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Abstract: Stony grounds form important habitats in the marine environment, especially for sessile
benthic organisms. For the purpose of habitat demarcation and monitoring, knowledge of the position
and abundance of individual stones is necessary. This is especially the case in areas with a scattered
occurrence of stones in an environment which is otherwise characterized by relatively mobile sandy
sediments. Exposed stones can be detected using side-scan sonar (SSS) data. However, apart from
laborious manual identification, there is as yet no automated or semi-automated method available
for a fast and spatially resolved detection of stones. In this study, a Haar-like feature detector was
trained to identify individual stones on an SSS mosaic (~12 km2) showing heterogeneous sediment
distribution. The results of this method were compared with those of manually derived stones.
Our study shows that the Haar-like feature detector was able to detect up to 62% of the overall
occurrence of stones within the study area. Even though the sheer number of correctly identified
stones was influenced by, e.g., the type of sediments and the number of grey values of the mosaic,
Haar-like feature detectors provide a relatively easy and fast method to identify stones on SSS mosaics
when compared to the manual investigation.

Keywords: reefs; object detection; habitat demarcation; side-scan sonar; Haar-like features;
German Bight

1. Introduction

Hard substrates, composed of, e.g., cobbles, boulders and bedrock, provide an essential habitat
for a variety of both marine sessile and mobile species [1,2]. The functioning of these marine habitats
is, however, threatened by both natural (e.g., sediment mobility) and anthropogenic pressure (e.g.,
fishing, aggregate extraction and construction of offshore windfarms) [3–5]. To preserve and support
these habitats and the associated valuable ecosystem services, an efficient monitoring of these habitats
is mandatory. This is especially important in areas where hard substrates are rare, e.g., in the
sand-dominated North Sea.

The demarcation and monitoring of the condition of hard-substrate habitats need to consider
substrate availability besides the investigation of the epibenthic assemblages. This is due to the strong
dependency of sessile organisms on suitable anchor points. Various consolidated objects, both natural
and artificial (e.g., stones, mussel accumulations, shipwrecks, pipelines or construction basements),
can provide shelter and substrate for a variety of sessile and mobile species (e.g., [6–8]). The sediment
composition of the seafloor has a strong influence on the availability of such substrates. In environments
with high sediment mobility, e.g., shallow shelf seas affected by waves and tides, hard substrates
might become temporarily buried while previously buried ones might become exposed [9,10]. As yet,
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the spatial detection of underwater objects can only be achieved using hydroacoustic remote-sensing
devices such as side-scan sonars (SSS), multibeam echo sounders (MBES), and parametric sediment
echo sounders (pSES) (e.g., [11–13]). SSS data are usually analyzed by means of automated and
semi-automated methods for the detection of objects such as ship wrecks or mines (e.g., [14,15]).
Objects which protrude from the seafloor can be identified in SSS data as they cause a signal of
strong backscatter followed by a weak backscatter (acoustic shadow) perpendicular to the moving SSS.
This pattern can be more or less clear as a function of the quality and resolution of the SSS data, the
size and the material composition of the object, and the acoustic reflectivity of the seafloor. However,
even though many objects are visually clearly identifiable, the automated counting, extraction and
localization of individual objects for further applications remains difficult to impossible. Several
statistical and machine learning algorithms were developed to support the automated identification and
extraction of areas and objects. These focused on differences between pixel intensities, e.g., eCognition
in [16], Viola–Jones Cascade [17], wavelet analysis [18], Back Propagation and Convolutional Neural
Networks ([19–21] and references therein), among other approaches.

The training and application of so called Haar-like feature detectors was shown to produce
promising results in a variety of different disciplines to detect objects on images (e.g., face detection,
vehicle detection and the detection of mine-like objects on SSS mosaics) [15,22]. As yet, it is not known
whether this method is also suitable for the spatial detection of hard substrates.

Just recently, the German Federal Agency for Nature Conservation (BfN) proposed a mapping
guideline to demarcate reefs in the North and Baltic Sea [23]. According to this guideline, the
demarcation of reefs in the North Sea should be based on SSS data, which were acquired with a
frequency of ≥300 kHz and a resolution suitable to detect stones ≥ 30–50 cm of diameter. It is based on
a four-step approach, which follows the observer-based tagging of stones, which is, however, a very
tedious and time-consuming process suitable only for very small areas.

