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Abstract: A robust and flexible technique to segment seafloor acoustic mapping data by analyzing
co-located bathymetric digital elevation models and acoustic backscatter mosaics is presented.
The algorithm first uses principles of topographic openness, pattern recognition, and texture
classification to identify geomorphic elements of the seafloor or “area kernels”, and then derives the
final seafloor segmentation by merging or splitting the kernels based on principles of similarity and
multi-modality. The output is a collection of homogeneous, non-overlapping seafloor segments of
consistent morphology and acoustic backscatter texture. Each labeled segment is enriched by a list of
derived, physically-meaningful attributes that can be used for subsequent task-specific analysis.
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1. Introduction

Numerous studies have described approaches to seafloor segmentation and classification using
acoustic backscatter data from multibeam sonar [1–9] or, alternatively, seafloor bathymetry [10–15].
However, there are few studies that have offered general methods for using a machine-focused
approach to combine and use the information found in co-located bathymetric digital elevation
models (DEMs) and acoustic mosaics [16–22]. Modern multibeam sonars and processing software
now typically produce geo-located bathymetry and backscatter mosaic products, thus offering the
opportunity to treat both data sets together [21,23]. This paper explores a methodology to combine
both bathymetry and backscatter data to automatically segment the seafloor.

The proposed method attempts to mimic the approach taken by a skilled analyst assuming that,
when called upon to manually segment a seafloor area, the analyst initially evaluates the context
surrounding the area and attempts to take full advantage of both bathymetric and reflectivity products
rather than focusing on small-scale geomorphometric variability (e.g., local rugosity). The result
is a bathymetry- and reflectivity-based estimator for seafloor segmentation (BRESS) that mimics
the positive aspects of the segmentation process as performed by a skilled analyst (e.g., the use
of context and multiple inputs) but avoids the inherent deficiencies (subjectivity, processing time,
lack of reproducibility). The initial phase of the algorithm performs a segmentation of the DEM
surface through the identification of its seafloor “geoform” elements (i.e., contiguous regions of similar
morphology, e.g., valleys or edges). These elements represent “area kernels” (regions of consistent
morphological type) whose backscatter is then analyzed to derive final seafloor segments by merging or
splitting the kernels based on the principles of similarity and multi-modality. The output of BRESS is a
collection of homogeneous, non-overlapping seafloor segments. Each labeled segment is enriched by a
list of derived, physically-meaningful attributes that can be used for task-specific analysis (e.g., habitat
mapping, backscatter model inversion, or change detection).
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2. Methods

2.1. Area Kernels Based on Landform Classification

The BRESS algorithm starts by performing a preliminary bathymetry-derived segmentation,
that is, a segmentation of the DEM surface through the identification of its seafloor geomorphological
(geoform) elements. From the perspective of the final task of the algorithm (a collection of
homogeneous, non-overlapping seafloor segments based on both morphology and backscatter),
this preliminary step usually provides a general over-segmentation of the area (i.e., a homogenous
area is split into more than one segment), although localized cases of under-segmentation (a single
segment covers a non-homogenous area) are also possible since only the bathymetry is analyzed in the
first step.

Common methods to segment the seafloor into geoform elements use differential geometry
and geo-morphometric proxies that are derived locally from the DEM by calculating a variable
combination of first and second derivatives [24]. These methods offer several approaches for how
the geo-morphometric variables are used (mainly, cell-based or object-based), with respect to the
selected units of classification (landforms, landform elements, and physiographic units), and the
adopted classifier (based on expert knowledge or driven by a machine learning algorithm) [25,26].
However, well-known limitations (particularly the sensitivity to the selected scale) of these methods
have impact on the stability of the overall segmentation algorithm [27–29]. Due to this scale-dependent
limitation, we have taken a different approach that uses the principles of topographic openness, pattern
recognition and texture classification to create ‘area kernels’ (regions of consistent morphological type),
evolving this approach from the innovative concepts introduced by [30,31].

To derive geoform elements, we have adapted the concepts of Local Ternary Pattern (LTP) [32]
and texton [33] to trigger the preliminary bathymetry-derived segmentation. In image processing,
the LTP represents an evolution of the Local Binary Pattern (LBP) texture descriptor introduced by [34].
LBP labels the pixels of an image by thresholding the neighborhood of each pixel and characterizing it
with a binary indicator (i.e., a “+” or a “-” that describes the relative value of the pixel with respect to
its neighborhood). Despite its simplicity, LBP has been applied successfully to tasks such as texture
classification, face recognition, and background modeling [32]. LTP adds a third (neutral) level to the
original two possible LBP levels of contrast variation against the central cell. Thus, each direction of
evaluation of LTP has three possible states: “+”, “0”, and “-”.

