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Abstract: In the literature on map projections, we regularly encounter the name standard parallel
or standard parallels. However, it is obvious that a unique definition of a standard parallel is not
universally accepted. To fully clarify the meaning of standard parallels, the author proposes the notion
of equidistantly mapped parallels, which has not been common in the literature so far. Equidistantly
mapped parallels can be in the direction of the parallel or in the direction of the meridian. Here, it is
shown that every standard parallel is also an equidistantly mapped parallel, but that the reverse need
not be true. If the parallel is mapped equidistantly in the direction of the parallel, then its length in
the projection plane is equal to the length of that parallel on the sphere. The opposite does not have
to be true, i.e., if the length of the image of the parallel in the projection plane is equal to the length of
the parallel on the sphere, this does not mean that the parallel was mapped equidistantly. In addition
to standard and equidistant parallels, the concept of parallels of true length also appears in the theory
of map projections. They should also be distinguished from standard and equidistant parallels.

Keywords: standard parallel; equidistantly mapped parallel; parallel of true length

1. Introduction

In the theory of map projections, we encounter special cases of rotational surfaces: the
sphere and the rotational ellipsoid. First, we will define the parallels on these surfaces, and
then we will investigate their role when mapping to the map projection plane.

The geographic parameterization of the sphere of radius R is:

X = Rcos φcos λ, Y = Rcos φsin λ, Z = Rsin φ, (1)

where the parameters are φ ∈
[
−π

2 , π
2
]

and λ ∈ [−π, π], the latitude and longitude,
respectively. From (1), we get

X2 + Y2 = R2cos2 φ. (2)

For φ = const. Equation (2) represents a circle at height Z = Rsin φ with the radius

r = Rcos φ. (3)

We call that circle a parallel on the sphere (1).
The geodetic parameterization of the rotating ellipsoid reads as

X = Ncos φcos λ, Y = Ncos φsin λ, Z = N
(

1 − e2
)

sin φ, (4)

where φ ∈
[
−π

2 , π
2
]

and λ ∈ [−π, π] are the geodetic latitude and longitude, respectively,
and e is the eccentricity of the meridian ellipse

e2 =
a2 − b2

a2 , (5)
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The radius of the curvature of the section along the first vertical

N(φ) =
a√

1 − e2sin2 φ
, (6)

and a and b semi-axes of the ellipsoid. From (4), we get

X2 + Y2 = N2cos2 φ. (7)

For φ = const. Equation (7) represents a circle at height Z = N
(
1 − e2)sin φ with the

radius
r = N(φ)cos φ. (8)

We call that circle a parallel on the rotational ellipsoid (4).
Standard parallels are often mentioned in the theory of map projections. However, it

seems that a unique definition of a standard parallel is not universally accepted. Standard
parallels are mentioned in some books, but not defined [1,2]. One whole article deals with
the selection of standard parallels in conic projections, but in that article standard parallels
are not defined [3]. Some authors equate standard and secant parallels [4–7]. Other authors
equate standard parallels with equidistantly mapped parallels [6,8]. I especially emphasize
the variety of definitions in a multilingual geographic dictionary [9]. In this dictionary,
the definition of a standard parallel is given in five languages (English, Russian, French,
Spanish and German) and in each of these languages it is different:

standard line; standard parallel
A line on a map along which the principal scale is retained.
r линия нулевых искaжений. Линия нa кaрте, вo всех тoчкaх кoтoрoй
сoхрaняется глaвный мaсштaб.
f isométre m
s línea f de sección; paralelo m base
g Berührungslinie f

The author of this article advocates the univocity of names in the theory of map
projections. Therefore, below, we will define three different types of parallels: standard
parallels, equidistantly mapped parallels, and true length parallels. Then, we will show
that every standard parallel is also an equidistantly mapped parallel, and that every
equidistantly mapped parallel in the direction of the parallel is also a true length parallel.
The reverse is generally not true.

2. Map Projections

Map projection is the mapping of a curved surface, for example, of the Earth’s sphere,
or an ellipsoid, onto a plane. In the theory of map projections, it is usually assumed that
the functions that define the map projection are real, unique, continuous, and differentiable
functions of φ and λ in an area, and that their Jacobi determinant does not vanish [10].

