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Abstract: Background/Objectives: Congenital adrenal hyperplasia (CAH) is an auto-
somal recessive disorder caused by mutations in the CYP21A2 gene associated with
21-hydroxylase deficiency and increased levels of adrenal androgens. Affected females
are at risk of ambiguous genitalia, while affected males show sexual precocity. Here, we
present a case of a newborn female patient, characterized by ambiguous genitalia and
previously identified as low risk for common aneuploidies by non-invasive prenatal testing
(NIPT). Methods: We performed a NIPT, which showed a 46, XX genotype, confirmed
by karyotype on the newborn’s DNA extracted lymphocytes. For clinical suspicion of
CAH, we performed reverse dot blot and Multiple Ligation-dependent Probe Amplifi-
cation (MLPA) of the CYP21A2 gene on the patients and her parents’ DNA. Then, we
performed on mother’s plasma NGS analysis with an in-house developed panel of genes
for monogenic diseases, including the CYP21A2 gene. Results: Reverse dot blot and MLPA
detected the presence of the c.290-13A/C>G (I2 splice) mutation in heterozygosity in the
parents and in homozygosity in the child, respectively. NGS detected the c.290-13A/C>G
(I2splice) mutation in cell-free fetal DNA (cfDNA) in mother’s plasma with a variant allele
frequency (VAF) of 67% with a fetal fraction (FF) of 5%. This latter suggests the presence of
the variant both in the mother and in newborn cfDNA. Conclusions: The study reinforces
the hypothesis that cfDNA can be used to identify point mutations, small insertions and/or
deletions for the diagnosis of monogenic diseases, reducing the number of invasive tests
and the risk of early miscarriages. Early detection of mutations in genes causing sexual
development disorders could make it possible to start therapy in the womb.

Keywords: CAH; NIPT; NGS; CYP21A2; CfDNA; hydrocortisone

1. Introduction
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders

due to mutations in CYP21A2 gene leading to enzyme deficiencies involved in steroid
hormone synthesis in adrenal glands [1]. Disease severity and phenotypic presentation
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depend on the location and extent of point mutations or deletions, which lead to complex
allelic variations [2]. In 90–95% of CAH, defined as classical CAH, cases are characterized
by steroid 21-hydroxylase (21-OH) deficiency that flows in atypical genitalia in female
newborns and in sexual precocity in males [3]. Young women may present oligomenorrhea,
polycystic ovaries, and hirsutism [4,5]. However, disease-related mortality has increased
and therapeutic management remains challenging, with multiple long-term complications
related to treatment and disease affecting growth, development, metabolic, cardiovascular
conditions, and fertility [1]. Novel treatment approaches like hydrocortisone are emerging
with the aim of mimicking physiological circadian cortisol rhythm and/or reducing adrenal
hyperandrogenism independent of the suppressive effect of glucocorticoids [6]. For this
purpose, it is necessary to diagnosis the disease as soon as possible to improve the life
conditions of the CAH patients. Therefore, non-invasive prenatal testing (NIPT), using
cell-free fetal DNA (cfDNA), firstly applied to monogenic diseases in 2012 [7], may help to
provide an early diagnosis for single-gene diseases.

2. Case Report
We report a case of a female newborn patient characterized as low risk for common

aneuploidies, investigated by NIPT. Structural ultrasound findings revealed a phenotypic
female sex with clitoral hypertrophy. The patient at birth presented with a crooked foot
(Figure 1A) and ambiguous genitalia (Figure 1B). Biochemical exams showed increased
levels of adrenal hormones (Table 1). We hypothesized that the patient was affected by a
severe form of classical CAH defined “salt-wasting CAH”.

Table 1. Patient’s adrenal hormone levels of five different dates. The measurements include 17-OHP,
ACTH, testosterone, DHEA-S, androstenedione, cortisol, and renin. The data illustrate a significant
reduction in hormone levels over time, reflecting the patient’s response to treatment. 17-OHP,
17 hydroxy-progesterone; ACTH, adrenocorticotropic hormone; DHEA-S, dehydroepiandrosterone
sulfate.
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Renin (pUI/mL) 88.23 608.30 149.2 55 26.2 3.11–41.2

This latter is usually associated with a worse prognosis due to low aldosterone produc-
tion by adrenal glands leading to a high sodium loss by urines. If it is not diagnosed in time,
symptoms appear within days or weeks after birth and, in some cases, death occurs [8].
Hence, we performed an analysis of the genotype derived from fetal lymphocytes and
we found a 46, XX chromosomal asset confirming NIPT results (Figure 1C). In addition,
we pieced the patient’s family tree identifying whether the patient and her parents were
affected and not affected by the disease, respectively (Figure 1D).
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Figure 1. Patient’s ambiguous genitalia: congenital clubfoot (A) and hypospadic penis and empty
scrotum (B) as per a virilized female. Patient’s genotype with a 46, XX genotype (C). Patient’s family
tree (D).

