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Abstract: Spodoptera frugiperda poses a severe threat to crops, causing substantial economic losses. The
increased use of chemical pesticides has led to resistance in S. frugiperda populations. Micro ribonu-
cleic acids (MicroRNAs or miRNAs) are pivotal in insect growth and development. This study aims to
identify miRNAs across different developmental stages of S. frugiperda to explore differential expres-
sion and predict target gene functions. High-throughput sequencing of miRNAs was conducted on
eggs, 3rd instar larvae, pupae, and adults. Bioinformatics analyses identified differentially expressed
miRNAs specifically in larvae, with candidate miRNAs screened to predict target genes, particularly
those involved in detoxification pathways. A total of 184 known miRNAs and 209 novel miRNAs
were identified across stages. Comparative analysis revealed 54, 15, and 18 miRNAs differentially
expressed in larvae, compared to egg, pupa, and adult stages, respectively. Eight miRNAs showed
significant differential expression across stages, validated by quantitative reverse transcription PCR
(qRT-PCR). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses
predicted target genes’ functions, identifying eight differentially expressed miRNAs targeting 10 gene
families associated with detoxification metabolism, including P450s, glutathione S-transferase (GSTs),
ATP-binding cassette (ABC) transporters, and sodium channels. These findings elucidate the species-
specific miRNA profiles and regulatory mechanisms of detoxification-related genes in S. frugiperda
larvae, offering insights and strategies for effectively managing this pest.

Keywords: detoxification; larva; microRNAs; resistance; S. frugiperda; the fall armyworm

1. Introduction

MicroRNAs (miRNAs) are endogenous, single-stranded, non-protein-coding small
RNAs approximately 19 to 24 nucleotides in length [1]. These miRNAs are ubiqui-
tously present in animals, plants, and microorganisms, playing a crucial role in the post-
transcriptional regulation of genes [2–8]. Studies have demonstrated that miRNAs are
integral to various biological processes, including tissue growth, germ cell development,
hormone action, and the development and function of the central nervous system, primarily
through gene regulation [9,10]. It is estimated that miRNAs regulate the expression of more
than 50% of protein-coding genes in animals [11].

Research on insect miRNAs has garnered increasing attention, leading to the discov-
ery of numerous miRNAs across different insect species. These miRNAs regulate a wide
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range of physiological functions throughout insect development, such as molting, meta-
morphosis, oogenesis, embryogenesis, behavior, and host–pathogen interactions [12–18].
For instance, Dicer-1, a key gene in miRNA processing, when interfered with RNA, was
found to partially inhibit the metamorphosis of Blattella germanica (L.) (Blattaria: Blattidae)
after molting [4]. The miR-2 family influences insect metamorphosis and development
via juvenile hormones [19–21], while miR-14 regulates insect molting by participating in
the regulation of ecdysone receptors [22,23]. Additionally, miRNAs play vital roles in the
growth and development of other insects such as Bactrocera dorsalis Hendel (Diptera: Tephri-
tidae), Nilaparvata lugens (Hemiptera: Delphacidae), and Spodoptera exigua (Lepidoptera:
Noctuidae) [24–26].

Given their significant role in post-transcriptional gene regulation, binding to spe-
cific sequences of target mRNA, miRNA can degrade target mRNA or inhibit its normal
translation, thereby regulating the expression of target genes. miRNAs are also implicated
in the molecular mechanisms that enhance drug resistance by regulating detoxification
genes in insects [27,28]. Detoxification metabolic resistance is crucial for pest resistance
development. For instance, miR-7a and miR-8519 could upregulate the expression of the
ryanodine receptor (RyR), enhancing resistance to chlorantraniliprole [29]. miR-998-3p can
negatively regulate the expression of ABCC2, contributing to the detoxification of BtCry1Ac
toxins in three typical lepidopteran pests: Helicoverpa armigera (Lepidoptera: Noctuidae), S.
exigua, and Plutella xylostella (Lepidoptera: Plutellidae) [30]. Furthermore, miRNAs novel-
85 and novel-191 can target CYP6ER1 and carboxylesterase 1 (CarE1), significantly altering
N. lugens’ susceptibility to nitenpyram [31]. In addition, miR-4133-3p could regulate the
detoxification of gossypol and tannic acid by targeting the cytochrome P450 4CJ1 (CYP4CJ1)
in Aphis gossypii Glover (Hemiptera: Aphididae) [32].

