results
provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight
for understanding the polyploidization of Brassicaceae species.

Keywords: kohlrabi; chloroplast genome sequence structure; gene annotation; relative synonymous
codon usage; interspersed repeat sequence analysis; phylogenetic tree

1. Introduction

Kohlrabi (Brassica oleracea var. gongylodes Linnaeus, 1753), an important swollen-stem
vegetable variety of B. oleracea variety, originated from northwestern Europe and is widely
cultivated in Europe, the US, Canada, and Asia [1]. The swollen stem at the base of the
plant is mainly consumed by humans as food [2,3]. Studies have shown that the swollen
stem of kohlrabi has high nutritional value, particularly in vitamin C, vitamin E, and
tocopherols [4–6]. In addition, potential antidiabetic, anti-inflammatory, and antioxidant
properties and anticancer effects have been found in kohlrabi [7].

Chloroplasts (cp) are centers of plenty cellular reactions and crucial organelles of plant
cells [8,9], originating from photosynthetic cyanobacteria engulfed and enslaved by eukary-
otic cells [10,11]. Chloroplasts not only play vital roles in photosynthesis but also contain
all the elements required for carbohydrate metabolism and biosynthesis of nucleotides and
amino acids [12]. In addition, chloroplasts are involved in various molecular processes,
such as regulation of plant physiology, growth, development, and stress responses [12–14].

The cp genome is a maternally inherited genetic systems of plants, which is not affected
by karyogene deletion, overlap, or pseudogenes [15]. In the cp genome, a large number
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of mutational events also occur, such as nucleotide substitutions, insertions, deletions,
and genome fragment inversions, translocations and rearrangements [16–18]. In most
angiosperms, chloroplasts have a typical quadripartite circular genome, which comprises
one large single-copy (LSC) region with a length of about 81–90 kb, one small single-copy
(SSC) region of approximately 18–20 kb, and two inverted repeat (IR) regions of about
20–30 kb, named IRa and IRa [13,15,19]. Oldenburg and Bendich [20] reported that a
linear cp genome was found in maize. As plant-specific organelles, chloroplasts have
highly conserved genomes in terms of gene content and organization while maintaining
a relatively simple structure, small molecular weight and large copy number [21–23],
owing to a high conservation of structure, moderate genome size and good collinearity
between various plant groups of cp genomes [24], which have been widely used in DNA
fingerprint development, phylogenetic discrepancy analysis, molecular evolution, and
genetic engineering modification, such as B. rapa. ssp. rapa [25], Paeonia ostii [26], Zingiber
officinale [27], Withania somnifera [28], Adrinandra megaphylla Hu [29], and Cornus species [30].
Moreover, cp genomes have also been used to deal with important scientific issues of crop
origin and domestication [31].

Several cp genome sequence have been reported in B. oleracea: B. oleracea var. botrytis
(cauliflower) (KX681655.1), B. oleracea var. italica (cabbage) (MH388765, MN649876.1),
B. oleracea var. capitata (red cabbage) (KR233156.1), B. oleracea (wild cabbage) (MG717288)
and B. oleracea var. alboglabra (white-flower Chinese kale and yellow-flower Chinese kale)
(OR063915 and OR063916). However, despite being the only swollen-stem vegetable of
the B. oleracea variety, no sequence of the kohlrabi cp genome has been presented to our
knowledge. Thus, the complete sequence of the kohlrabi cp genome was obtained and
analyzed in this study.

2. Materials and Methods
2.1. Plant Materials and DNA Extraction

Kohlrabi seeds were sown in holed plates in late April and cultured in greenhouse
for 35 days until the seedlings had 4 or 5 leaves, then the seedlings were transplanted
in a randomized field plot with regular management in an experimental field (36◦420 N;
101◦450 E) of the Academy of Agriculture and Forestry Sciences, Qinghai University.
The fresh young kohlrabi leaves were collected and the modified CTAB (cetyl trimethyl
ammonium bromide) method as Porebski et al. [32] described was used for total DNA
extraction. The same DNA samples of Shao et al. [33] were used in this study and stored
at the Qinghai Key Laboratory of Vegetable Genetics and Physiology. The kohlrabi plant
were showed in Figure 1 and used in this paper.
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2.2. DNA Sequencing and Assembly