Then, to confirm clinical suspicion of the CAH disease, we performed a reverse dot
blot (Figure 2) and Multiplex Ligation-dependent Probe Amplification (MLPA) (Figure 3) on
CYP21A2 gene of the patient and parental DNA. Therefore, we identified c.290-13A/C>G
(I2 splice) mutation overlaps that results from the family tree analysis: homozygous for the
patient and heterozygous for her parents. Specifically, for reverse dot blot, we used two pan-
els for CYP21A2 gene polymorphisms: a panel for wild-type (wt) polymorphism and a
panel with 11 highest frequency polymorphisms inducing disease. After the PCR test, DNA
fragments were hybridized with oligonucleotides probes and we found c.290-13A/C>G
(I2 splice) mutation in both the patient and her parents. The patient was homozygous
for c.290-13A/C>G (I2 splice) mutation, revealed also by the lack of signal in the wt
stripe. In contrast, wt stripes were found in both father and mother confirming they were
heterozygous for c.290-13A/C>G (I2 splice) mutation in CYP21A2 gene.
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Figure 2. Arrows depict positions of bands obtained by reverse dot blot hybridization with the CAH
Strip Assay, Vienna Lab regions of the CYP21A2 gene whose mutations are amplified simultaneously
by multiplex PCR with biotinylated primers: P30L, I2 splice, Del 8 bp E3 (G110del8nt), I172N, Cluster
E6 (I236N, V237E, M239K), V281L, L307 frameshift (F306+T), Q318X, R356W, P453S, R483P. Wt,
wild type.
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Figure 3. MLPA (Multiplex Ligation-dependent Probe Amplification, Probemix P050-C1 CAH,
MRC-Holland) performed on patient’s, mother’s and father’s DNA. The orange square represents
the c.290-13A/C>G (I2 splice) mutation of the CYP21A2 gene in heterozygosity, of which both
parents are carriers. The red dots represent the same mutation in homozygosity. MLPA (Multiplex
Ligation-dependent Probe Amplification).
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MLPA was performed to detect the exact copy number of CYP21A2 gene. We used
MLPA Probemix P050-D1 CAH contain 30 MLPA probes with amplification products be-
tween 130 and 382 nucleotides. This includes eight probes for the CYP21A2 gene and four
probes for the CYP21A1P pseudogene. Figure 3 shows that CYP21A2 probes detected both
wild-type sequences and c.290-13A/C>G (I2 splice) mutation in homozygosis (Figure 3A)
and in heterozygosis (Figure 3B,C) in the patient and her parents, respectively. The fol-
lowing changes can be observed in the ratio chart as follows: the ratio for the specific
probe targeting the mutated region drops to ~0.0 or a very low value. This occurs be-
cause the mutation disrupts the probe-binding site, preventing ligation and subsequent
amplification. Other probes targeting unaffected regions of the CYP21A2 gene maintain a
normal ratio (~1.0). Different from their son, mother (B), and father (C) are heterozygous
for c.290-13A/C>G (I2 splice) and the ratio is ~0.5 (indicating 50%of the expected signal).

Finally, we conducted a retrospective analysis performing next-generation sequencing
(NGS) on circulating cfDNA. The NGS testing was performed on an aliquot of maternal
plasma obtained during NIPT assay and stored in our Biobank at −80 ◦C to ensure the
integrity of the DNA. This analysis employed a custom gene panel of 1069 genes including
CYP21A2 gene, and 100 copy number variations (CNVs) associated with monogenic dis-
eases with significant clinical relevance and substantial impact on public health. The gene
panel included a region of 3,490,181 base pairs and encompassed genes whose mutations (in-
sertions/deletions, point mutations, duplications, de novo mutations, and rearrangements)
were causative of a wide spectra of disorders (i.e., neuronal, skeletal, cardiac, intestinal,
and kidney disorders) associated with an autosomal dominant, autosomal recessive and
X-linked inheritance. Moreover, genes were chosen for their potential to enhance, during
the prenatal screening, both the pregnancy management and early intervention after birth.