Together with LTP, the BRESS algorithm borrows concepts from texton theory. This theory
proposes a model of how humans perceive texture [35]. Based on this theory, the human brain, when in
the pre-attentive mode, does not process complex forms and yet in parallel, without effort or scrutiny,
can easily recognize differences in a few local conspicuous features (i.e., the textons) over the entire
human visual field [33]. Following a similar approach, we apply a preliminary segmentation that
is obtained by extracting bathymetric features (directly derived from LTP evaluation for each DEM
node) and then apply a seafloor geoform classification scheme to identify the constituent regions
of connected nodes with homogeneous bathymorphologic characteristics. These regions represent
preliminary, bathymetry-only derived segments and, based on the fact that they will be used to derive
the final segments, we call them “area kernels”. In this context, we have created a bathymorphologic
texton. For similarity with the blend word of “geomorphon” adopted in [31], we use the term of
“bathymorphon” as the bathymorphologic archetype to label the nodes of a bathymetric DEM.

The bathymorphon is derived from the LTP to capture the local morphologic context of each
DEM node. In the bathymorphological realm, the neutral level of the LTP (a “flat”) identifies the
application-specific absence of meaningful slope variation in comparison to “shoal” and “deep” levels
(for positive and negative slopes, respectively). In principle it is possible to identify more than just
these three levels (i.e., “flat”, “shoal”, and “deep”), however, our observations support those of [31,34]
in concluding that a ternary solution is able to capture enough of the data structure to appropriately
describe the morphologic variation while keeping the overall approach relatively simple.
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In order to capture bathymorphologic elements at the desired scales, the algorithm supports
the definition of a search annulus contained between an internal radius (ri) acting like a low-pass
filter, and an external radius (re) that limits the extent of the spatial analysis. Although the node
neighborhood may be potentially evaluated in any range of directions, exploratory tests have shown
that limiting the analysis to eight directions (dn) (the four cardinal directions and the four main
inter-cardinal directions) provides a good working tradeoff between computation efficiency and
stability of the retrieved information (Figure 1).
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Figure 1. Selected eight directions (dn) surrounding a DEM node in solid black. Each direction is
evaluated independently by only taking into account the neighborhood nodes between the search
annulus identified by the internal (ri) and external radii (re).

Adopting the described analytic schema, bathymorphons can only fall into a finite number of
configurations based on the ternary nature of the LTP and the eight selected neighbor directions
(Figure 2). Having three possible states for each of the eight directions, the number of possible LTP
values is 6561 (38). However, given the symmetry of many of these configurations, the actual number
of unique bathymorphon classes, after having evaluated all the possible rotations and mirroring
operations, is 498 [31]. Based on evidence from preliminary tests, some of these morphological
seafloor types are very common, while others describe quite rare forms (an example of bathymorphon
distribution is presented in Figure 3).
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“shoal”, a “0” for “flat”, and a “-“ for “deep” configurations, respectively. Following the convention
described in the text, those levels are translated in a ternary value: a ternary digit (“-” = 0, “0” = 1,
“+” = 2) for each of the eight directions (the “22210011” code in the example provided). The ternary
value will then be reduced to one of the possible 498 bathymorphon classes.
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The evaluation on the assigned ternary level (Ldn
ri ,re ) per direction is based on the line-of-sight

principle: two straight lines are passed connecting each DEM node to the “visible” highest and lowest
node in each of the eight directions identified in Figure 1. The line-of-sight principle is implemented by
using a user-defined parametric angular flatness threshold (α) and the difference between the zenith
(ϕdn

ri ,re ) and the nadir (ψdn
ri ,re ) angles (Figure 4) as defined in Equation (1):

Ldn
ri ,re


2 if ψdn

ri ,re − ϕdn
ri ,re > α

1 if
∣∣∣ψdn

ri ,re − ϕdn
ri ,re

∣∣∣ < α

0 if ψdn
ri ,re − ϕdn

ri ,re < −α

(1)
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Figure 4. A simplified, two-dimensional representation of DEM nodes (represented by black dots) and
the underline the real surface (blue line). In particular, the large black dot represents the currently
evaluated node, while the smaller dots are nodes in its surrounding, along the same direction.
The line-of-sight principle is adopted to define the node openness in terms of zenith (ϕdn

ri ,re ) and
nadir (ψdn

ri ,re ) angles. Both angles are defined to be always positive, within a range from 0◦ to 180◦.
The difference among the two angles is used to define the ternary level in each node direction.
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Using α and the described angular difference, each node is assigned to a bathymorphon class
that expresses the degree of dominance or enclosure of a node location on an irregular surface
(i.e., the openness) [30], at the user-identified scale (i.e., the search annulus). This line-of-sight approach
has the advantage of reducing complications derived from having to manage the range of spatial scales
that is often a limitation in approaches based on differential geometry.