The fall armyworm, S. frugiperda Smith, 1797 (Lepidoptera: Noctuidae), is a major
migratory agricultural pest of global concern [33]. This omnivorous pest has a strong
migratory ability, a high reproductive rate, and a short life cycle, damaging 353 species
of plants across 76 families, including major crops such as corn, sorghum, sugarcane,
barley, rice, pepper, wild oat, and potato [34,35]. The primary method of controlling
this pest relies on chemical pesticides, which have proven to be effective [36]. However,
reports indicate that S. frugiperda has developed resistance to various insecticides, including
bromides, neonicotinoids, and pyrethroids [37–39]. Insect resistance to insecticides is
mainly attributed to enhanced metabolism and alterations in target site structures [40–42].

To date, some miRNAs have been identified in S. frugiperda, with functional studies
primarily focusing on antiviral immune defense and adaptive evolution [43,44]. How-
ever, systematic identification and functional analysis of miRNAs related to detoxification
metabolism in S. frugiperda remain limited [45]. Using high-throughput sequencing of
miRNA libraries, this study investigated miRNAs in S. frugiperda at different develop-
mental stages, analyzed differentially expressed miRNAs in larvae, and identified target
genes and functional predictions of these miRNAs across four stages. This research aims
to elucidate the regulatory mechanisms of S. frugiperda growth and development, analyze
detoxification-related target genes, and provide new strategies for the effective management
of S. frugiperda outbreaks and damage.

2. Materials and Methods
2.1. Insect Collection and Rearing

The larvae of S. frugiperda were collected from a cornfield at the Xindu Base of the
Sichuan Academy of Agricultural Sciences, China. They were continuously raised in the
insect laboratory of Plant Conservation Institute of Sichuan Academy of Agricultural Sci-
ences. The larvae were reared continuously in a light incubator under controlled conditions
(16/8 hr light/dark (L/D) cycle, 65% humidity, 25 ◦C) and fed with an artificial diet [46],
which consisted of the following components: wheat germ powder 280 g, soy protein pow-
der 90 g, yeast powder 35 g, agar 25 g, vitamin B complex 0.2 g, cholesterol 12 g, sorbate
2 g, ascorbic acid 12 g, methyl p-hydroxybenzoate 5 g, formaldehyde 4 mL, penicillin 0.2 g,
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and distilled water 1500 mL. Sampling periods at different developmental stages were as
follows: 500 eggs were collected within 24 h post-laying, 20–30 third instar larvae were
collected within 12 h post-molting, 3–5 pupae were collected within 36 h post-pupation,
and 2–3 adults were collected within 12 h post-emergence. Each sample contained 0.3–0.5 g
and had three biological replicates. Samples were placed in 2.0 mL RNase-free centrifuge
tubes with TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) for tempo-
rary storage. After collection, samples were stored in an ultra-low temperature freezer
at −80 ◦C.

2.2. Small RNA Library Preparation and Sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen Life Technologies, Carlsbad,
CA, USA) following the manufacturer’s instructions. RNA concentrations were measured
using a NanoDrop spectrophotometer (Thermo Scientific, Sunnyvale, CA, USA), and RNA
quality and integrity were assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies,
Waldbronn, Germany). Total RNA was used to construct small RNA (sRNA) libraries with
the NEBNext Multiplex Small RNA Library Prep Set for Illumina (New England Biolabs,
Ipswich, MA, USA).

One microgram of total RNA from S. frugiperda samples was ligated to 3′ and 5′

adapters using Ligation Enzyme Mix. The samples were then reverse-transcribed using
Superscript II reverse transcriptase. The sRNA libraries were subjected to quality control,
and the average insert size was approximately 140 to 150 bp. cDNA was prepared using
random primers and a cDNA Synthesis Kit (Invitrogen, CA, USA). The sequencing library
was quantified using the Agilent High Sensitivity DNA assay on an Agilent Bioanalyzer
(Agilent Technologies, Germany) and sequenced on a NovaSeq 6000 (Illumina) in PE150
mode at Personal Biotechnology Co., Ltd. (Shanghai, China).