The extracted DNA were assigned for purification and assessment, and then quali-
fying DNA were used to build a library. This library was sequenced using the Illumina
NovaSeq2500 platform (Shaanxi Breeding Biotechnologies Co., Ltd., Xi’an, China). Using
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SPAdes v3.10.1 [34] software, the cp genome sequence was assembled and did not depend
on the reference genome. Then, gap repair in the scaffolds was performed using GapFiller
v2.1.1 [35] until a complete pseudogenome was obtained. Finally, based on the structure
of chloroplasts and rearrangement of the pseudo genome, a complete cp circular genome
was obtained.

2.3. Gene Annotation

Based on the assembled sequences of relative species uploaded to the National Center
for Biotechnology Information (NCBI), the online software BLAST v2.6 (https://blast.ncbi.
nlm.nih.gov/Blast.cgi, accessed on 23 March 2023) was used for gene alignment. Two strate-
gies were used to annotate the cp genome for improving annotation accuracy. Firstly, the
prodigal v2.6.3 (https://www.github.com/hyattpd/Prodigal, accessed on 23 March 2023),
hmmer v3.1b2 (http://www.hmmer.org/, accessed on 23 March 2023) and aragorn v1.2.38
(http://130.235.244.92/ARAGORN/, accessed on 23 March 2023) were separately used
to annotate the coding sequence (CDS), predict the ribosomal RNA (rRNA) and transfer
RNA (tRNA). Secondly, based on the cp genomes of closely related species published on
NCBI, we obtained annotation information by comparing the assembled sequences using
BLAST v2.6 DOGMA (http://dogma.ccbb.utexas.edu/, accessed on 23 March 2023) [36].
Results from two strategies were manually checked for differentially annotated genes.
Then, we removed any misannotation and redundant annotation and determined the
multi-exon boundaries. Finally, the final annotation information was obtained. The tR-
NAs were analyzed based on the online software tool tRNAscan-SE with default set-
tings (http://lowelab.ucsc.edu/tRNAscan-SE/, accessed on 23 March 2023) [37]. Or-
ganellarGenomeDRAW (http://ogdraw.mpimp-golm.mpg.de/index.shtml, accessed on
23 March 2023) was applied for visualization of the complete cp genome map [38].

2.4. Codon Usage Frequency Analysis

According to the degeneracy of codons, each amino acid was coded by 1 codon at
least and 6 codons at most. In different species and different organisms, there are great
differences in genome codon usage rates. The inequality of synonymous codon usage is
called relative synonymous codon usage (RESU). RESU was calculated using the following
formula: RESU = ratio of (number of one of the codons encoding a certain amino acid)
to (number of all codons encoding this amino acid)/(1/the codon species encoding this
amino acid).

2.5. Repeat Sequence Analysis

The interspersed repeat sequence was searched using vmatch v2.3.0 (http://www.
vmatch.de/, accessed on 23 March 2023) software, in which parameters were set as min-
imum length = 30 bp and Hamming distance = 3. Four forms of interspersed repeat
sequences were identified: forward, palindromic, reverse and complementary repeat se-
quences. The SSRs were identified using MISA v1.0 (MIcroSAtellite identification tool,
http://pgrc.ipk-gatersleben.de/misa/misa.html, accessed on 23 March 2023) software, in
which parameters were set as single-base repeat > 8, di-base repeat > 5, tri-base repeat > 3,
tetra-base repeat > 3, penta-base repeat > 3, and hexa-base repeat > 3 [15,39,40]. The SSR
primers were designed using the SSR analysis results.