CfDNA and gDNA were amplified and repaired by using Kapa HyperPrep and KAPA
hyperplus kits (Kapa Biosystems, Roche Diagnostics, Wilmingtonj, MA, USA), respectively,
by means of End repair, A-Tailing, Ligate adapters, and Enrich DNA fragments to obtain the
final sample for NGS. According to the KAPA HyperPrep kits and given the fragmentation
of cfDNA, no additional fragmentation steps were required for the sample extracted
from maternal plasma. In contrast, according to KAPA HyperPlus kits manufacturer’s
instructions, first of all, gDNA was fragmented to achieve the size required by the applied
Illumina short-reads sequencing technology. DNA quantification was performed using a
Qubit 3.0 Fluorometer with the Qubit ds- DNA HS (High Sensitivity) Assay Kit fluorescent
dye method. Sequencing was carried out on NovaSeq 6000 (Illumina Inc., San Diego, CA,
USA) to a mean sequencing depth of at least 600X. Bioinformatic analysis were conducted
taking advantage of in-house pipelines.

Finally, NGS analysis of parental and fetal DNA revealed c.290-13 A>C/G (I2 splice)
mutation in CYP21A2 gene with a variant allele frequency (VAF) of 67% and FF of 5% in
newborn and of 63% in both parents (Figure 4D).

However, these data suggest the presence of the variant both in the mother and in
cfDNA, leading to the conclusion that fetal DNA can be used for the identification of point
mutations and small insertions and/or deletions for the diagnosis of monogenic diseases,
potentially reducing the number of invasive tests and the risk of early miscarriage [9].
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Figure 4. Molecular analysis of CYP21A2 gene. Photographs of Integrative Genomics View (IGV)
representation of the c.290-13A/C>G (I2splice) mutation in CYP21A2 gene identified with NGS, VAF
calculated on affected patient (A), patient’s father (B), patient’s mother (C), and cfDNA (D). VAF,
variant allele frequency. Red and blue lines represent the aligned reads in paired-end. Orange squares
represent the frequency of reads carrying alternate allele.

3. Discussion
The lack of the enzyme 21-OH is the most common cause of CAH due to CYP21A2

gene mutations leading to reduced cortisol production that flows into increased ACTH
production and consequentially an increase in androgen output from the adrenal glands.
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An excess of fetal adrenal androgens interferes with the development of the female external
genitalia in utero, resulting in ambiguous genitalia [3]. In fact, females are virilized at
birth because their external genitalia, including the penile urethra and fused labioscrotal
folds, resemble males [10]. By contrast, the male newborns may not have received a
diagnosis because they do not present with life-threatening symptoms, and do not have
genital ambiguity to warn doctors but are presented with a salt loss emergency and may be
characterized by impaired fertility [11]. Therefore, a standard CAH screening may be useful
to perform an early diagnosis of disease mainly for females. Interestingly, CYP21A2 gene is
located on the short arm of chromosome 6 near to HLA locus [12], a chromosomal region,
known to be subject to frequent mutations among the different classes of HLA [13]. In
most countries, CAH diagnosis is mainly performed after birth by biochemical analysis in
particular by 17-OHP assay that in the severe forms of the disease is very high [14]. The 17-
OHP can become normal after a stimulus test with the Synacthen test, with the commercial
name of ACTH. Specifically, 0.5 mg of ACTH is injected intramuscularly, then, after an
hour, the basal 17-OHP dosage is performed and if it exceeds 1000 nanograms per deciliter
the test is considered indicative of pathology [15]. Therefore, we explored a case of a female
newborn affected by classical CAH and characterized by external ambiguous genitalia and
high androgen levels. Firstly, we identified c.290-13A/C>G (I2 splice) mutation on CYP21A2
gene by PCR and reverse dot blot in homozygosis and in heterozygosis in newborns and in
parents, respectively. The point mutation leads to an intronic variant resulting in a splicing
mutation that occurs in intron region 2, 13pb upstream of exon 3 [16]. Altered splicing
flows in abnormal mRNA which may either retain intronic sequences or induce exon
3 skipping [17]. Because exon 3 encodes a critical segment of the 21-OH enzyme, altered
splicing generates a stop codon, leading to either a truncated, non-functional protein or
mRNA degradation via nonsense-mediated decay [18]. Therefore, the outcome is a partial
or complete loss of enzyme activity. The same mutation was confirmed by MLPA analysis
and NGS. The main goal of this case is to highlight the importance of prenatal screening
to give a definitive and early diagnosis of monogenic disorders. Katthab and co-workers
identified 14 pregnants whose fetuses were at high risk for CAH. The authors demonstrated
that fetuses’ allelic compositions could be responsible abnormalities in CYP21A2 gene. They
demonstrated that the results obtained from non-invasive procedures were comparable
to invasive CAH diagnostic procedures 100% of the time [19]. In the same way, Ma et al.
collected 39 plasma samples from pregnants whose gestations ranged from the first to the
second trimester and performed NGS on maternal and paternal DNA to identify whether
the fetuses inherited wt or pathological CYP21A2 alleles. They showed that CAH could
be identified in all 14 participants, with an early diagnosis at eight weeks of gestation
proving that testing maternal plasma can be an alternative to invasive procedures [20].
New et al. used massively parallel sequencing to demonstrate the utility of cfDNA testing
and the strategy for prenatal diagnosis of CAH in affected families. Sequence analysis was
performed using mutation linked to the CYP21A2 gene in parents. In 14 families affected
by CAH due to CYP21A2 pathogenic variants, seven affected fetuses, five carriers, and
two unaffected fetuses were identified as early as five weeks and six days of gestation [21].
However, even if non-invasive methods previously described using cfDNA can be helpful
for prenatal screening, there is still much work to do to replace the gold standard of invasive
tests like amniocentesis and villocentesis. In fact, for the implementation of the cfDNA-
based test as a diagnostic test for prenatal determination of fetal inheritance of monogenic
disorders to be successful, some factors should be considered: low FF (<4%) [22], multiple
pregnancies [23], vanishing tween presence [24], maternal somatic mosaicism [25], maternal
transplantation [26] or maternal DNA contamination [27]. While the use of cfDNA for the
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prenatal diagnosis of CAH offers a non-invasive alternative to traditional methods, several
limitations must be considered to ensure accurate and reliable results.