2.3. Unigene Assembly, Analysis, and Annotation

Raw sequencing reads underwent quality control using FastQC program (Babraham
Bioinformatics, Cambridge, UK) [47], and then the raw data were filtered using the Person-
albio company’s self-developed script. Clean reads ranging from 18 to 36 nt were filtered,
and deduplication was performed to obtain unique reads for subsequent analysis. The
reference genome index was built using Bowtie2 v2.5.1 [48], and de-duplicated clean reads
were mapped to the reference genome using miRDeep2 v2.0 (https://sourceforge.net/
projects/mireap/, accessed on 1 October 2023) [49]. Unique reads were aligned to known
miRNAs in the miRBase R.22. database (http://www.mirbase.org/, accessed on 1 October
2023) and annotated with other non-coding RNAs. Sequences without annotations were an-
alyzed using mireap v0.2 for novel miRNA prediction. Annotation results were organized
according to the priority: known miRNA > piRNA > rRNA > tRNA > snRNA > snoRNA >
novel miRNA, ensuring each small RNA had a unique annotation.

2.4. Differential Expression Analysis of miRNAs

The reads count of miRNAs was determined based on sequences aligned to mature
miRNAs. The highest abundance among miRNAs of the same name was used for subse-
quent analysis. Differentially expressed miRNAs were identified using DESeq v1.39.0 [50],
with transcripts showing a log2 fold change > 1 and p-value < 0.05 considered signifi-
cant. Bidirectional cluster analysis of all miRNAs and samples was performed using the R
package Pheatmap v1.0.12 [51], with the Euclidean method for distance calculation and
Complete Linkage for hierarchical clustering.

2.5. Quantitative Reverse Transcription PCR

Eight differentially expressed miRNAs were selected for qRT-PCR using initial RNA
samples. Stem-loop RT primers and gene-specific primers were designed (Table 1). Reverse
transcription was performed with the PrimeScript RT reagent kit with gDNA Eraser (Takara,
Tokyo, Japan), the reference gene Actin reverse transcription was performed using the

https://sourceforge.net/projects/mireap/
https://sourceforge.net/projects/mireap/
http://www.mirbase.org/
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general primers of the kit, and the specific primers of miRNAs were reversed. We used 1 µg
of total RNA under the following conditions: 16 ◦C for 30 min, 42 ◦C for 30 min, and 85 ◦C
for 5 min. The reference gene qRT-PCR reaction contained 2 µL of diluted cDNA (15 ng),
10 µL of 2× AceQ qPCR SYBR Green Master mix (Vazyme, Nanjing, China), and 10 µM of
each primer in a 20 µL total volume [52]. The miRNAs qRT-PCR reaction contained 2 µL of
diluted cDNA (15 ng), 10 µL of 2× AceQ Universal U+ Probe Master mix (Vazyme, China),
10 µM probe, and 10 µM of each primer in a 20 µL total volume [53]. The conditions used
were: 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s, and a melting
curve from 68 ◦C to 95 ◦C. The Applied Biosystems QuantStudio 6 Flex system (Thermo
Scientific, Sunnyvale, CA, USA) was used with Sf-actin as an endogenous control. The
2−∆∆CT method was used to calculate the relative expression levels of miRNAs [54]. The
qRT-PCR included three technical and biological replicates.

Table 1. Primers used for the qRT-PCR.