As demonstrated in [31], the bathymorphons can be grouped into a relatively small (ten) number
of landform classes that capture most the relevant morphologic relationships related to landform
description. In our case we believe that the majority of the information can be captured by mapping
the generated bathymorphons into six possible seafloor geoform classes, each representing a common
bathymorphologic element, using the lookup table provided in Table 1. These six classes thus represent
a simplification of the lookup table proposed in [31]. Pits and peaks present in [31] have been merged
with valleys and ridges, respectively; and, the concave- and convex-slope cases describe in [34]
redistributed among the slope, shoulder, and footslope classes provided in Table 1.

Table 1. Lookup table adopted to map the bathymorphons (listed on the left inset together with their
abbreviations) to the six seafloor form classes of interest for this step of the segmentation. Given the
possibility of having a neutral level (a “flat”), the number of “shoals” and “deeps” surrounding the
node point may vary between zero and eight. The header row and column provide the total number of
positive and negative levels (respectively) for the eight directions surrounding each node. FL = Flat,
RI = Ridge, SH = Shoulder, SL = Slope, FS = Footslope, VL = Valley.

−

+
0 1 2 3 4 5 6 7 8

0 FL FL FL FS FS VL VL VL VL
1 FL FL FS FS FS VL VL VL -
2 FL SH SL SL SL VL VL - -
3 SH SH SL SL SL SL - - -
4 SH SH SH SL SL - - - -
5 RI RI RI SL - - - - -
6 RI RI RI - - - - - -
7 RI RI - - - - - - -
8 RI - - - - - - - -

The lookup table step usually greatly reduces the complexity of the segmentation by at least one
order of magnitude. The next step is the creation of area kernels, i.e., connected regions of common
bathymorphon class. The area kernels are created by applying the connected components labeling
algorithm (specifically, the Block Based with Decision Trees algorithm described in [36]) to the seafloor
form-classified grid creating a bathy-morphometric map. This step of the algorithm scans the created
map with bathymorphon classes, and groups its nodes into components based on node connectivity:
all nodes in a connected component share same bathymorphon class and are connected with each
other. Once all groups have been determined, each node is labeled according to the component it was
assigned to.

The algorithm adopted for the definition of the area kernels can be summarized in the following
four main steps applied to each node of the grid:

• Calculation of the ternary value based on neighborhood and search annulus.
• Reduction (by mirroring and rotating) of the ternary value to one of the 498 bathymorphon classes.
• Assignment of each bathymorphon to one of the six seafloor geoform classes through a

user-modifiable lookup table (Table 1).
• Creation of the area kernels by clustering all the connected nodes within the same geoform class.

After preliminary tests, the described approach highlighted two possible distortions in the
classification: nodes close to the edge of the surface, and in case of the selection of a large external
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radius for the search annulus. Two optional corrections have thus been identified and introduced:
a “Node-on-the-Edge” correction that classifies only nodes that have a minimum number of valid
ternary levels (default value adopted for this parameter is 6); and, an “extended-form” correction that
stops, after a given distance, the effects of the angular flatness threshold on the resulting calculated
elevation used to identify a “flat”.

2.2. Derivation of Seafloor Segments

In the second and final phase, the algorithm then evaluates each area kernel within the context of
the backscatter mosaic much as an experienced analyst would use the backscatter to understand the
context of given morphological regions. The region of each area kernel in the bathy-morphometric
map is evaluated using only the co-located pixels in the acoustic backscatter mosaic. This evaluation is
performed both in isolation (to assess the requirement subdividing into smaller area kernels), and by
pairwise comparison to other area kernels of the same seafloor form type (to cluster area kernels
with similar characteristics). Thus, the area kernels identified in the bathymetric realm are split or
merged based on the intensity-level distribution of the pixels in the corresponding region in the
mosaic. To maximize the robustness of this operation and avoid the introduction of biases, the acoustic
backscatter mosaic has to be created using the best practices for radiometric and geometric corrections
(e.g., the effect of local slope) and for normalization to minimize the angular dependency and possible
artifacts in the collected reflectivity data [5,23].