Maternal DNA contamination is one of the primary challenges in cfDNA analysis
because cfDNA is mixed with a substantial proportion of maternal cfDNA in maternal
plasma and to distinguish fetal-specific genetic variants from maternal background noise
can be difficult [28]. Maternal DNA contamination may lead to false-negative results
whether it masks fetal mutations or false-positive findings whether maternal mutations
are incorrectly attributed to the fetus [29]. Then, although sequencing technologies have
improved substantially, technical errors and bioinformatics challenges persist. Therefore,
false positives may arise from sequencing artifacts, while false negatives can result from
low read depth or allelic dropout. Rigorous quality control measures and validation
studies are crucial to improving the robustness of cfDNA-based CAH diagnosis [30]. In
contrast, advanced bioinformatics techniques and targeted sequencing approaches are
required to overcome this problem. In fact, the advanced computational algorithms help to
isolate the cfDNA contribution from maternal DNA, improving diagnostic accuracy [31].
Thanks to these advancements, non-invasive prenatal diagnosis of CAH is now much more
accurate and safe, reducing the risk of errors due to maternal DNA contamination. Another
limitation is the potential presence of mosaicism, where different cells in the fetus may have
different genetic compositions [32]. If CAH mutation is present in only a subset of fetal cells,
cfDNA analysis might not accurately detect the full extent of the genetic variation [33]. This
can lead to discrepancies between cfDNA findings and actual fetal genotype, complicating
diagnostic conclusions. Further validation through invasive diagnostic methods such as
amniocentesis may be necessary in cases where mosaicism is suspected.

The interpretation of VAF in cfDNA-based diagnosis presents additional difficulties.
Since cfDNA originates from both the fetus and the mother, the proportion of mutant alleles
detected does not always correlate directly with zygosity or disease severity. Variability in
FF, affected by gestational age, maternal body mass index [34], and placental health [35]
can further complicate VAF interpretation. Low FF may reduce the sensitivity of cfDNA-
based detection, leading to ambiguous results that necessitate confirmation tests [36,37].
Despite its advantages, cfDNA-based prenatal diagnosis of CAH faces significant limita-
tions that must be acknowledged and addressed. Maternal DNA contamination, potential
fetal mosaicism, and complexities in VAF interpretation highlight the need for cautious
interpretation of cfDNA findings. Ongoing advancements in sequencing technologies,
bioinformatics pipelines, and FF enrichment strategies may help overcome these obstacles,
but until then, cfDNA should be used in conjunction with traditional diagnostic approaches
to ensure accuracy and reliability.

Moreover, large-scale studies are necessary for the prenatal diagnosis of CAH to
improve the accuracy, reliability, and clinical utility of current testing methods. Given the
complexity of cfDNA analysis, the potential for mosaicism, and the influence of maternal
DNA contamination, further research is essential to refine diagnostic protocols, reduce false
positives/negatives, and establish standardized guidelines for NIPT of CAH.