The changes that occur during such mapping are called distortions. Distortions of
lengths, areas, and angles should be distinguished. If the distortion at every point and in
all directions of a line/curve is equal to zero, we say that it is a line with zero distortion, or
a standard line. At first glance, this is a well-known, generally accepted definition, but it is
often confused with equidistantly mapped parallels and secant parallels. Below, we will
explain what the difference is.

We will limit ourselves to the sphere as the domain of map projection, and define map
projection as mapping given by real, continuous, and differentiable functions

x = x(φ, λ), y = y(φ, λ), (9)
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where φ ∈
[
−π

2 , π
2
]

and λ ∈ [−π, π] are latitude and longitude, as usual, and x and y are
the coordinates of a point in a rectangular (mathematical, right-oriented) coordinate system
in the plane. The first differential form of such a mapping is

ds′2 = Edφ2 + 2Fdφdλ + Gdλ2 (10)

with coefficients

E =

(
∂x
∂φ

)2
+

(
∂y
∂φ

)2
, F =

∂x
∂φ

∂x
∂λ

+
∂y
∂φ

∂y
∂λ

, G =

(
∂x
∂λ

)2
+

(
∂y
∂λ

)2
. (11)

The local linear scale factor c for mapping (9) of the sphere (1) is usually defined by
using the following relation

c2 =
ds′2

ds2 =
Edφ2 + 2Fdφdλ + Gdλ2

R2dφ
2 + R2cos2

φdλ2
, (12)

where the denominator shows the first differential form of geographic parameterization (1).
The relation (12) can also be written as

c2(α) =
E
R2 cos2α +

F
R2cos φ

sin 2α +
G

R2cos2 φ
sin2α, (13)

where
tan α =

cos φdλ

dφ
. (14)

The poles are singular points of geographic parameterization (1), and therefore expres-
sion (12) and all subsequent ones should be interpreted in the poles as limiting cases when
φ → π

2 or φ → −π
2 .

3. Standard Parallels

We will say that the distortion is equal to zero at some point if the local linear scale
factor is equal to 1, i.e., if

c(α) = 1 for each α ∈ [0, 2π], (15)

where c(α) is defined by (13) for a sphere with the radius R. Requirement (15) means that
the graph of the function c = c(α) in the polar system is a unit circle, so it is equivalent to
the condition

cmin = cmax = 1, (16)

which tells us that Tissot’s indicatrix (ellipse) is transformed into a unit circle at the observed
point. In that case, we say that the observed point is a standard point [11].

If every point of a curve is standard, then that curve is standard. For example, if every
point of a parallel is standard, then that parallel is standard.

In a special case, when F = 0 at the observed point, expression (16) can be written like
this:

h(φ, λ) = k(φ, λ) = 1, (17)

where h and k are the factors of the local linear scale along the meridian and the parallel,
respectively:

h(φ, λ) =

√
E

R
k(φ, λ) =

√
G

Rcos φ
. (18)

So, if the conditions F = 0 and (17) are met at a point, it is a standard point. A parallel
formed by standard points is a standard parallel.
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4. Equidistantly Mapped Parallels

Kavrayskiy [12] explains that from arbitrary projections, it is possible to single out
those for which at each point

a = cmax = 1 or b = cmin = 1. (19)

Acoording to him, cylindrical, conic, and azimuthal projections that have this prop-
erty are called equal-length (рaвнoпрoмежутoчные) or equidistant projections, which
practically means one and the same thing according to the Latin language. Nevertheless,
Kavrayskiy distinguishes between these two names and gives the name equidistant projec-
tion to projections for which the straight-line distances from a particular point to any other
are equal to the orthodromic (shortest) distances on the surface of the globe.

Bierniacki [13] says: “The term equidistant representation—called by Tissot automécoique,
in Russian ravnopromezhutochnoe (with equal intervals), in German mittabstrandstreue—as
generally used in mathematical cartography seems rather misleading”.