2.6. Cp Genome Comparison of Cabbage Species

Four variants of B. oleracea were selected for comparing the boundaries between the
LSC, IR and SSC regions in the kohlrabi cp genome, including the newly assembled cp
genome of B. oleracea var. gongylodes (MW900251, 153,364 bp), B. oleracea var. alboglabra
cv. SJCT (OR063915, 153,365 bp) [15], B. oleracea var. alboglabra cv. FZHH (OR063916,
153,420 bp) [15] and B. oleracea var. itaica (MN649876.1, 153,364 bp) [23]. Boundary dif-
ferences in IRB-LSC, IRB-SSC, IRA-SSC, and IRA-LSC were compared among these four
variants with the annotation information of cp genomes available in GenBank.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.github.com/hyattpd/Prodigal
http://www.hmmer.org/
http://130.235.244.92/ARAGORN/
http://dogma.ccbb.utexas.edu/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://ogdraw.mpimp-golm.mpg.de/index.shtml
http://www.vmatch.de/
http://www.vmatch.de/
http://pgrc.ipk-gatersleben.de/misa/misa.html
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2.7. Phylogenetic Analysis

Phylogenetic relationships were analyzed using MEGA7 by the maximum likelihood
(ML) method [41]. The cp genomes of other species for phylogenetic relationships analysis
were downloaded from the NCBI database, including B. oleracea (wild cabbage) (MG717288),
B. oleracea var. capitata (KR233156.1), B. oleracea var. botrytis (KX681655.1), B. oleracea
var. italica (MH388765), B. juncea (KT581449.1), B. rapa (NC_040849.1), B. rapa ssp. rapa
(MT409177), B. napus (GQ861354.1), B. nigra (KT878383.1), Raphanus staivus (NC_024469.1),
Arabidopsis thaliana (NC_000932.1), Solanum lycopersicum (NC_007898.3) and Oryza sativa
(NC_031333.1). Of them, the cp genome sequence of O. sativa (NC 031333.1) was used as
the outgroup.

3. Results
3.1. Complete Chloroplast Genome Assembly and Gene Annotation

Based on the assembled sequences, the complete quadripartite circular cp genome
of kohlrabi with a length of 153,364 bp without any gaps was generated. Similarly to
cp genomes of other crops, there are four sequence regions of the kohlrabi cp genome,
including a large single-copy region (LSC) with length of 83,136 bp, a small single-copy
region (SSC) with length of 17,834 bp and two inverted repeats (IRa and IRb) with length
of 26,197 bp. The base composition analysis showed that the overall GC and AT content
was 36.36% and 63.64% of the complete cp genome sequence, respectively. The GC and AT
content was 34.15%, 65.85% in the LSC region, 29.10%, 70.90% in the SSC region, and 42.35%,
57.65% in the IR regions, respectively. Based on the gene annotation results, the cp genome
of kohlrabi contained 132 genes, 87 of which were annotated as protein-coding genes, 37 as
tRNA genes, and 8 as rRNA genes. The complete cp genome map is shown in Figure 2. All
sequence information and gene annotation of the complete kohlrabi cp genome has been
uploaded to the NCBI database under GenBank accession number MW900251.
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According to the different biosynthetic pathways and various functions of these
132 genes, 45 of them were annotated as involved in photosynthesis pathways, 74 as self-
replication genes, 8 considered conserved hypothetical chloroplast open reading frames,
and 5 were annotated as other genes (Table 1). Among these 45 genes involved in photo-
synthesis, 5 genes were involved in subunits of photosystem I—psaA, psaB, psaC, psaI and
psaJ; 15 in subunits of photosystem II—psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM, psbN, psbZ and psbT; 6 in subunits of the cytochrome b/f complex—petA,
petB, petD, petG, petL and petN; 1, rbcL, in a large subunit of rubisco; six in subunits
of ATP synthase—atpA, atpB, atpE, atpF, atpH and atpI; and 12 in subunits of NADH
dehydrogenase—ndhA, ndhB (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ and
ndhK. Five genes contained one intron (petB, petD, atpF, ndhA and ndhB).

Table 1. Structural characteristics of kohlrabi chloroplast genes.