To underpin this approach, the aim of this study was (1) to train a Haar-like classifier to detect
individual objects on a large SSS mosaic, (2) to estimate the performance of the detector with respect to
different sediment types, detection thresholds and number of grey values of the tested mosaic, and
(3) to propose a spatial demarcation of reefs of a study site in the German Bight based on the mapping
guideline [23].

2. Material and Methods

2.1. Study Site and SSS Data

The study site is located within the Sylt Outer Reef (SOR), approximately 40 nautical miles west
of the Island Sylt in the German Bight, SE North Sea, and has a size of ~12 km2 (Figure 1). The SOR is
a massive submarine moraine ridge with glacial till and meltwater deposits that formed during the
Saalian glacial (MIS 6) [24]. Water depths in the area are between 30 and 40 m. The modern seafloor
in the study area is composed of a patchy distribution of fine to coarse sands, with gravels, cobbles
and boulders emerging from the seafloor [13,25]. Most of these hard substrates are colonized by
epifauna [8]. Since 2017, the SOR is protected as a Special Area of Conservation (SAC) according to the
European Union’s Habitats Directive (92/43/EEC). It includes the habitat types ‘sandbanks’ (Annex 1
EUNIS habitat type: code 1110) and ‘reefs’ (Annex 1 EUNIS habitat type code: 1170).
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Figure 1. Map of the position of the study area located within the German Bight in the south-eastern 
North Sea (a and b; side-scan sonar (SSS) mosaic from [13]). The SSS mosaic of the study area is shown 
in c. White vertical stripes in the SSS mosaic show the area of the clipped nadir. A close-up view of a 
part of the SSS mosaic is given in d. Bathymetric data were provided by the German Federal Maritime 
and Hydrographic Agency [26]. 
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Figure 1. Map of the position of the study area located within the German Bight in the south-eastern
North Sea (a and b; side-scan sonar (SSS) mosaic from [13]). The SSS mosaic of the study area is shown
in c. White vertical stripes in the SSS mosaic show the area of the clipped nadir. A close-up view of a
part of the SSS mosaic is given in d. Bathymetric data were provided by the German Federal Maritime
and Hydrographic Agency [26].
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SSS data were collected using a towed multi-pulse Edgetech 4200-MP during a survey in October
2016. The SSS was operated with a frequency of 300 kHz. The speed of the ship was approximately
5 knots, and the range was set to 75 m to achieve an along track resolution of at least 0.25 m. The SSS
raw data were processed including slant range correction, speed, layback and gain normalization using
SonarWiz (Chesapeake Technology, California, CA, USA). The nadir line was cut out to 5 m both in
port- and starboard direction to reduce the noise of the resultant mosaic.

To investigate the sizes of the stones within the study area, a subsample of randomly chosen
stones was measured on the waterfall mode of the SSS. The sizes were manually obtained with the
target logger of the EdgeTech Discover software (4200-MP, version 7.00) by measuring the length of the
acoustic shadow.

2.2. Training and Application of the Detector

The training of a Haar-like feature detector requires a large amount (many thousands) of positive
(= matching) and negative (= not matching) images of the object in question (e.g., [27]). In order
to obtain this, raw SSS data of multiple stony areas of the Sylt Outer Reef were replayed in the
waterfall mode (displayed in 256 grey values) and automatically transformed into still images using
the Edgetech Discover 4200-MP software (version 7.00). The still images were imported into Matlab’s
(MathWorks R2018b, Natick, MA, USA) Image Labeler application (part of Matlab’s Computer Vision
System Toolbox) and positive samples (i.e., a backscatter pattern that indicates a stone) were manually
extracted. Rectangles were drawn around the stones including some backscatter information of the
surrounding background (average width = 44 ± 11 pixels, average height = 20 ± 6 pixels). These are
the ‘real positive samples’. ‘Real negative samples’ were generated from those SSS still images that did
not contain any stone by cutting out sub-images in the size of 40 × 20 pixels (Figure 2).

To enlarge the training dataset, further ‘artificial negative samples’ were created by producing
images (here with a size of 100 × 100 pixels) composed of randomly assigned grey values using Matlab.
The creation and implementation of artificial images in the training procedure is a common method to
improve the performance of a detector (e.g., [15]). Therefore, all real positive and negative samples
were quadrupled by flipping and rotating the images by 180 degrees (cf. Figure 2). To achieve a further
increase in the number of negative samples, the pixel values of each image retrieved from real samples
were randomized as well as shuffled in their horizontal and vertical direction. This pixel-randomization
procedure was repeated a second time using the previously created dataset. This procedure increased
the number of real negative images by a factor of 64. In total, 21,848 positive and 343,370 negative
samples were available for the training of the detector.