A normalized (45◦), slope-corrected (by deriving the true incidence angle from DEM)
intensity-level histogram for each individual area kernel is created and then analyzed to identify
the possible presence of multiple modes (Figure 5). The process first identifies the index of the bin
of the peak by taking the first order differences, then enhances the resolution of the peak detection
by using Gaussian fitting, centroid computation [37,38]. The multi-modal detection is tailored by
adopting two customizable parameters: A is the amplitude threshold given as percentage of the total
number of elements (that is, the peaks with amplitude lower than the given threshold are ignored)
and D represents the minimum distance between peaks. These parameters can be used to improve the
algorithm robustness in case of the presence of small artifacts in the acoustic mosaic. The identification
of more than one peak triggers the execution of a simple k-means algorithm [39], an unsupervised
learning algorithm commonly used to solve the well-known clustering problem. This algorithm is
used here to split the nodes belonging to a specific area kernel into a number of clusters defined by the
identified peaks.
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Figure 5. Each individual area kernel is analyzed to detect the presence of multi-modal distribution.
The figure shows an example with a bi-modal distribution (the two peaks are represented as blue dots).
The bin values represent decibel values, but the same approach can be adopted by adapting the bins to
dimensionless digital numbers. The number of elements is normalized.
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The evaluation in the pairwise comparison is performed through a simplified histogram
comparison approach [40,41]. The percentage of intersection (I) between a pair of histograms is
adopted as a criterion to evaluate whether the area kernel belonging to the same seafloor form type
(e.g., a valley) has the same textural characteristics in the mosaic to be judged as representative of the
same seafloor segment (Figure 6). The value used as the merging threshold varies based on the specific
task that the algorithm is adopted for; however, initial tests have identified a validity range between
50% and 80%.
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shows an example whereas the two normalized histograms overlap for more than 71% and are, thus,
considered to come from seafloor with similar acoustic response.

As a rule of thumb, backscatter data collected with modern multibeam echo sounders, typically
produces a mosaic with resolution of 2–3 times the resolution of the corresponding bathymetric DEM.
In order to apply the two described steps to area kernels with statistics that are stable, only area kernels
of at least 10 nodes (corresponding at about 40 pixels on the mosaic) are evaluated. Area kernels
smaller than this size are currently staged as unclassified.

3. Results

In order to test the described bathymetric and reflectivity-based estimation method for seafloor
segmentation, we applied it to a well-studied bedform field in the mouth of the Piscataqua River,
a well-mixed estuary between New Hampshire and Maine, USA. The area was selected because it has
been the subject of numerous previous mapping efforts including studies of bedform migration [42],
automated segmentation [10], and seafloor scattering models [43,44]. The study area is centered
on a shallow, sandy sediment region, determined by multiple means (sonars, divers, and video
observations) to be a rippled sand-wave field composed of largely medium to coarse sand and fine
shell hash, surrounded by bedrock and gravelly channel sediments [10,42,44,45]. The bedform field is
a persistent, elongated feature with its major axis oriented north-south along the main channel axis of
the lowermost part of the Piscataqua River estuary [42].

The bathymetric DEM and the acoustic backscatter mosaic was constructed using data collected
with a dual-head Kongsberg (Kongsberg, Norway) EM3002D multibeam echosounder (operating at
300-kHz central frequency and installed on the University of New Hampshire’s R/V Coastal Surveyor).
Positioning and attitude data were collected from an Applanix (Richmond Hill, Ontario, Canada)
POS/MV system with integrated real-time kinematic GPS. The bathymetric data were processed and
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gridded at a 0.5-m resolution using QPS Qimera (version 1.5.5) processing software (Quality Positioning
Services BV, Zeist, The Netherland), while the backscatter mosaic was generated using Center for
Coastal and Ocean Mapping (Durham, NH, USA)’s in-house research code [5,46] at 0.13-m resolution
(Figure 7); backscatter is presented normalized to a 45 degree angle of incidence. Both products were
created using a UTM 18N/WGS84 cartographic projection and stored in a portable ASCII grid format.
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The BRESS algorithm is implemented mainly in C++11, with a graphical user interface created
in Python. The implementation creates all the outputs (the final products and several optional
intermediate layers) with the same shape and projection of the original bathymetric DEM. Although not
required by the adopted set of input data, the code implementation is able to identify inputs with
different projections and re-project the mosaic input to match the projection of the bathymetric input.