Primer Sequence (from 5′ End to 3′ End)

miR-6094-5P-RT GTCGTATCCAGTGCAGGGTCCGAGGTAT
TCGCACTGGATACGACAGGTAC

miR-6094-5P-F TCAGCGGTGGCCTGGG
miR-6094-3P-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGATC
miR-6094-3P-F CGCGTATTCGAGACCTCTGCT

miR-10505-3p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAGCCA
miR-10505-3p-F CGCGCGTAGGGTTAGAAACT
miR-14-5p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCGAGT
miR-14-5p-F GCGGGGGGAGGAATTG

miR-2765-5p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCCAAC
miR-2765-5p-F CGCGCGTGGTAACTCCACCACC
miR-277-3p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGTCGT
miR-277-3p-F CGCGCGTAAATGCACTATCTGGT

miR-307-3p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCTCAC
miR-307-3p-F CGCGCGTCACAACCTCCTTGA
miR-34-5p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAACC
miR-34-5p-F CGCGCGTGGCAGTGTGGTTAGCT

miR-R AGTGCAGGGTCCGAGGTATT
Sf-actin(nei)-F CGAGAAGATGACCCAGAT
Sf-actin(nei)-R GATAGCACAGCCTGGATA

probe FAM-CGCACTGGATACGAC-MGB

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment
Analysis

Target genes of differentially expressed miRNAs were predicted using miRanda
v3.3a (https://bioweb.pasteur.fr/packages/pack@miRanda@3.3a/, accessed on 13 De-
cember 2023), considering the 3′ untranslated region (UTR) sequences of S. frugiperda
mRNAs. GO (http://geneontology.org/, accessed on 13 December 2023) and KEGG
(http://www.kegg.jp/, accessed on 13 December 2023) enrichment analyses were per-
formed on the predicted target genes. GO enrichment was conducted using topGO
v2.50.0 [55], with significant enrichment determined by p-value < 0.05 using the hyperge-
ometric distribution method. KEGG pathway enrichment analysis was performed using
clusterProfiler v4.6.0 [56], focusing on pathways with p-values < 0.05.

2.7. Statistical and Data Analysis

Statistical analyses were conducted using Statistical Product and Service Solutions
(SPSS) v20.0 (SPSS Inc., Chicago, IL, USA). Comparisons were performed using Student’s
t-test, with a p-value < 0.05 considered statistically significant.

https://bioweb.pasteur.fr/packages/pack@miRanda@3.3a/
http://geneontology.org/
http://www.kegg.jp/
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3. Results
3.1. Small RNA Sequencing Data in S. frugiperda

High-throughput sequencing generated twelve sRNA libraries for S. frugiperda at four
different developmental stages: egg, larva, pupa, and adult. The transcriptome data for
these stages contain 20,128,612, 16,315,920, 23,520,239, and 17,593,809 raw reads, respec-
tively (Table 2). The total raw sequences for the four developmental stages exceeded 10 Mb,
with high-quality reads constituting 91–97%, indicating good sequencing quality. After
filtering clean reads (≥18 nt), the number of valid sequences obtained for egg, larva, pupa
and adult stages were 17,231,905, 3,731,980, 17,141,575, and 12,107,130 reads, respectively.

Table 2. Summary of sequencing reads.

Sample Flag Raw Reads Average Raw
Reads Clean Reads Average Clean

Reads

Egg-1 E01 23,489,347 20,128,612 20,154,610 17,231,905
Egg-2 E02 24,772,159 20,128,612 20,586,799 17,231,905
Egg-3 E03 12,124,331 20,128,612 10,954,307 17,231,905

Larva-1 L01 10,837,072 16,315,920 1,502,965 3,731,980
Larva-2 L02 17,172,714 16,315,920 2,494,144 3,731,980
Larva-3 L03 20,937,973 16,315,920 7,198,831 3,731,980
Pupa-1 P01 20,479,951 23,520,239 14,980,746 17,141,575
Pupa-2 P02 25,798,866 23,520,239 19,742,017 17,141,575
Pupa-3 P03 24,281,901 23,520,239 16,701,963 17,141,575
Adult-1 A01 23,403,358 17,593,809 13,367,017 12,107,130
Adult-2 A02 12,435,180 17,593,809 10,254,039 12,107,130
Adult-3 A03 16,942,888 17,593,809 12,700,333 12,107,130

The sRNA lengths for the four developmental stages of S. frugiperda ranged from 18 to
36 nt (Figure 1). In larvae, pupae, and adults, the 22 nt sequences were the most abundant,
accounting for 43.20%, 48.18%, and 38.99% of the total, respectively. In eggs, the 27 nt
sequences were the most abundant, making up 30.72% of the total.
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3.2. Small RNA Classification and Annotation