The Haar-like feature detector was trained using the cascaded object detector integrated in
Matlab’s Computer Vision System Toolbox. The following settings were used: false alarm rate: 0.1; true
positive rate: 0.995; number of cascade stages: 29; object training size in pixels: height = 10, width = 15;
negative samples factor: 2. The false alarm rate defines the acceptable fraction of negative samples
per stage, which are incorrectly classified as positive samples. The true positive rate is the minimum
fraction of correctly classified positive samples.

The trained Haar-like feature detector was applied on the SSS mosaic with a minimum detector
size of 10 × 15 pixels and a maximum detector size of 30 × 30 pixels. These values were manually
determined as they were found to give the best detection results with respect to the size of the stones in
the SSS mosaic. To assess the influence of the merging threshold level of the detector and the number
of grey values of the SSS mosaic on the resulting detections, the thresholds were set to 6, 8, 10, 12 and
20, respectively, and the number of grey values of the SSS mosaic were set to 32, 64, 128, 192 and 256,
respectively. The merging threshold level of the detector is a tunable integer that helps to reduce false
detections. To pass a higher threshold level, individual objects must be detected multiple times during
the multiscale detection phase. The coordinates of the center points of each resulting bounding box
(i.e., the detected objects) of all threshold and grey value combinations were extracted and used for the
subsequent analysis in ArcGIS (Esri, Redlands, California, USA).
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Figure 2. Schematic workflow of the multiplication and final numbers of positive and negative 
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low backscatter values. 
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Figure 2. Schematic workflow of the multiplication and final numbers of positive and negative training
samples. Dark colors of the SSS mosaic represent high backscatter and bright colors represent low
backscatter values.

2.3. Evaluation of the Performance

The performance of the detector was evaluated by comparing the results of the detector (further
referred to as automatic method) with the results of manually tagged stones. Manually tagged stones
were derived from SSS files that were replayed in the waterfall mode and the selection of obvious
stones using the target logger. The evaluation was done with respect to the total number of spatially
matching detections. It was further done by evaluating the number of matches with respect to four
different seafloor types, and the size of a resulting reef area based on the method provided by the [23]
(both described in the following).

The comparison of the total number of spatial matches was evaluated by drawing buffers around
each automatically and manually detected stone using diameters of 1.50 and 3.00 m, respectively.
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This approach was based on the observed offset of the positioning of point features derived from
manually and automatically detected stones. The mismatch was triggered by the different-sized
bounding boxes of the detector to identify different sizes of stones and the non-standardized marking
of stones during the manual detection procedure. Those buffers that overlap, or rather have the largest
overlap in the case of multiple overlaps, were supposed to represent the same stone and counted as
one match (Figure 3). Each detected stone was only allowed to be counted once.
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Figure 3. Manually (blue) and automatically (orange) detected stones on an SSS mosaic (25-cm
resolution) with buffer sizes of 3.00 m (a). The red area indicates the largest overlap between two
spatially matching stones. The underlying SSS mosaic is shown in (b). White areas indicate the acoustic
shadows of the stones.

The influence of different backscatter intensities, which represent different seafloor types, on
the performance of the detector was assessed by the manual classification and interpretation of the
backscatter intensities of 25 × 25 m grid cells. The four categories used were (1) fine sand areas showing
a comparatively weak and homogeneous backscatter, (2) rippled sediments, (3) stony grounds with
a comparatively strong backscatter, and (4) areas with a mixed occurrence of the above-mentioned
sediment types. Again, overlapping buffers of automatically and manually detected stones with buffer
diameters of 1.50 and 3.00 m were assumed to be matching stones.

The reef areas were demarcated according to the mapping guideline developed by [23]: The
demarcation of the geogenic reef type ‘stonefield/boulderfield North Sea’ is based on a four-step
approach: (1) a buffer of 75 m is drawn around every individual stone (≥ approx. 30–50 cm), (2) stones,
whose buffers overlap are classified as an ‘accumulation of stones and boulders’ and (3) form a
‘geogenic reef’ if the accumulation contains ≥21 individual stones, which have an average distance of
≤50 m to their nearest neighbors. Areas, which do not contain stones but are surrounded by ‘geogenic
reefs’ are included in this category (4). All analyses were realized using ESRI’s ArcGIS 10.4 (ESRI,
Redland, CA, USA).