An example of the processing steps is shown in Figure 8. Figure 8a shows the initial LTP values
calculated for each node in the DEM (with: ri = 3 nodes, re = 10 nodes and = 1◦). Using this parameter
set, the length scale of detectable features is between 1.5 and 5 m. Figure 8b shows the reduction
of the original 6561 LPT values to the six seafloor geoform classes described in Table 1. All six of
the geoform types are present in the dataset, and this representation shows a clear differentiation
between the central rippled sand-wave field and the surrounding regions that matches nicely the
manually-derived delineation of physiographic differences in the area [47,48]. For some applications,
this simple segmentation based on bathymetry alone may be adequate. However, if an application
requires information on sediment type (e.g., grain size), the bathymetrically-derived segmentation
may not suffice. For instance, a flat seafloor that has various sediment types will likely end in a single
seafloor geoform.
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of the DEM. (b) The 6,561 (38) possible ternary values are first reduced to the 498 bathymorphons, 
then mapped to six geoform classes of interest (abbreviations defined in Table 1). (c) The area kernels 
are created by clustering all the connected nodes within the same geoform class (valley in the shown 
examples). Each area kernel has assigned a random color. (d) The output seafloor segments are 
generated by analyzing each area kernel in isolation, to assess the requirement of its sub-division in 
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Figure 8. The four major steps of the BRESS algorithm. (a) A ternary value is associated to each node
of the DEM. (b) The 6561 (38) possible ternary values are first reduced to the 498 bathymorphons,
then mapped to six geoform classes of interest (abbreviations defined in Table 1). (c) The area kernels
are created by clustering all the connected nodes within the same geoform class (valley in the shown
examples). Each area kernel has assigned a random color. (d) The output seafloor segments are
generated by analyzing each area kernel in isolation, to assess the requirement of its sub-division in
smaller area kernels, and by pairwise comparison to other area kernels of the same geoform type.

To bring in the context of the backscatter mosaic, the area kernels are then generated by clustering
all the connected nodes within the same geoform class (valleys are shown in Figure 8c). Finally, each
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area kernel is analyzed in isolation to assess the need for sub-division into smaller area kernels
(A = 0.02% o f total elements, D = 10 dB), and by pairwise comparison to other area kernels of
the same seafloor form type (I = 60%) to generate the final segmentation in Figure 8d. The final
segmentation provides the advantage of also capturing the effects of areas of different seafloor
reflectivity (i.e., it shows whether the connected geoform segments (valleys in our example) are
homogenous or segmented with respect to backscatter). By analyzing the different labels assigned
within the same type of geoforms, it is now possible to identify detailed patterns of variability.
By stopping the analysis at the area kernels in Figure 8b, the presence of these patterns would have
been otherwise ignored.

Figure 9 shows the impact of using different values for the search annulus for a portion of the study
area presented in Figure 8. The portion area in Figure 9a presents a larger number of segments when
compared to Figure 9b as the result of increasing the range of the search annulus (from ri = 3 nodes,
re = 10 nodes to ri = 6 nodes, re = 20 nodes), thus, by capturing only geoforms at a scale larger than
3 m. Although decreased, the effect of reduction in output complexity by increasing the search annulus
is also present in Figure 9c. By changing the search parameters, the BRESS algorithm can be tuned for
different usages and scenarios.
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Figure 9. The three insets show, on a central portion of the study area, the effects of adopting search
annuli of increasing size: (a) ri = 3 nodes, re = 10 nodes; (b) ri = 6 nodes, re = 20 nodes; and (c) ri =

9 nodes, re = 30 nodes. A direct effect of such variation is a reduction on the number of output segments
for the whole study area: (a) 154, (b) 118, and (c) 96.

Finally, an exploratory evaluation of the advanced discrimination capabilities of the algorithm is
presented in Figure 10. The region shown in Figure 10 is the rippled sand-wave field who’s central
region is generally characterized as medium sand and that has been shown to be stable over the
years [42,47]. Figure 10 shows just the “valley” and “ridge” bathymorphons in the area, in this
case, the troughs and crests of the sand waves. The analysis of the backscatter of the valleys
and the ridges shows that they vary in their reflectivity behavior in a spatially-consistent manner.
For instance, the cluster of yellow (for valleys) and orange (for ridges) segments present in Figure 10
in the south-west region of the sand wave area (pointed by the red arrow) versus the cluster of
blues (for valleys) and dark green (for ridges) segments in the central region (light green arrow).
These clusters appear to correlate with the variations in the percentage of gravel and shells based on
the limited ground-truth datasets available (Figure 10).
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Figure 10. Algorithm segmentation output for valley (in yellow and blue) and ridge (in orange
and green) geoforms compared with collected samples. The numerical values shown represent the
percentage of gravel in the retrieved sediments. The samples were collected by three different studies
that are represented using different symbol shapes: the circles for [42]; the squares for [44]; and the
triangles for [45]. Shaded bathymetric relief is shown as the background and the survey polygon of the
whole test area is represented with a gray line. The light green arrow and the red arrow point to areas
with relatively high and low percentages of gravel and shells, respectively.