To identify known non-coding RNAs, the precursor and mature sequences of miRNAs
for the species were downloaded from miRBase. The deduplicated sequences were aligned
to these miRNAs to annotate sRNAs at different developmental stages of S. frugiperda
(Figure 2A, Table S1). Among the annotated sRNAs, ribosomal RNA (rRNA) was the most
abundant, constituting 32.89% of the total. Larvae and pupae had higher rRNA quantities
than adults and eggs. tRNA, snoRNA, and snRNA were significant components of sRNAs,
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with maximum proportions of 0.40%, 0.12%, and 0.14%, respectively. A significant propor-
tion of sRNAs (31.94–81.26%) remained unannotated across all developmental stages.
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to the total de-duplicated sequences. (B) First base bias of the miRNAs in S. frugiperda. X-axis shows
the miRNAs length, and Y-axis shows the frequency in percentage. (C) Base bias of the miRNAs at
each position. X-axis shows the nucleotide position, and Y-axis shows the frequency in percentage.

The nucleotide preference at the first base of miRNAs in different developmental
stages of S. frugiperda was analyzed (Figure 2B), with most sRNAs showing a preference
for U (uracil) at the first base. In all samples, the first base of 18 bp sRNAs preferred A
(adenine). Different nucleotide positions exhibited different preferences (Figure 2C). The
preference for U at the 5′ end is a conserved characteristic of miRNAs.

3.3. Identification of Known and Novel miRNAs in S. frugiperda

Precursor and mature sequences of miRNAs were downloaded from miRBase, and
deduplicated sequences were aligned to these miRNAs for annotation. A total of 135, 149,
168, and 164 known miRNAs were identified in eggs, larvae, pupae, and adults, respectively.
Among these, 115 known miRNAs were present across all four developmental stages
(Figure 3A). Additionally, novel miRNAs were predicted from sequences not annotated
with any information using mireap analysis, resulting in 147, 83, 122, and 138 novel miRNAs
identified in eggs, larvae, pupae, and adults, respectively. Among these, 32 novel miRNAs
were common across all four stages (Figure 3B). The ten most highly expressed miRNAs
were detected (Table S2), with sfr-miR-2766-3p, sfr-miR-279a-3p, and sfr-miR-10-5p being
the most abundantly expressed.
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3.4. Identification of Differentially Expressed miRNAs in Larvae

miRNAs expressed in both larvae and other developmental stages (eggs, pupae, and
adults) were selected based on differential expression (log2 fold change > 1) and significance
(p-value < 0.05). The results showed 67 differentially expressed miRNAs across the four
developmental stages. The number of differentially expressed miRNAs between larvae
and eggs, pupae, and adults were 54, 15, and 18, respectively (Table 3).

Table 3. The number of differentially expressed miRNAs in different stages of S. frugiperda.

Control Case Upregulated Genes Downregulated Genes Total DEGs

Egg Larva 32 22 54
Adult Larva 9 9 18
Pupa Larva 6 9 15
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Eight miRNAs showed differential expression in S. frugiperda larvae compared to
the other three stages (Figure 4). Among them, sfr-miR-14-5p, sfr-miR-6094-5p, and sfr-
miR-6094-3p were significantly upregulated in larvae compared to the other stages. The
most significantly upregulated miRNA in larvae was sfr-miR-6094-3p, with expression
levels increasing by 223.41, 482.67, and 79.76 times compared to eggs, pupae, and adults,
respectively. sfr-miR-6094-5p and sfr-miR-14-5p were also highly upregulated, with sfr-miR-
6094-5p showing increases of 209.54, 253.92, and 87.57 times, and sfr-miR-14-5p showing
increases of 23.89, 3.69, and 5.21 times, compared to eggs, pupae, and adults, respectively.
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Figure 4. Heatmap of differentially expressed miRNAs in different stages of S. frugiperda. Red
indicates upregulation; blue means downregulation.