To identify the best threshold and grey-value combination of the detector and the mosaic (see
Section 2.2) Equation (1) was developed and used as a decision support (DS):

DS =

[
1 + darea − darea ∗ ashared

1 + darea − darea ∗ amismatch

]karea

+

[
1 + dstones − dstones ∗ scorrect

1 + dstones − dstones ∗ smissed

]kstones

(1)
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The first part of the equation includes the size of the calculated reef area [km2] derived from
the detector (darea) multiplied by the factor ashared (range: 0–1) (Figure 4). This factor corresponds to
the proportion of the reef area shared (sarea) with the reef area derived from manually tagged stones
(marea) with 1 meaning that the two reef areas completely overlap. The factor amismatch stands for the
proportion of the calculated reef area that is not shared with the manual method (i.e., lies outside of
it). It is based on the reef area derived from the automated method that is not shared with the area
derived from the manual method. The second part of the equation is based on the number of stones
derived from the detector (dstones). The factor scorrect (range: 0–1) corresponds to the proportion of
correctly identified stones (sstones) with regard to the total number of automatically identified stones
(dstones) with 1 meaning that all detected stones are correctly identified. The proportion of the number
of missed stones derived from the automated method and the total number of manually tagged stones
(mstones) is described by the factor smissed. The exponents karea and kstones can be either set to 1 or 2,
respectively, to provide an additional weight to either the correctly assigned reef area or the number of
stones. The threshold and grey-value combination that produces results closer to DS retrieved from
the manual method is assumed to perform best.
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2.4. Statistical Analyses

A one-way analyses of variance (ANOVA) and a Bartlett’s test for equal variances was performed
to test for statistically significant differences between the proportion of correctly identified stones and
different sediment types. For this test, the proportion of correctly identified stones was pooled for the
different threshold and grey values. A Tukey–Kramer post-hoc test was used to identify statistically
significant differences between the groups. Two-sample t-tests were used to evaluate the differences of
the proportion of correctly identified stones for the different sediment types and the two buffer sizes
(1.50 and 3.00 m).
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3. Results

3.1. Number of Detections

In total, 12,852 stones were manually tagged on the SSS mosaic (Figure 5a). They were mostly
aligned in an area stretching from the north-western to the south-eastern part with an average Euclidian
distance of 9.00 m to the nearest neighbor. This average distance is an important parameter to assess
the density of stones within an area. The average size of the stones was 0.72 ± 0.40 m with the highest
frequency in the range of 0.25–0.65 m and only a few stones were larger than 2.00 m (Figure 6).
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Figure 6. Histogram of observed stone sizes in the area derived from manual measurements of a
random sample (n = 1127).

Table 1 shows the absolute amount of detections and the average Euclidian distance to the nearest
neighbor of automatic detections as a function of the threshold value of the detector and the number
of grey values of the SSS mosaic. The number of detections generally decreased with an increasing
threshold value, while the average Euclidian distance increased. The highest number of detections was
21,118, observed for the SSS mosaic displayed with 64 grey values and a threshold value of 6, while the
lowest number was 1544 with 32 grey values and a threshold value of 20.

Table 1. Number of detections on the SSS mosaic under different frame conditions. Color scale indicates
high values in green and low values in red. The average Euclidian distance [m] to the nearest neighbor
is given in parentheses.

Grey Values

32 64 128 192 256

Threshold

6 12,062 (12.9) 21,118 (8.9) 13,389 (11.4) 13,133 (11.5) 13,105 (11.5)
8 8193 (14.5) 15,410 (9.7) 9375 (13.0) 9242 (13.1) 9240 (13.2)

10 5886 (16.1) 11,619 (10.6) 7100 (14.5) 6918 (14.6) 6902 (14.6)
12 4374 (18.1) 9069 (11.7) 5444 (16.1) 5291 (16.4) 5293 (16.3)
20 1544 (26.2) 3674 (17.5) 1801 (28.4) 1745 (28.2) 1749 (28.8)