Although this correlation is promising, it is based on limited data collected for other purposes.
With this new analysis, we can now (and will) test the discrimination capabilities of the algorithm
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by carefully designing a sampling plan to ground-truth the different segment types or test the
fit-for-purpose for field-specific applications (e.g., the evaluation of seabed habitat maps presented
in [49]). In fact, the collection of additional ground-truth values will provide means to evaluate the
efficacy of the BRESS method in comparison with other available methods: for example, the Object
Based Image Analysis applied to both MBES bathymetry and acoustic backscatter [19,20] or the
combined use of the terrain attributes obtained with Benthic Terrain Modeler [14,50], and a parallel
classification of the acoustic backscatter.

From a theoretical point of view, the BRESS method presents the key advantage of having
both physically meaningful and statistically intuitive (intermediate and final) steps. In other words,
the processing steps can be translated into relatively simple questions (e.g., what geoform class does this
DEM node belong to? Which range of scales is the target of the analysis? By looking at the reflectivity
content, is a specific pair of area kernels similar?). This intuitiveness should facilitate its adoption
and proper use, while other existing methods often require quite abstract evaluations (e.g., the tuning
of “magic numbers” used as parameters) or deep statistical insights on the study area. The amount
of local, specific knowledge often required by methods like [19] and [50] makes them difficult to be
ported, with a consistent success classification rate, to different study areas. The evaluation of the
BRESS method in comparison with those methods should also consider such factors.

4. Conclusions

BRESS offers a novel approach for the quantitative analysis of ocean mapping data. The incentive
for developing this method was a desire to create an automated, scale-independent, robust and
computationally efficient technique to segment the seafloor for a range of research applications.
The method differs from standard approaches that tend to use either bathymetry or backscatter data
independently in that it attempts to emulate the approach of a skilled analyst by using the full context
of both the bathymetry and the backscatter (Figure 11 summarizes the algorithm workflow).

From a bathymetric perspective, the adoption of the concept of grid openness (using thresholds
of flatness) makes the algorithm self-adaptive within the identified search annulus, with a clear gain in
computational efficiency [31]. On the acoustic reflectivity side, the derivation of the seafloor segments
based on local normalized histograms makes the method robust in the presence of the many possible
artifacts that could be present in an acoustic backscatter mosaic [46,51]. The optional corrections,
“Node-on-the-Edge” and “Extended-Form”, improve the overall algorithm robustness for cases in
which the general approach was shown to have possible weaknesses.

The output of BRESS is a collection of homogeneous, non-overlapping seafloor segments.
Each labeled segment is enriched by a list of derived, physically-meaningful attributes that can be used
for subsequent task-specific analysis. The ability to natively perform a multi-scale analysis through a
prescribed search annulus mitigates the risk of mismatch of spatial scales between measurements and
their interpretation. Although the method cannot overcome the limitations that result from the inherent
resolution of the system used for data collection [52], recent developments in acoustic mapping systems
are currently achieving an unprecedented high-resolution view of the seafloor at a broad range of
spatial scales. In particular, modern multibeam echosounders may produce continuous coverage
depth measurements and co-located, high-quality reflectivity measurements that reveal well-defined
texture patterns.

The described method is able to identify patterns of seafloor topography representing areas
of homogenous geomorphological feature types and seafloor textures remotely sensed by acoustic
devices. Given the relevance of this information to the spatial distributions of habitats, we believe
that the method has a potential application for habitat mapping. Although habitat delineations can be
done manually, robust automated procedures, like the BRESS method, offer increased speed, efficiency,
more objectivity, and reproducible map products. Another possible application is to improve the
understanding of seafloor stability, particularly important in the coastal environment [53]. In fact,
the quality of the identification of valleys and ridges within a defined range of scales makes BRESS
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outputs a good candidate for use in the calculation of bedform migration rates. Finally, another
potential application is its adoption as a source of acoustic themes for seafloor characterization by
backscatter model inversion [54].
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