According to Richardus and Adler [14], one of the criteria for evaluating the properties
of map projections is “Equidistance—correct representation of distances”.

For Maling [15], equidistance is “The third important mathematical property which
may be satisfied is that one particular scale is made equal to the principal scale throughout
the map. . . . Equidistance is a less valuable property than either conformality or equivalence
because it is seldom desirable to have a map in which distances may be measured correctly
in only one direction. However, an equidistant map is a useful compromise between the
conformal and equal-area maps. . . . Consequently, equidistant map projections are often
used in atlas maps, strategic planning maps and similar map representations of large parts
of the Earth’s surface where it is not essential to preserve either of the other properties”.

According to Snyder [16], “Some projections show true scale between one or two points
and every other point on the map, or along every meridian. They are called equidistant
projections”.

According to Snyder and Voxland [17], “Equidistant projection is a projection that
maintains constant scale along all great circles from one or two points. When the projection
is centered on a pole, the parallels are spaced in proportion to their true distances along
each meridian”.

According to Bugayevskiy [18], “Рaвнoпрoмежутoчными нaзывaются прoекции,
сoхрaняющие длины пo oднoму из глaвных нaпрaвлений. Нaибoлее чaстo к ним
oтнoсят прoекции с oртoгoнaльнoй кaртoгрaфическoй сеткoй. B этих случaях глaвными
будут нaпрaвления вдoль меридиaнoв и пaрaллелей. Cooтветственнo oпределяются
рaвнoпрoмежутoчные прoекции вдoль oднoгo из этих нaпрaвлений”. In its English
translation: equidistant are those projections that preserve lengths in one of the main
directions. Most often, this refers to projections with an orthogonal cartographic network.
In these cases, the main directions will be along the meridians and parallels. With this in
mind, equidistant projections along one of these directions are defined.

According to Bugayevskiy and Snyder [8], “On so-called equidistant projections,
lengths are preserved along one of the base directions. These projections are very often
considered together with an orthogonal map graticule.

Among arbitrary projections we should distinguish equidistant projections where the
extreme linear scale along one of the main directions remains constant, i.e., a = 1 or b = 1.

If the graticule of the equidistant projection is orthogonal, then the base directions
coincide with meridians and parallels, and these projections are, consequently, called
equidistant along meridians or equidistant along parallels. In practice, however, the term
‘equidistant projection’ applies to equidistance along meridians or verticals, unless stated
otherwise”.

According to Kerkovits [19], “We can find equidistant projections in meridians with
the condition h = 1, while we can find equidistant projections in parallels imposing k = 1”.
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However, there are projections (e.g., sinusoidal, Bonne) that are equidistant along
the parallels, but the cartographic network of these projections is not orthogonal; that is,
the parallels are not the main directions. This would mean that these projections are not
equidistant, although they are equidistant along the parallels.

To standardize the terminology, let us agree as follows. If condition (17) is not fulfilled,
but F = 0 and only

h(φ, λ) = 1, (20)

or
k(φ, λ) = 1, (21)

is valid, then we will say that the point is mapped equidistantly. In doing so, we distinguish
between equidistantly mapped in the direction of the meridian (20) and equidistantly
mapped in the direction of the parallel (21).

If condition (20) is fulfilled for every point of a parallel, we will say that the parallel is
mapped equidistantly in the direction of the meridian, and if condition (21) is fulfilled, the
parallel is mapped equidistantly in the direction of the parallel.

These names should not be strange, because in the theory of map projections we
already have equidistant projections, and now we have extended the name equidistant to
equidistant at a point and equidistance of individual curves.

Since there are no cylindrical projections equidistant along the parallels, they are
usually called, simply: equidistant cylindrical projections.

We also have equidistant conic projections, which, by definition, mean equidistantly
mapped meridians (h = 1) [20]. Since there are conic projections that are equidistant along
the parallels (k = 1), it should always be clearly indicated whether it is a conic projection
equidistant along the meridians or along the parallels.