3.2. Accuracy of Predicted Stone Numbers

The concordance of the automatic detections with the manually tagged stones is shown in Tables 2
and 3 for buffer sizes of 1.50 and 3.00 m, respectively (see Section 2.3). Again, the number of matching
stones decreased with an increasing threshold value of the detector. The highest number of concordant
stones was 7919, found for the SSS mosaic displayed with 64 grey values and a threshold of 6 at a
buffer size of 3.00 m. The proportion to the total number of automatically detected stones (37%) was,
however, continuously lower when compared to the other grey value and threshold combinations.
In general, the buffer size of 3.00 m revealed a higher number of matching stones throughout the
different grey value and threshold combinations. Here, the proportion of the concordant stones to the
total number of automatically detected stones increased by up to 5% when compared to the buffer size
of 1.50 m. The observed differences between the grey values 128, 192 and 256 were only marginal.
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Table 2. Number of matching stones between the automatic and manual detection methods under
different frame conditions at a buffer size of 1.50 m. Color scale indicates high values in green and low
values in red. The proportion to the total number of automatically detected stones are in parentheses.

Grey Values

32 64 128 192 256

Threshold

6 4726 (0.39) 7389 (0.35) 6607 (0.49) 6495 (0.49) 6489 (0.50)
8 4002 (0.49) 6660 (0.43) 5576 (0.59) 5490 (0.59) 5495 (0.59)

10 3379 (0.57) 5826 (0.50) 4732 (0.67) 4628 (0.67) 4612 (0.67)
12 2836 (0.65) 5100 (0.56) 3940 (0.72) 3812 (0.72) 3817 (0.72)
20 1274 (0.83) 2732 (0.74) 1518 (0.84) 1473 (0.84) 1473 (0.84)

Table 3. Number of matching stones between the automatic and manual detection methods under
different frame conditions at a buffer size of 3.00 m. Color scale indicates high values in green and low
values in red. The proportion to the total number of automatically detected stones are in parentheses.

Grey Values

32 64 128 192 256

Threshold

6 5152 (0.43) 7919 (0.37) 7026 (0.52) 6902 (0.53) 6900 (0.53)
8 4331 (0.53) 7109 (0.46) 5908 (0.63) 5807 (0.63) 5828 (0.63)

10 3650 (0.62) 6201 (0.53) 4990 (0.70) 4873 (0.70) 4859 (0.70)
12 3042 (0.70) 5389 (0.59) 4132 (0.76) 3994 (0.75) 3999 (0.76)
20 1352 (0.88) 2872 (0.78) 1576 (0.88) 1530 (0.88) 1534 (0.88)

The proportion of correctly detected stones from the automatic method and the total number
of manually tagged stones is presented in Table 4 for buffer sizes of 1.50 and 3.00 m. The highest
proportion was found with 62%, at a buffer size of 3.00 m for a threshold value of 6 and 64 grey values.
In general, the proportion declined with an increasing threshold value. Again, the observed differences
between the grey values 128, 192 and 256 were only marginal.

Table 4. Proportion of matching stones between the automatic detection method and the total amount
of the manual detection method (n = 12,852) under different frame conditions using the 1.50 m buffer
size (3.00 m in parentheses). Color scale indicates high values in green and low values in red.

Grey Values

32 64 128 192 256

Threshold

6 0.37 (0.40) 0.57 (0.62) 0.51 (0.55) 0.51 (0.54) 0.50 (0.54)
8 0.31 (0.34) 0.52 (0.55) 0.43 (0.46) 0.43 (0.45) 0.43 (0.45)

10 0.26 (0.28) 0.45 (0.48) 0.37 (0.39) 0.36 (0.38) 0.36 (0.38)
12 0.22 (0.24) 0.40 (0.42) 0.31 (0.32) 0.30 (0.31) 0.30 (0.31)
20 0.10 (0.11) 0.21 (0.22) 0.12 (0.12) 0.11 (0.12) 0.11 (0.12)

3.3. Demarcated Reef Area

The demarcation of the geogenic reef type based on the method of [23] applied on manually tagged
stones revealed four distinct areas in the size of 0.075 km2 up to 8.052 km2 with a total size of 8.675 km2

(Figure 7a). The major part of the reef was aligned from the north-western to the south-eastern part of
the study site.
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Figure 7. Demarcated geogenic reef area and identified stones (points) on an SSS mosaic (25-cm
resolution) with different methods: (a) manually, automatically on an SSS mosaic with 64 grey values
and a detector threshold value of 6 (b), 12 (c) and 20 (d).