Category for Genes Group of Genes Names of Genes Number

Photosynthesis

Subunits of photosystem I psaA psaB psaC psaI psaJ 5

Subunits of photosystem II psbA psbB psbC psbD psbE psbF psbH psbI psbJ
psbK psbL psbM psbN psbZ psbT 15

Subunits of cytochrome b/f complex petA petB* petD* petG petL petN 6
Large subunit of rubisco rbcL 1

Subunits of ATP synthase atpA atpB atpE atpF* atpH atpI 6

Subunits of NADH-dehydrogenase ndhA* ndhB*a ndhC ndhD ndhE ndhF ndhG ndhH
ndhI ndhJ ndhK 12

Self-replication

Ribosomal RNA genes rrn16a rrn23a rrn4.5a rrn5a 8

Small subunit of ribosome rps2 rps3 rps4 rps7a rps8 rps11 rps12**a rps14 rps15
rps16* rps18 rps19 14

Large subunit of ribosome rpl2*a rpl14 rpl16 rpl20 rpl22 rpl23a rpl32 rpl33
rpl36 11

Transfer RNA genes

trnH-GUG trnK-UUU* trnQ-UUG trnS-GCU
trnG-UCC trnR-UCU trnC-GCA trnD-GUC
trnY-GUA trnE-UUC trnT-GGU trnS-UGA

trnG-GCC* trnfM-CAU trnS-GGA trnT-UGU
trnL-UAA* trnF-GAA trnV-UAC* trnM-CAU
trnW-CCA trnP-UGG trnI-CAUa trnL-CAAa

trnV-GACa trnI-GAU*a trnA-UGC*a trnR-ACGa

trnN-GUUa trnL-UAG

37

DNA-dependent RNA polymerase rpoA rpoB rpoC1* rpoC2 4

Other genes

Maturase matK 1
Envelope membrane protein cemA 1

Subunit of acetyl-CoA accD 1
C-type cytochrome synthesis gene ccsA 1

Protease clpP** 1

Genes of
unknown function Conserved open reading frames ycf1aycf2aycf3** ycf4 ycf15a 8

Note: a Two copies in the IR region; * one intron; ** two introns.

Among these 74 genes annotated as self-replication genes, 8 were annotated as rRNA
genes, comprising rrn16 (×2), rrn23 (×2), rrn4.5 (×2), and rrn5 (×2). Fourteen genes were
annotated as involving the small ribosome subunit: rps2, rps3, rps4, rps7 (×2), rps8, rps11,
rps12 (×2), rps14, rps15, rps16, rps18 and rps19. Eleven genes were annotated as involving
the large ribosome subunit: rpl2 (×2), rpl14, rpl16, rpl20, rpl22, rpl23 (×2), rpl32, rpl33, and
rpl36. Two genes contained one intron (rps16 and rpl2) and one gene (rps12) contained two
introns. Among 37 genes annotated as tRNA genes, seven occurred in two copies (trnI-CAU,
trnL-CAA, trnV-GAC, trnI-GAU, RNA-UGC, trnR-ACG and trnN-GUU) and six contained
one intron (trnK-UUU, trnG-GCC, trnL-UAA, trnV-UAC, trnI-GAU and trnA-UGC).

Five other genes were annotated involving maturase (matK), envelope membrane
protein (cemA), subunit of acetyl-CoA (accD), c-type cytochrome synthesis gene (ccsA) and
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protease (clpP), respectively. Of these, clpP was found to contain two introns. Eight genes
of unknown function were also identified: ycf1 (×2), ycf2 (×2), ycf3, ycf4, and ycf15 (×2). Of
these, ycf3 was found to contain two introns.

Among 19 genes with two copies, except for ycf1 residing within the SSC region and
two copies of rps12 residing within the LSC region and IR region, 17 were all located in
the IR regions: ndhB, rrn4.5, rrn5, rrn16, rrn23, rps7, rps12, rpl2, rpl23, trnI-CAU, trnV-GAC,
trnL-CAA, trnI-GAU, trnA-UGC, trnR-ACG, trnN-GUU, ycf1, ycf2 and ycf15.