When we draw a network of meridians and parallels, since we cannot draw an infinite
number of them, as there actually are, we show only some of them, for example those
corresponding to latitudes 10◦, 20◦, 30◦, . . .. There arises a small language problem, because
in some projections, these parallels will be at the same distance from each other. In English,
they are “parallels equidistantly spaced” (see, e.g., [16]), and there the name equidistantly is
used awkwardly. Namely, the name equidistant was used in a different sense, i.e., instead
of “at the same distance or equally spaced”.

Similarly, it can be said “A locus of points equidistant from a point is called a
sphere” [19]. However, in this case, equidistant has the meaning “at an equal distance”,
which does not correspond to the definition of equidistant in the theory of map projections
using the local linear scale factor.

Canters [21] said: “According to the criterion used in this study, it seems that an
optimal balance between the distortion of angles and area is obtained for an equal spacing
of the parallels. A comparison of the graticules included in the directory indeed shows that
an equal spacing of the parallels generally has a pleasing effect on the representation of the
continents. It may be interesting to note that this equal spacing of the parallels also occurs
on the undistorted globe”.

There is another problem that can introduce confusion. Namely, if a parallel is mapped
equidistantly, and it is a conformal projection, then this parallel will be a standard parallel
at the same time. The proof is simple. For conformal projections, h = k is valid, so if k = 1,
then h = 1 must be true as well. The same applies to equal-area projections. If a parallel is
equidistant in the equal-area projection, then this parallel will be a standard parallel at the
same time. The proof is simple. For equivalent projections, hk = 1 is valid, so if k = 1, then
h = 1 must be true as well.

Let us note that the following simple but important property immediately follows
from the definitions of standard and equidistant parallels: every standard parallel is an
equidistantly mapped parallel. The opposite generally does not have to be the case.
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To conclude, in order to avoid misinterpretation of the term equidistant, it should
always be stated what kind of equidistance we are talking about: equidistant along a
parallel, along a meridian, or one of the main directions.

4.1. Orthographic Projection—Normal Aspect

The equations of the normal aspect orthographic projection of a sphere of radius R
are [17] as follows:

x = Rcos φsin λ, y = −Rcos φcos λ, (22)

where φ and λ are latitude and longitude, respectively. For example, for the northern
hemisphere, φ ∈

[
0, π

2
]
, and λ ∈ [−π, π] (Figure 1).

Figure 1. Northern hemisphere in the normal aspect orthographic projection.

From (22), we can compute

∂x
∂φ

= −Rsin φsin λ,
∂x
∂λ

= Rcos φcos λ,
∂y
∂φ

= Rsin φcos λ,
∂y
∂λ

= Rcos φsin λ (23)

and then, considering (11)

E = R2sin2 φ, F = 0, G = R2cos2 φ. (24)

Then, according to (18)

h(φ, λ) = h(φ) = sin φ, k(φ, λ) = 1. (25)

So, it is a projection equidistantly mapped along the parallels. Furthermore, the angle
β between the images of meridians and parallels is π/2, and the maximum and minimum
values of the local linear scale factor are determined by [22]:

cmax,min =

√
h2 + k2 ± (h2 − k2)

2
, (26)

and from there

a = cmax = 1, b = cmin = sin φ =
1
R

√
R2 − x2 − y2. (27)
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Thus, the normal aspect orthographic projection is an equidistant projection in the
direction of parallels, which is one of the main directions. According to [22], the main
directions ψ can be determined from the expression

tan 2ψ =
−2

(
∂x∂y
∂λ∂λ + cos2 φ

∂x∂y
∂φ∂φ

)
(

∂y
∂λ

)2
−

(
∂x
∂λ

)2
+ cos2 φ

[(
∂y
∂φ

)2
−

(
∂x
∂φ

)2
] . (28)

If we substitute the partial derivatives (23) in (28) after a minor arrangement, we will get

tan 2ψ =
−2sin λcos λcos2 φ

cos2 φ
[
cos2λ − sin2λ

] =
2xy

x2 − y2 . (29)

Equation (29) determines two mutually perpendicular main directions of the normal aspect
orthographic projection given by Equations (22):

tan ψ =
y
x

and tan
(

ψ +
π

2

)
= − x

y
. (30)

4.2. Orthographic Projection—Transverse Aspect

The equations of the transverse aspect orthographic projection of a sphere of radius R
are [17]:

x = Rcos φsin λ, y = Rsin φ, (31)

where φ and λ are latitude and longitude, respectively. For example, for a hemisphere
whose zero meridian is the central meridian φ ∈

[
−π

2 , π
2
]
, and λ ∈

[
−π

2 , π
2
]

(Figure 2).