Conversely, the most significantly downregulated miRNA in larvae was sfr-miR-2765-
5p, with expression decreasing by 74.20, 61.11, and 37.06 times compared to eggs, pupae,
and adults, respectively. sfr-miR-279b-3p was also significantly downregulated, with
decreases of 3.89, 3.77, and 6.97 times compared to eggs, pupae, and adults, respectively.
Additionally, sfr-miR-277-3p and sfr-miR-307-3p were downregulated in larvae compared
to pupae and adults, and sfr-miR-34-5p was downregulated in larvae compared to adults.

3.5. qRT-PCR Validation of Differentially Expressed miRNAs in Larvae

To further confirm the miRNA sequencing results, eight miRNAs (miR-6094-5p, miR-
6094-3p, miR-14-5p, miR-10505-3p, miR-2765-5p, miR-277-3p, miR-307-3p, and miR-34-
5p) were randomly selected for qRT-PCR based on their differential expression in larvae
compared to the other three developmental stages. The qRT-PCR results showed consis-
tent expression patterns with RNA-seq. Compared with the egg stage, the expression of
miR-2765-5p was downregulated, and the expression of other miRNAs was upregulated
(Figure 5A). Compared with the pupa stage, the expressions of miR-6094-5p, miR-6094-
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3p, miR-10505-3p, miR-14-5p, and miR-34-5p were upregulated, while the expressions of
miR-2765-5p, miR-277-3p, and miR-307-3p were downregulated (Figure 5B). Compared
with the adult stage, the expressions of miR-6094-5p, miR-6094-3p, and miR-14-5p were
upregulated, while the expressions of miR-2765-5p, miR-277-3p, miR-307-3p, and miR-
34-5p were downregulated (Figure 5C). This suggests that the orientation of regulation
and expression pattern of these miRNAs validated by RT-qPCR was consistent with the
results from the miRNA sequencing, thus confirming the reliability and repeatability of the
miRNA sequencing method.
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3.6. Prediction of Targeted Genes

Using miRanda, the 3′ UTR sequences of the species’ mRNAs were targeted for the
prediction of differentially expressed miRNA target genes. A total of 2019 target genes
and 66,004 target sites were predicted for the 67 differentially expressed miRNAs in S.
frugiperda larvae.

To further investigate the functions of miRNAs in the S. frugiperda transcriptome, the
top twenty significantly enriched KEGG pathways were analyzed. In larvae vs. adults
(Figure 6A), the most significantly enriched pathways were chemokine signaling path-
way, gonadotropin-releasing hormone (GnRH) secretion, cyclic adenosine monophosphate
(cAMP) signaling pathway, GnRH signaling pathway, and axon guidance. In larvae vs.
eggs (Figure 6B), the top pathways were endocytosis, apelin signaling pathway, chemokine
signaling pathway, circadian entrainment, and phospholipase D signaling pathway. In
larvae vs. pupae (Figure 6C), the most significantly enriched pathways were oxytocin sig-
naling pathway, vascular smooth muscle contraction, serotonergic synapse, axon guidance,
and GnRH secretion.
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Figure 6. The top 20 significantly enriched KEGG pathways of S. frugiperda in (A) larvae vs. adults,
(B) larvae vs. eggs, and (C) larvae vs. pupae. X-axis shows the enrichment factor, and Y-axis shows the
pathway names. Definitions of the pathways are available at https://www.kegg.jp/kegg/pathway.
html. The enrichment degree was measured by Rich factor value and the number of miRNA target
genes enriched on this pathway. Rich factor refers to the ratio of the number of differential miRNA
target genes enriched in this pathway to the number of differential miRNA target genes annotated.
The greater the Rich factor, the greater the degree of enrichment.

GO enrichment analysis of the target genes of differentially expressed miRNAs showed
that the functions of differentially expressed genes in larvae compared to the other three
stages were mainly distributed across cellular components, molecular functions, and
biological processes. In larvae, adults, and pupae, the G protein-coupled receptor signaling
pathway was a significantly enriched subgroup (Figures 7 and 8). In larvae and eggs,
localization was a significantly enriched subgroup (Figure 9).