The patient had a low risk for aneuploidies and then, to evaluate whether the mutation
was present on cfDNA, we performed a retrospective analysis on the parental DNA stored
in Biobank, on cfDNA of the patient and we identified an FF of 5% and a VAF of 67%.
These data suggest that the variant was present in both parents and the fetus, indicating
the potential for early diagnosis of CAH. However, early diagnosis has historically been
challenging for several reasons. One key difficulty is that CYP21A1P is a non-functional
pseudogene that is not translated [14]. Non-homologous recombination between the
functional CYP21A2 gene and the pseudogene can occur, resulting in 1–2% of the mutations
in CYP21A2 gene being due to gene conversion events rather than direct inheritance from
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parents [38]. This complicates the analysis, as NGS can amplify both CYP21A2 and the
highly similar CYP21A1P, making it difficult to distinguish them. In some cases, to address
this issue, a primary PCR is performed that specifically amplifies all exons of the CYP21A2
gene while excluding CYP21A1P. This product of amplification undergoes sequencing, but
also to smaller PCRs and is therefore sequenced with Sanger Sequencing. The product of
the initial PCR is further analyzed using enzymatic digestion, which allows differentiation
between non-deleted and deleted alleles. It is crucial that the polymerase enzyme used in
these polymerase chain reactions has proofreading activity. This ensures that the enzyme
can self-correct during amplification, thereby increasing the accuracy of the PCR process.
These technical challenges contribute to the difficulty of achieving early diagnosis of CAH.
However, in our case study, NGS was able to detect pathogenetic variants. In fact, PCR
is usually performed when VAF is <50% whereas mutations seen in heterozygosis and in
homozygosis in the parents and the daughter were 63% and 67%, respectively. In our study,
the deviation from the expected 50% allele frequency in a homogeneous DNA sample is
interpreted in the context of a mixed cfDNA sample, where maternal DNA predominates
and the fetal fraction constitutes only about 5% of the total DNA. In such samples, a
heterozygous variant present exclusively in the fetal DNA would theoretically result in
a VAF of approximately 2.5% (i.e., half of the fetal fraction) rather than the classical 50%
observed in pure genomic DNA. Consequently, an observed VAF of 67% indicates that
the mutant allele is not evenly distributed across all DNA sources but is instead enriched
within the minor component of the sample.

This allelic imbalance enables an assessment of whether the variant is present in a
heterozygous or homozygous state. However, this evaluation is inherently limited by the
low FF, as only a VAF deviation ranging from about half of the FF to levels suggestive
of mutation dominance can raise suspicion for a mutation. Our approach is deliberately
conservative to minimize false negatives and ensure that potential mutations are not
overlooked, even though this may lead to an increased number of false positives.

To enhance the accuracy of variant detection under these challenging conditions, we
have employed a deep sequencing strategy with an average coverage of 600X. This high
read depth is crucial for reliably detecting low-frequency variants in cfDNA and ensures
that even those variants present at very low levels are not overlooked. Furthermore, any
suspected mutations are confirmed using orthogonal methods validated specifically on
cfDNA rather than on conventional genomic DNA.

Furthermore, this underlines that NGS is able to identify a mutation in CYP21A2
gene. In addition, reverse dot blot and MLPA were also able to identify mutations only
in CYP21A2 gene avoiding pseudogene involvement. The main goal of our study was to
pave the way to perform an early diagnosis starting from cfDNA and preventing corrective
actions after birth. Early diagnosis would also enable prenatal treatment with drugs to
manage adrenal pathways, ultimately improving the quality of life for individuals affected
by CAH. To date, there are different therapies for CAH treatment. Specifically, hydrocor-
tisone reduces the stimulation of the androgens pathway preventing further virilization
and following normal growth and development [39]. The usual requirement of hydro-
cortisone for the treatment of a classical 21-OH form of CAH is about 10-15 mg/m2/day
divided into two or three doses per day and for the non-classical 21-OH 5-8 mg/m2/day
divided into two or three doses per day [40,41]. New treatment strategies are being devel-
oped to either replicate the physiological circadian rhythm of cortisol or to reduce adrenal
hyperandrogenism without relying on the suppressive effects of glucocorticoids such as
hydrocortisone [18]. In fact, as reported in Table 1, hydrocortisone reduced the patient’s
biochemical parameters. In conclusion, NIPT for monogenic disorders enables the early
detection of pathogenic mutations, potentially allowing therapeutic intervention during
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pregnancy. Furthermore, cfDNA analysis holds promise not only for enhancing the quality
of life for patients with CAH but also for improving the conditions of patients affected by
other genetic disorders.

4. Conclusions
In summary, cfDNA analysis by NGS may be useful to perform and early diagnosis

of CAH as well as for other monogenic disorders. It is important that patients with a
screen-positive result for a genetic anomaly are counseled appropriately and advised to
undergo an invasive diagnostic procedure for confirmation before any decisions regarding
pregnancy outcome.
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