The largest reef areas identified with the automated method were found at a threshold value of
6 at any of the different numbers of grey values (Table 5). Here, up to 99% of the reef area obtained
from the manual method was shared by the automatically identified reef area. The lowest overlap was
found for the SSS mosaic displayed with 32 grey values and a detector threshold of 20 (53%). The size
of the area that is not shared with the manually derived reef area (i.e., lies outside of it) is also shown
in Table 5. The largest area protrusion was found for a threshold value of 6 for any number of grey
values (up to 3.71 km2). The lowest was observed for a threshold value of 20 at any number of grey
values with less than 0.04 km2.
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Table 5. Proportion of the manual reef area shared with the model-predicted one after the method
proposed by [23] under different frame conditions. Color scale indicates high values in green and low
values in red. The predicted reef area [km2] not shared with the manually derived one (= 8.675 km2) is
given in parentheses.

Grey Values

32 64 128 192 256

Threshold

6 0.99 (3.405) 0.99 (3.710) 0.99 (3.385) 0.99 (3.370) 0.99 (3.516)
8 0.97 (2.395) 0.92 (1.440) 0.98 (2.104) 0.97 (2.170) 0.98 (2.262)

10 0.91 (1.345) 0.89 (0.721) 0.95 (1.021) 0.94 (1.034) 0.94 (1.135)
12 0.79 (0.605) 0.84 (7.614) 0.88 (0.605) 0.90 (0.558) 0.91 (0.564)
20 0.53 (0.005) 0.63 (0.044) 0.64 (0.019) 0.63 (0.015) 0.63 (0.000)

3.4. Selection of a Proper Threshold and Grey Value Combination

The results of the decision support (see Equation (1), Section 2.3) to identify the most valuable
detector threshold and grey value combination is shown in Table 6 with a priority on the correctly
predicted reef area (karea = 2; kstones = 1), and in Table 7 with a priority on the correctly identified
number of stones (karea = 1; kstones = 2). The best results were continuously found for a threshold value
of 10 with 128 grey values irrespective of the chosen distance between the manually and automatically
classified stones.

Table 6. Decision support for the identification of the most valuable detector threshold and grey value
combination with a priority on the correctly predicted reef area. Values represent the results for a buffer
size of 1.50 m (3.00 m in parentheses) between the manually and automatically classified stones. Values
close to 0.01 are more similar to the manual method. Color scale indicates good values in green and
bad values in red.

Grey Values

32 64 128 192 256

Threshold

6 1.67 (1.44) 1.14 (1.03) 1.00 (0.88) 1.01 (0.89) 1.01 (0.89)
8 1.66 (1.42) 1.13 (1.01) 0.95 (0.82) 0.97 (0.84) 0.96 (0.83)

10 1.66 (1.38) 1.15 1.02) 0.93 (0.79) 0.95 (0.81) 0.95 (0.81)
12 1.70 (1.40) 1.17 (1.04) 0.95 (0.80) 0.99 (0.83) 0.98 (0.83)
20 2.08 (1.50) 1.43 (1.20) 1.54 (1.23) 1.57 (1.25) 1.59 (1.25)

Table 7. Decision support for the identification of the most valuable detector threshold and grey value
combination with a priority on the amount of correctly identified stones. Values represent the results
for a buffer size of 1.50 m (3.00 m in parentheses) between the manually and automatically classified
stones. Values close to 0.10 are more similar to the manual method. Color scale indicates good values
in green and bad values in red.

Grey Values

32 64 128 192 256

Threshold

6 2.85 (2.15) 1.39 (1.14) 1.08 (0.86) 1.11 (0.89) 1.11 (0.88)
8 2.84 (2.10) 1.39 (1.14) 1.00 (0.78) 1.04 (0.81) 1.03 (0.79)

10 2.83 (2.00) 1.43 (1.16) 0.98 (0.75) 1.02 (0.78) 1.02 (0.78)
12 2.87 (1.99) 1.48 (1.20) 1.04 (0.79) 1.10 (0.83) 1.08 (0.82)
20 3.66 (1.96) 1.93 (1.43) 2.23 (1.50) 2.31 (1.54) 2.36 (1.53)