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
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Figure 7. The top 30 GO terms of the target genes of differentially expressed miRNAs of S. frugiperda
in larvae vs. adults. The enrichment degree was measured using the false discovery rate (FDR) value
and the number of miRNA target genes enriched on this pathway. FDR generally ranges from 0 to
1, and the closer it is to zero, the more significant the enrichment. The top 30 pathways with the
smallest FDR value, that is, the most significant enrichment, were selected for display.
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the more significant the enrichment. The top 30 pathways with the smallest FDR value, that is, the
most significant enrichment, were selected for display.
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Figure 9. The top 30 GO terms of the target genes of differentially expressed miRNAs of S. frugiperda
in larvae vs. eggs. X-axis shows GO terms, and Y-axis shows −log10 (p-value). The enrichment
degree was measured by FDR value and the number of miRNA target genes enriched on this pathway.
FDR generally ranges from 0 to 1, and the closer it is to zero, the more significant the enrichment. The
top 30 pathways with the smallest FDR value, that is, the most significant enrichment, were selected
for display.

To better understand the interactions between miRNAs and their potential target
genes, eight of the most significantly differentially expressed miRNAs and detoxification
metabolism-related target mRNAs were selected to construct a miRNA–mRNA network
(Figure 10). The eight miRNAs included the four most upregulated miRNAs in larvae
(sfr-miR-14-5p, sfr-miR-6094-5p, sfr-miR-6094-3p, and sfr-miR-34-5p) and the four most
downregulated miRNAs (sfr-miR-2765-5p, sfr-miR-279b-3p, sfr-miR-277-3p, and sfr-miR-
307-3p). A total of 82 target genes were identified, targeting 10 gene families involved
in detoxification metabolism. These included twenty-nine genes in the P450 gene family,
twenty-four in the ABC transporters gene family, thirteen in the GSTs gene family, four in
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the CarEs gene family, nine in the Acetylcholine gene family, twenty-three in the Sodium
channel gene family, seven in the Ryanodine gene family, eight in the Cadherin gene family,
seven in the Alkaline phosphatase gene family, and eleven in the Aminopeptidase gene
family. These results suggest that detoxification metabolism-related pathways play a critical
role in insecticide resistance in S. frugiperda.
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4. Discussion

In recent years, increasing numbers of miRNAs have been discovered in various
eukaryotic organisms [57]. In insects, miRNAs regulate gene expression at the post-
transcriptional level by either repressing translation or degrading mRNA, with their func-
tions mainly focused on various physiological processes in insects [58–61]. The larval
stage is the primary period during which S. frugiperda infests crops like corn [62]. It is
also a crucial period for rapid growth and preparation for pupation. Studying miRNAs
preferentially expressed in the larvae of the fall armyworm can aid in identifying miRNAs
involved in regulating growth and development, as well as analyzing detoxification-related
target genes, providing new insights and methods for effectively controlling outbreaks and
damage caused by this pest.

Chemical control of S. frugiperda has a long history, so a variety of resistance mecha-
nisms have emerged [63]. In the United States and Brazil, chemical control of S. frugiperda
is mainly used before planting Bt transgenic maize [39]. The metabolic capacity of carbaryl
-resistant strains is five times higher than that of sensitive strains, and the resistance is
mainly caused by oxidative metabolism such as P450 hydroxylation and epoxidation [64].
The activities of various detoxification metabolic enzymes such as multifunctional oxidase
(MFO), GSTs, and esterase (ESTs) of laboratory-resistant strains are significantly higher than
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those of sensitive strains [37]. The sensitivity of acetylcholinesterase (AChE), a molecular
target of carbamate and organophosphorus insecticides, to menafarb is also significantly
reduced [65]. All these indicate that the resistance of S. frugiperda in the field population
is caused by several mechanisms, so the study of insecticide resistance is particularly
important in chemical control.

This study also provides comprehensive insights into the sRNA landscape of S.
frugiperda across its developmental stages, with a particular focus on identifying and
predicting differentially expressed miRNAs associated with detoxification pathways in lar-
vae. The results revealed critical patterns and potential regulatory roles of miRNAs, which
could be crucial for understanding and managing this pest’s resistance to insecticides.