Figure 2. A hemisphere in the transverse orthographic projection.

From (31), we can compute

∂x
∂φ

= −Rsin φsin λ,
∂x
∂λ

= Rcos φcos λ,
∂y
∂φ

= Rcos φ,
∂y
∂λ

= 0 (32)

and then, according to (11)

E = R2
(

1 − sin2 φcos2λ
)

, F = −R2sin φsin λcos φcos λ, G = R2cos2 φcos2λ. (33)
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Then, considering (18)

h(φ, λ) =
√

1 − sin2 φcos2λ, k(φ, λ) = k(λ) = cos λ. (34)

Therefore, this projection is not equidistantly mapped either along the meridians or
along the parallels. Furthermore, the angle β between the images of meridians and parallels
is not π/2. According to Bugayevskiy and Snyder [8]:

cos β =
F√
EG

=
sin φsin λ

h
sin β =

cos φ

h
. (35)

The maximum and minimum values of the local linear scale factor, according to [22],
are:

cmax,min =

√
h2+k2±

√
(h2−k2)

2
+4h2k2cos2β

2 =

√
1+cos2 φcos2λ±(1−cos2 φcos2λ)

2 , (36)

and from there

= cmax = 1, b = cmin = cos φcos λ =
1
R

√
R2 − x2 − y2. (37)

From the expression (37), we see that the transverse orthographic projection is an
equidistant projection a = cmax = 1, although it is not equidistantly mapped either along
the meridians or along the parallels.

According to Lapaine et al. [22], the main directions ψ can be determined according to
expression (28). If we substitute the partial derivatives (32) in (28) after a minor arrangement,
we will get

tan 2ψ =
2sin φcos φsin λ

sin2λcos2 φ − sin2 φ
=

2xy
x2 − y2 . (38)

Equation (38) determines two mutually perpendicular main directions of the trans-
verse orthographic projection given by Equations (30). In addition, by comparing (27) and
(37), we can conclude that the normal and transverse aspect orthographic projections have
the same, not only main directions, but also maximum and minimum linear distortions,
thus the same distribution of deformations.

5. True Length Parallels

Sometimes, a standard parallel is defined as a parallel of true length. For example,
Hinks [23] writes as follows: “One parallel, and sometimes a second, is made of the
true length; that is to say, if the map is to be on the scale of one-millionth, the length of
the complete parallel on the map will be one-millionth of the corresponding terrestrial
parallel. This is called a Standard parallel”. This definition does not correspond with our
understanding of distortions, according to which one should distinguish between standard
parallels, equidistantly mapped parallels, and parallels that have preserved their length in
mapping.

Let us observe on the sphere of radius R the parallel corresponding to the latitude φ0.
According to (4), the radius of that parallel is equal to Rcos φ0, and the circumference of
that parallel; that is, the circle will be

2πRcos φ0. (39)

The square of the differential of the arc of any curve in the projection plane or the first
differential form of that projection reads as (10) with the coefficients of (11). Along the
parallel corresponding to the latitude φ0, we have dφ = 0, and (10) is simplified, and reads

ds′2 = Gdλ2, (40)
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i.e.,
ds′ =

√
Gdλ. (41)

Let the map projection be equidistantly mapped along the parallel in the direction of
the parallel φ0, or in other words, let it be

k(φ0, λ) =

√
G

Rcos φ0
= 1. (42)

Then, (41) can be written in the form

ds′ = Rcos φ0dλ (43)

and after integration

s′ = Rcos φ0

∫ π

−π
dλ = 2πRcos φ0. (44)

In this way, we proved that the total length of an equidistantly mapped parallel in the
direction of the parallel is equal to the length of the parallel on the sphere. This is true for
any projection for which F = 0 holds.