3.5. Accuracy on Different Seafloor Types

The study area was divided into 20,375 grid cells with 6996 cells corresponding to fine sand, 1951
cells to rippled sediments, 2549 cells to stony grounds and 8879 cells to mixed sediments (Figure 8).
Statistically significant differences were found between the proportion of correctly identified stones
and the different sediment types (one-way ANOVA: p < 0.001, F = 6.18, n per sediment type = 25).
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The proportion of correctly identified stones was higher on rippled sediments and stony grounds when
compared to fine sand, and on stony grounds when compared to mixed sediments (Tukey–Kramer
post-hoc test: p < 0.05; Figure 9). The proportion of correctly identified stones was lower for the 1.50 m
buffer size. However, it was statistically not significant (p > 0.05, two-sample t-test).Geosciences 2019, 9, x FOR PEER REVIEW 13 of 18 
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Figure 8. Locations of the different sediment types within the study area based on 25 × 25 m grid cells
(a). Close-up views of the sediment types are given in b–e. Dark colors of the SSS mosaic represent
high backscatter and bright colors represent low backscatter values.
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Figure 9. Boxplot and results of the Tukey–Kramer post-hoc test between the proportion of correctly
identified stones (based on a buffer size of 1.50 and 3.00 m between the automatically and manually
derived stones) and the sediment types fine sand, rippled sediments, stony ground and mixed sediments.
Different letters within a buffer-size class indicate statistically significant differences at a significant
level of p < 0.05.

4. Discussion

The detection of individual stones on SSS mosaics using Haar-like feature detectors was shown
to be a promising approach for the purpose of stone identification and reef demarcation in benthic
habitats. While other methods of detecting stones, e.g., the manual tagging or the application of pSES,
are either time-consuming or lack the spatial distribution as they have a small footprint [13], this
automatic method extracts the coordinates of potential stones on an SSS mosaic within a short amount
of time. However, it requires the preparation of an adequate dataset for the training of the detector.

However, the detection of stones on an SSS mosaic using Haar-like feature detectors requires
an optimal tuning of the training and detection procedure. Challenges appear on four levels: (1) the
training of the detector, (2) the settings during the detection, (3) the quality and resolution of the SSS
mosaic, and (4) the general performance of the detector with respect to different sediment types.

(1) The training of a Haar-like feature detector requires an a priori specification of settings related
to the size of the detector (i.e., size of the rectangle, in pixels). The detection of relatively small objects
(approx. smaller than 8x8 pixels on an SSS mosaic with a pixel resolution of 25 cm) requires a detector
which was trained at least in the same size or smaller than the particular object. This, however, increases
false-positive detections, as, e.g., the scattered noise of the mosaic might be interpreted as individual
objects. Concomitantly, a detector, which was trained for larger objects, will miss smaller objects [28].
A large detector might further become sensitive for extensive transitions between sediments showing a
prominent change of the acoustic backscatter (e.g., fine sand to coarse sand, cf., Figure 1d). Hence,
selection of the appropriate size for the detector implies a trade-off between the general detection
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rate of objects and a small amount of false-positive detections. Most importantly, a large training
dataset consisting of both positive and negative images is required for optimal training and an accurate
detector [28]. In particular, for special applications such as the detection of stones such a training
dataset cannot as yet be obtained elsewhere like training sets for objects such as faces, cars, trees and
the like (e.g., Open Images Dataset [29] and MS-COCO [30]). So far, it needs to be created manually,
which is a time-consuming procedure.

(2) The settings during the detection process also imply the specification of minimum and
maximum sizes of the detector. This specification calls for the same trade-off, which was mentioned
above. Additionally, the size of the detector must not be smaller than the size of the trained detector.
Further, a merging threshold can be set that defines the degree to which multiple detections within a
certain area will be combined into one single detection. Even though a higher threshold value allows
the reduction of the number of false-positive detections, the number of missed objects might also
increase (e.g., in an area of closely accumulated objects) as shown in this study. The results of this study
might also be influenced by the different sources of the data used for the training (i.e., unprocessed
data) and the data on which the detector was applied on (i.e., processed mosaic). However, we assume
that this influence is of minor importance, as the samples used for the training of Haar-like features are
generally manipulated in terms of, e.g., brightness or contrast, to achieve a higher number of training
samples. The different sources further prevent the detector from becoming too specific, especially
when the number of available training samples is low.

(3) Apart from the resolution of the SSS mosaic, the quality of the SSS data and the post-processing
procedure also influence the performance of the detector (e.g., [31,32]). For example, nadir-stripes
or strong noise caused by, e.g., bad weather conditions, might increase false-positive detections.
A subsequent smoothing or hiding of such artefacts during the post-processing of the mosaic can only
be achieved at the cost of a diminished mosaic resolution or a minimized spatial coverage. Haar-like
feature detectors are furthermore known to be very sensitive for sonar illumination methods and
the amount of lighting or soil type variation [33]. This was also shown in the results of this study,
in which the number of detections follows an optimum curve with regard to the number of grey
values. Most detections were observed for a mosaic displayed in 64 grey values. This might be
caused by an optimum ratio of bright to black grey values, which increases the number of detections.
However, future studies should investigate the effect of a detector trained on images with a broad
range of number of grey values. So far, this detector only works on north–south oriented mosaics.
It would hence be necessary to rotate the mosaics to the north–south orientation prior the procedure.
The obtained results must then be rotated back to fit on the original mosaic.