Our analysis identified a substantial number of known and novel miRNAs across the
developmental stages of S. frugiperda, including 135, 149, 168, and 164 known miRNAs in
eggs, larvae, pupae, and adults, respectively. Additionally, we discovered 147, 83, 122, and
138 novel miRNAs in these stages. These findings are consistent with previous studies that
have identified numerous miRNAs in various insect species [31,43,66–69], underscoring the
conserved nature of miRNA-mediated regulation in insect development and physiology.

Notably, miR-2766-3p, miR-279a-3p, and miR-10-5p were among the most abundantly
expressed miRNAs in S. frugiperda, with significant expression in the larval stage. These
miRNAs have been implicated in crucial biological processes such as development, stress
response, and resistance mechanisms in other insect species. For instance, miR-2766
regulates tyrosine hydroxylase in H. armigera, influencing larval–pupal metamorphosis [70].
Similarly, miR-279a-3p modulates CYP325BB1 expression, affecting insecticide resistance
in mosquitoes [71]. In addition, miR-10 is also the most abundantly expressed miRNA in
larvae of H. armigera when parasitized by the wasp Diadegma semiclausum [72].

The differential expression analysis highlighted eight miRNAs with significant changes
in expression levels in S. frugiperda larvae compared to other developmental stages. These
include upregulated miRNAs such as sfr-miR-6094-3p, sfr-miR-6094-5p, and sfr-miR-34-
5p, and downregulated miRNAs such as sfr-miR-2765-5p and sfr-miR-279b-3p. The high
expression of sfr-miR-34-5p in larvae and its decrease in eggs and pupae suggest its pivotal
role in larval development. This pattern aligns with previous findings in other insects,
where miRNAs were also highly expressed in larvae compared to other stages [73–78].

The KEGG and GO enrichment analyses of target genes predicted for differentially
expressed miRNAs revealed their involvement in critical biological pathways, including
detoxification metabolism and G protein-coupled receptor (GPCR) signaling. GPCR signal-
ing has been linked to insecticide resistance in various insects, including S. frugiperda [79].
Our study identified 82 potential detoxification-related target genes regulated by differ-
entially expressed miRNAs, including genes from the P450, GST, and ABC transporter
families. These gene families are well-known for their roles in insecticide detoxification
and resistance [80].

Previous studies have demonstrated that miRNAs can modulate insecticide sensitivity
by targeting detoxification genes. For instance, miR-2b-3p and miR-14-5p in P. xylostella
larvae were shown to influence the expression of CYP9F2 and CYP307a1, affecting the larval
detoxification capacity [81]. Similarly, regulating novel_miR-1517 expression in Bemisia
tabaci affected its sensitivity to imidacloprid by modulating CYP6CM1 expression [82]. The
chlorpyrifos- and cypermethrin-resistant nature of S. frugiperda strains showed that the
A201S, G227A, and F290V point mutations of AChE are resistant to chlorpyrifos [39]. The
T929I, L932F, and L1014F point mutations in sodium ion channels lead to resistance to
cyhalothrin. The increased expressions of P450, GSTs, and ESTs are involved in resistance to
chlorpyrifos and cypermethrin [83]. Our findings suggest that miRNAs in S. frugiperda may
similarly regulate detoxification genes, contributing to its resistance to various insecticides.

The findings of this study have significant implications for understanding the molecu-
lar mechanisms underlying insecticide resistance in S. frugiperda. The identified miRNAs
and their target genes involved in detoxification pathways offer potential targets for devel-
oping novel pest management strategies. By manipulating specific miRNAs or their targets,
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it might be possible to enhance the efficacy of insecticides or develop new control methods
that circumvent existing resistance mechanisms. Future research should focus on functional
validation of these miRNAs and their targets using techniques such as miRNA mimics and
inhibitors, gene knockout or knockdown experiments, and biochemical assays to confirm
their roles in detoxification and resistance. Additionally, exploring the environmental and
physiological factors that influence miRNA expression and activity will further elucidate
their regulatory networks in S. frugiperda.

5. Conclusions

In summary, eight miRNAs showed differential expression in S. frugiperda larvae com-
pared to the other three stages. A total of 82 target genes were identified, targeting 10 gene
families involved in detoxification metabolism. These results provide a theoretical basis for
further exploring the mechanism of miRNAs regulating detoxification metabolism genes.
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read counts.
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