5.1. Example 1

Normal aspect cylindrical projections are given by equations

x = n(λ − λ0), y = y(φ), (45)

where n and λ0 are constants. It is easy to compute

∂x
∂λ

= n,
∂y
∂λ

= 0,
∂x
∂φ

= 0,
∂y
∂φ

=
dy
dφ

(46)

and then, considering (11)

E =

(
dy
dφ

)2
, F = 0, G = n2. (47)

Taking into account (18), we have

h(φ, λ) =
dy

Rdφ
k(φ, λ) =

n
Rcos φ

. (48)

If we assume that, in a normal aspect cylindrical projection, the parallel to which the
latitude φ0 corresponds is mapped equidistantly in the direction of the parallel (k = 1),
the length of the image of that parallel in the projection will be equal to expression (39).
Namely, the consequence of the equidistance condition will be that the equation for the
abscissa x is of the form

x = Rcos φ0(λ − λ0), (49)

where λ0 is the longitude of the central meridian of the mapped area. From (49), it is
immediately seen that the length of each parallel in the projection plane is equal to the
expression (39), including the one to which the latitude φ0 corresponds (Figure 3).
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Figure 3. World map in an equidistant cylindrical projection for which n = Rcos 30◦. The length of
all parallels in the projection is 2πRcos 30◦ = π

√
3R. This length is equal to the length of the parallel

on the sphere to which latitude 30◦ corresponds.

5.2. Example 2

Let us suppose that the equations of a normal aspect cylindrical projection reads

x = x(λ), y = y(φ). (50)

It is easy to calculate

∂x
∂λ

=
dx
dλ

,
∂y
∂λ

= 0,
∂x
∂φ

= 0,
∂y
∂φ

=
dy
dφ

, (51)

and then, according to (11)

E =

(
dy
dφ

)2
, F = 0, G =

(
dx
dλ

)2
. (52)

Considering (18), we have

h(φ, λ) =
dy

Rdφ
, k(φ, λ) =

dx
Rcos φdλ

. (53)

If we assume that for some normal aspect cylindrical projection given by (50), the
parallel corresponding to the latitude φ0 is mapped equidistantly in the direction of the
parallel (k = 1), then the length of the image of that parallel in the projection plane will be
equal to expression (39). For the cylindrical projections given by equations (50), the abscissa
x is generally not proportional to the longitude. Let us look, for example, at the projection
given by the equations (Figure 4).

x = 2Rsin
λ

2
, y = Rφ. (54)

We calculate
∂x
∂λ

= Rcos
λ

2
,

∂y
∂λ

= 0,
∂x
∂φ

= 0,
∂y
∂φ

= R, (55)

and then, considering (11)

G =

(
∂x
∂λ

)2
+

(
∂y
∂λ

)2
=

(
Rcos

λ

2

)2
, (56)
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and, by (18)

k(φ, λ) =

√
G

Rcos φ
=

cos λ
2

cos φ
. (57)

Figure 4. Map of the world in cylindrical projection given by Equations (54).

The length of each parallel in the projection given by Equations (54) will be equal to
2Rπ, i.e., equal to the length of the equator of the sphere of radius R. From (57), we can
read that for that projection, k depends on both φ and λ, and that it will be k = 1 only for
the longitude λ for which cos λ

2 = cos φ holds. Therefore, in that projection, there are no
equidistantly mapped parallels in the direction of the parallels.

Analogous reasoning also applies to pseudocylindrical projections, where the abscissa
x is proportional to the longitude λ. However, for some pseudocylindrical projections, the
abscissa x is not proportional to the longitude (Figure 5). Let us look, for example, at the
projection given by the equations

x = Rπsin
λ

2
cos φ, y = Rφ. (58)

Figure 5. World map shown in the projection defined by Equations (58).