(4) The seafloor in the form of the backscatter mosaic has a strong influence on the performance
of the detector. Unexpectedly, the proportion of correctly identified stones was higher in areas with
ripples and accumulations of stones than in areas with a homogeneous backscatter (e.g., stones lying
on fine sand). This, however, seems to be the result of the training dataset that to a large degree
consisted of images of stones from stony grounds (approx. 80%). Such a phenomenon was also
observed in [15], where a sand ripple bottom type caused a large number of false-positive detections
as a consequence of an unbalanced training dataset. A larger number of images of stones from
homogeneous backscatter regions is therefore expected to improve the accuracy of detections for this
type of backscatter. Furthermore, small depressions such as pock marks resemble the backscatter
pattern of stones and tend to be misinterpreted in the identification process. Specially trained detectors
can be used for subsequent clean-up procedures to identify pock marks and reject them from the stone
data base. The detection of holes could be avoided by the training of a site-specific detector, i.e., one
for the port- and one for the starboard channel. Such a detector constellation could be applied to a
mosaic that only consists of track lines with the same heading and channel. However, visual mosaic
inspection and underwater video footage suggest that both pock marks and deep holes do not occur
within this study area.
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So far, manually tagged stones are the only reliable criteria to assess the accuracy of a detector
used for the detection of stones. This method, however, is also prone to mistakes. Especially in
areas showing a dense accumulation of stones, the number of stones can be easily underestimated, as
they might be difficult to demarcate from their surrounding neighbors. It therefore seems to be very
unlikely that the detection of each single stone in such areas would be possible with either manual
or automatic methods. Underestimation also happens for small stones or those buried to a certain
degree under mobile sands. These stones do not show a recognizable shadow as a consequence of
either too low mosaic pixel resolution or because they are located too close to the nadir. Michaelis et
al. [9] have shown that the number of cobbles (6.3–20 cm) is approx. 25-fold larger than the number of
boulders (20–63 cm) in the SOR. This underestimation lowers the calculated detection accuracy of a
detector and may increase the number of detections mistakenly classified as false-negative detections.
In general, even though false-negative detections might occur, they are not as critical for the purpose
of reef demarcation as for the identification of, e.g., mine-like objects [34]. Furthermore, meaningful
receiver operating characteristic curves (ROCs), which are commonly used to visualize the accuracy of
a detector, cannot be provided under these circumstances, as they are based on the clear differentiation
between positive and negative samples. This is, however, not possible with regard to stony areas on
SSS mosaics. Uncertain cases can only be solved, if at all, with an area-wide ground truthing campaign
(e.g., using underwater videos), which itself would be very time- and cost-intensive. Nevertheless,
the need for rapid classification techniques is mandatory to meet the demands of, e.g., the European
Union’s Habitats Directive (92/43/EEC), and to improve the quality of seabed sediment maps with
regard to the patchy distribution of rocks (e.g., [35]).

The next step will be to improve the stone detector with an increase in the number of training
images and to apply it on the whole SSS dataset available from the SOR. It would be further interesting
to investigate the performance of the detector with regard to different SSS systems.

5. Conclusions

The identification and positioning of individual stones on SSS mosaics is a challenging and
time-consuming but crucial process when it comes to the precise demarcation of reefs or the estimation
and monitoring of the number of available anchor points for sessile organisms. In this study, we were
able to demonstrate that the training and application of Haar-like feature detectors is a promising
method to obtain the positions of individual stones on large SSS mosaics within a short detection time.
An adequate demarcation of a reef is possible based on this data and can hence be used for monitoring
purposes. Nevertheless, future studies should ensure the use of a well-balanced set of training images
with respect to stones embedded in different sediment types to increase the general accuracy of the
detector as well as to apply the detector on SSS mosaics from different study sites. We recommend
building an open-source database providing labelled SSS training images from different SSS models to
increase the amount of data available for the purpose of machine learning techniques. It should be
further considered to tag and extract images of stones from SSS during long-lasting field surveys.
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