3.2. Relative Synonymous Codon Usage Analysis

Based on the preference of codons used by CDS, we estimated the relative synony-
mous codon usage frequency (RSCU) and codon usage frequency. The codon–anticodon
recognition patterns of the kohlrabi cp genome showed that a total of 30 tRNAs comprised
codons corresponding to all 20 essential amino acids for protein biosynthesis. A total of
65 kinds of codons were searched in the cp genome, of which UAA had the highest usage
encoding the termination codon. In addition, UUA for leucine, AUG for methionine, GCU
for alanine, AGA for arginine, UCU for serine and GGA for glycine also had high usage
(Figure 3, Table S1). Moreover, of all these 65 codons, 33 codons had RSCU values of >1,
and 29 of them (93.50%) ended with base A or U, whereas the RSCU values for 31 codons
were <1, and 30 of them (90.90%) ended with base C or G. Trp was encoded by only one
UGG codon, indicating no biased usage (RSCU = 1).
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3.3. Interspersed Repeat Sequence Analysis

Interspersed repeat sequence analysis identified a total of 35 scattered repeats: 11 forward,
21 palindromic, and 3 IRs (Figure 4). The positions of these interspersed repeat sequences
were analyzed, and 21, 4, 2 and 7 were distributed in the LSC, SSC, IRa and IRb regions,
respectively (Table S2). Repeat sequence lengths ranged from 30 to 47 bp, except the
IR region.
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3.4. Simple Sequence-Repeat Analysis

The SSR analysis revealed that 290 SSRs were identified, including 205 single-base,
18 di-base, 62 tri-base and five tetra-base repeats (Figure 5a). The positions of these SSRs
were analyzed, and 188 (64.83%), 60 (20.69%) and 42 (14.48%) were distributed in LSC, SSC
and IR regions, respectively (Figure 5b). A total of 98 (33.79%), 42 (14.48%) and 150 (51.72%)
SSRs were located in exons, introns, and intergenic regions of the genome (Table S3). Based
on the SSR analysis result, 283 pairs of primers were designed (Table S4).
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3.5. Boundary Analysis

Four B. oleracea varieties were selected for boundary analysis between the LSC, IR and
SSC regions in the cp genome: the newly assembled cp genome of B. oleracea var. gongylodes
(MW900251, 153,364 bp), B. oleracea var. alboglabra cv. SJCT (OR063915, 153,365 bp) [15],
B. oleracea var. alboglabra cv. FZHH (OR063916, 153,420 bp) [15] and B. oleracea var. itaica
(MN649876.1, 153,364 bp) [23] (Figure 6). The lengths of the IR and SSC regions were the
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same in these four B. oleracea varieties. Only the length of LSC region was different, and
ranged from 83,136 to 83,192 bp. The rps19 coding sequence was located in the boundary of
the LSC and IRb region and the relative location was same in these four B. oleracea varieties
at 113 bp upstream of the IRb region. The ndhF and ycf1 coding sequences were located in
the boundaries of the IRb and SSC region and SSC and IRa region at 2204 bp upstream of
the SSC region and 1027 bp upstream of the IRa region, respectively. The tRNA non-coding
gene trnH-GUG in these four B. oleracea varieties was within the LSC region, which started
3 bp upstream of LSC in B. oleracea var. gongylodes, B. oleracea var. alboglabra cv. SJCT and B.
oleracea var. alboglabra cv. FZHH, and 4 bp upstream of LSC in B. oleracea var. itaica. These
results suggested that the boundaries between the LSC, IR and SSC regions were highly
conserved except for minor differences in distance of trnH-GUG at the boundary between
the IRa and LSC regions in B. oleracea varieties.
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3.6. Phylogenetic Relationship Analysis