Let us calculate
∂x
∂λ

= R
π

2
cos

λ

2
cos φ,

∂y
∂λ

= 0, (59)

then, by (11) and (59)

G =

(
∂x
∂λ

)2
+

(
∂y
∂λ

)2
=

(
R

π

2
cos

λ

2
cos φ

)2
, (60)
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and then, by (18)

k(φ, λ) =

√
G

Rcos φ
=

π

2
cos

λ

2
. (61)

From (61), we can read that for that projection, k does not depend on φ, and that it will
be k = 1 only for the longitude λ for which cos λ

2 = 2
π (λ = ±100.92◦) is valid. So, in that

projection, there is not a single equidistantly mapped parallel in the direction of the parallel.
There are two meridians that are mapped equidistantly in the direction of the parallels.

The length of the parallel to which the latitude φ0 corresponds in the projection is
2πRcos φ0, which is equal to the length of the corresponding parallel on the sphere. So,
we have a map projection that does not have a single equidistantly mapped parallel, but
the length of each individual mapped parallel is equal to the length of the corresponding
parallel on the sphere (Figure 5).

The projection given by Equations (58) resembles the well-known sinusoidal (Sanson)
projection (Figure 6):

x = Rλcos φ, y = Rφ. (62)

Let us calculate
∂x
∂λ

= Rcos φ,
∂y
∂λ

= 0, (63)

then, by (11) and (63)

G =

(
∂x
∂λ

)2
+

(
∂y
∂λ

)2
= (Rcos φ)2, (64)

and, by (18)

k(φ, λ) =

√
G

Rcos φ
= 1. (65)

Figure 6. World map shown in sinusoidal (Sanson) projection defined by Equations (62).

From (65), we can read that for that projection, k does not depend on φ, and that in
every point, k = 1. So, in that projection, all parallels are equidistantly mapped in the
direction of the parallels. The length of the parallel to which the latitude φ0 corresponds in
the projection is 2πRcos φ0, which is equal to the length of the corresponding parallel on
the sphere. So, we have a map projection in which all parallels are equidistantly mapped,
so the length of each mapped parallel is equal to the length of the corresponding parallel
on the sphere.

6. Conclusions

In the existing cartographic literature, standard parallels are not unambiguously de-
fined. Therefore, in this article, we first define the standard points and then the standard
parallels. It turns out to be useful to define equidistantly mapped points, and then equidis-
tantly mapped parallels. In doing so, we must distinguish between equidistant mapping
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in the direction of the parallels and in the direction of the meridians. In addition, it was
observed that equidistantly mapped parallels in the direction of parallels differ in principle
from true length parallels.

The author proposes these definitions:

• A standard point is a point where linear distortions are equal to zero in all directions.
• A standard parallel is a parallel whose all points are standard;
• An equidistantly mapped point in the direction of the parallel passing through that

point has the property k = 1, where k is the linear scale factor in the direction of the
parallel at that point;

• An equidistantly mapped parallel in the direction of that parallel is a parallel whose
all points are equidistantly mapped in the direction of that parallel;

• An equidistantly mapped point in the direction of the meridian passing through that
point has the property h = 1, where h is the linear scale factor in the direction of the
meridian at that point;

• An equidistantly mapped parallel in the direction of the meridian is a parallel whose
points are all equidistantly mapped in the direction of that meridian;

• An equidistantly mapped meridian in the direction of the meridian, as well as an
equidistantly mapped meridian in the direction of the parallels, can be defined analo-
gously;

• A parallel of true length is a parallel whose length in the projection plane is equal to
the length of that parallel on the sphere (ellipsoid).

Based on the introduced definitions, a standard parallel is also an equidistantly
mapped parallel in any direction. The reverse is not valid. An equidistantly mapped
parallel does not have to be a standard parallel.

Furthermore, it was shown that an equidistantly mapped parallel in the direction of
that parallel is also a parallel of true length. The reverse is not valid. A parallel of true
length does not have to be an equidistantly mapped parallel.

Finally, since every standard parallel is also an equidistantly mapped parallel, then
every standard parallel will also be a parallel of true length. The reverse is not valid. A
true length parallel does not have to be a standard parallel (Figure 7).

Figure 7. Every standard parallel is an equidistantly mapped parallel, and every equidistantly
mapped parallel in the direction of the parallel is a true length parallel. The opposite need not be
true.
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