Phylogenetic relationships among eleven Brassica species, one S. lycopersicum, one O.
sativa, and kohlrabi were determined by MEGA7 using the maximum likelihood (ML) method.
Of these cp genome, O. sativa (NC_031333.1) was used as an outgroup (Figure 7). Five B.
oleracea varieties were clustered into one group and three of them were clustered into one
subgroup—B. oleracea var. Botrytis (KX681665.1), B. oleracea var. gongylodes and B. oleracea
var. italica (MH388765)—in which the kohlrabi cp genome was closely related to B. oleracea
var. botrytis. These results may provide new insight for understanding the polyploidization
between Brassicaceae species.
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Figure 7. Phylogenetic relationships of thirteen species and kohlrabi based on the complete chloro-
plast genome sequence. The chloroplast sequence of O. sativa (NC 031333.1) was used as the outgroup.
B. oleracea (wild cabbage) (MG717288), B. oleracea var. capitata (KR233156.1), B. oleracea var. botrytis
(KX681655.1), B. oleracea var. italica (MH388765), B. juncea (KT581449.1), B. rapa (NC_040849.1), B.
rapa ssp. rapa (MT409177), B. napus (GQ861354.1), R. staivus (NC_024469.1), B. nigra (KT878383.1), A.
thaliana (NC_000932.1), S. lycopersicum (NC_007898.3) and O. sativa (NC_031333.1).
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4. Discussion

Chloroplasts act as uniparentally inherited semi-autonomous organelles involved
in the genetic systems of plants. Zhang et al. [23], Timmis et al. [41] and Liu et al. [42]
reported that the gene number, gene composition, and gene arrangement of cp genomes
are more highly conserved than those of mitochondrial and nuclear genomes. Based on the
cp genome assembly, the length of the kohlrabi cp genome and GC content were similar
to those of other Brassicaceae species, such as B. oleracea var. alboglabra [15], B. oleracea
var. italica [23], B. rapa ssp. rapa [43], R. sativus L. [44], B. nigra and B. oleracea [45] and B.
juncea (Indian mustard) [46]. The cp genome length of these species was approximately
153,300 bp to 153,500 bp and the GC content was approximately 36.30%. In terms of length
of cp genome and GC content, they were highly conserved.

A total of 132 genes were identified and annotated in the cp genome of kohlrabi, fewer
than that in B. oleracea var. alboglabra and B. oleracea var. itaica. Based on the gene annotation,
19 genes were identified with two copies in the IR regions. In addition, five orf genes of
unknown function were also identified in the cp genome of kohlrabi, fewer than that in
cpDNA of A. thaliana [47]. This result indicated that gene losses occurred in the cp genome
of Brassicaceae family, which is similar to gene losses in the cp genome of other genera,
such as Asteraceae, Leguminosae and Gentianaceae [48,49].

Codon usage frequency is a crucial factor influencing the evolution of the cp genome.
According to the RSCU estimation, we found that most codons with RSCU values > 1
ended with A or U, while most codons with RSCU values < 1 ended with C or G. This result
is consistent with B. oleracea var. itaica [23], Magnoliz zenii [50] and other species [51,52],
suggesting that this phenomenon may be similar in plant cp genomes and codon usage
frequency of the cp genome is also highly conserved.

In the cp genome of kohlrabi, 290 SSRs were identified, of which 205 (70.69%) belonged
to single-base A or T repeats. The proportion of mononucleotide repeats among all SSRs of
the kohlrabi cp genome was similar to that in B. oleracea var. itaica [23], B. rapa ssp. rapa [43],
Quercus acutissima [53] and Aristolochia medicinal species [54]. Similarly to other reports,
most identified SSRs were positioned at the intergenic region of the cp genome. A total of
283 pairs of primers designed relying on SSRs in the cp genome of kohlrabi could be used
in DNA fingerprint development and phylogenetic discrepancy analysis.

5. Conclusions

The complete cp genome of kohlrabi with length of 153,364 bp without any gaps
was sequenced and analyzed. In sum, 87 protein-coding genes, 37 tRNA genes, and
8 rRNA genes were annotated. The overall GC content was 36.36% of the complete cp
genome sequence, and 35 scattered repeats and 290 SSRs were found and identified. Phy-
logenetic relationship analysis revealed that the kohlrabi chloroplast genome was closely
related to that of B. oleracea var. botrytis. Our results provide a basis for understanding the
chloroplast-dependent metabolic studies and provide new insights into the polyploidiza-
tion of Brassicaceae species.
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