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Abstract: In the last 40 years, several models based on very different methodological approaches have
been proposed to interpret the complex geodynamic evolution of the central-western Mediterranean
area and, in particular, of the Cenozoic basins. The persistence of numerous interpretations and
still-open problems resulted in the proliferation of very different models. The reconstructions presented
are highly influenced by difficulties often encountered in considering constraints introduced by models
built by means of completely different methodological approaches. For example, major difficulties can
arise in integrating data from individual classical disciplines (i.e., geology, stratigraphy, geophysics,
tectonics, magmatology and plate kinematics) with those resulting from the use of modern technologies
(i.e., digital processing, uses of software, field observations using drones, etc.) and generally aimed
to support specific topics. These considerations lead researchers to believe that a multidisciplinary
approach would always be auspicious for these studies, because a greater control of the reconstruction
of geologic and geodynamic events, and, therefore, for resulting models, would be ensured. After some
considerations about different types of literature models based on specific investigation methodologies,
the updating of a recently presented evolutionary model is proposed by attempting to integrate as
much data as possible about the Cenozoic basins of the central-western Mediterranean area.

Keywords: Mediterranean area; geodynamic models; methodological approach; geological evolution

1. Introduction

Different evolutionary models concerning the evolution of the Cenozoic basins involved in
the Maghrebian Chain and its lateral continuations (Betic Cordillera and Apennines) around the
central-western Mediterranean area have been proposed in the geological literature.

In this context, the tectono-sedimentary evolution of structural elements as the Betic-Rifian Arc,
the Calabria-Peloritani Arc, the North African and Sicilian chains and the lateral extension in the
Apennines played a very important role. In particular, the Maghrebian Flysch Basin (MFB) is an
important and well-known paleogeographic element along the Maghrebian Chain, which deformed
during the neo-Alpine Miocene tectonic evolution and now sandwiched between internal and external
zones in all sectors of the chains.

The paleogeography inherited from the Hercynian orogeny on which the Alpine history begins,
favored the development of the Miocene Apennine-Maghrebian chains during the neo-alpine stage.
The opening of the central-western Mediterranean and associated features (Alboran area, Betic-Rifian
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Arc, Algerian-Provencal Basin, Corsica-Sardinia Block migration, Calabria-Peloritani Arc, Tyrrhenian
Sea opening, etc.) are connected to the evolution of this last system. The reconstruction of the complex
evolutionary stages of the area still presents many problems that are not yet completely clarified and
outdated, resulting in the proliferation of different reconstructions.

In particular, the state-of-the-art knowledge of the central-western peri-Mediterranean Cenozoic
basins/chains has not yet reached a level sufficient to significantly reduce the still-persistent differences
in models and related problems ([1] and references therein). Based on the collected data, it seems
clear that the differences between models result mainly from the different methodological approach
followed by the different authors.

An interpretative model usually is useful to unify and better understand a set of data. A good
model can represent an excellent working tool for the scientific community if built according to specific
scientific criteria of the Earth Sciences. Models are not complete because many details are missing
and/or not entirely reliable. However, every effort is still useful to improve knowledge as it leads to a
more advanced work tool.

2. Methodological Approach

Historically, scientific research methods utilized to elaborate logical reasoning are essentially
two. The deductive method, which starts from one or more premises and applying logical reasoning,
reaches a conclusion to propose to the scientific community. This approach allows understanding
logical truths, with a result always clear (true or false) even if not always evident in a short time. In the
case of geological reconstructions, it is impossible to achieve complete and definitive certainties.

On the other hand, the inductive method is the most suitable to be applied in geological research.
In this case, the challenge begins with the setting of some empirical premises to be evaluated (or
not) through experimental data and that reach uncertain conclusions. The application of this method
considers the repeatability of one or more connected phenomena from which an interpretative/cognitive
framework can be obtained, which, however, does not assure that the result is right or suitable. If many
observations and analytical data are considered the resulting interpretation will probably be more
coherent and sustainable. Moreover, a conclusion based on the inductive method would not be of
great use when lacking a probabilistic/statistical estimate validating the correctness. The progressive
collection of evidence can favor an ever-greater clarity and detail, thus reinforcing the interpretation or
obliging the final rejection.

This latter approach is coherent and useful for geologists because limitations (in addition to the
intrinsic one of the general geological method) are related to the loss of information caused by erosion
of portion of the stratigraphic records and by the obliteration of events due to the superimposition
of orogenic phases. Other limitations result from the impossibility of analyzing all the available
rocks of the stratigraphic record of basins. Therefore, the geological research can rarely apply in a
completely exhaustive way to the inductive method because often it is necessary to change previously
assumed opinions based on new data and evidence. In fact, it is common to change one’s vision and
interpretation and to adjust them considering the continuously emerging new data.

Therefore, every model can be more or less truthful but must be abandoned when exceeded thanks
to discoveries and it may be equally important if it has been useful to increase the state of knowledge.

In short, the proposed study aims to show the actual differences still existing between evolutionary
models chosen as meaningful and exemplary cases of a certain methodology used. Secondly,
an attempt will be made to point out comparatively the reasons for the differences emerging in
the different reconstructions.

Finally, we will try to develop considerations about the choice of a geological model that in our
opinion can represent better a plausible evolutionary reference framework for the wide chain system
surrounding the central-western Mediterranean area.
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This approach does not mean to exclude or diminish the importance of other different models
addressed to this topic, but the only aim is to stimulate some reflections about the current knowledge to
promote the comparison between different methodologies (classic and modern) used in Earth Sciences.

3. Geological Models

The Cenozoic basins incorporated in the peri-Mediterranean chains (Figure 1) experienced a
different evolution linked to the development of subduction zones after the Mesozoic and early
Cenozoic fragmentation and that changed over time the paleogeography of the area between African
and Eurasia plates. In particular, the neo-Alpine orogenic system (Betic, Maghrebian and Apennine
chains) consists of three major paleogeographic and paleotectonic zones extending from Iberia-Europe
to Africa-Adria plates: (i) Internal zone (well represented in the Betic-Rif Arc, Alboran, Kabylies,
Calabria-Peloritani Arc and Apennines), originated for a part of authors from the European margin
and for other authors an intermediate and independent microplate located between Europa and Africa;
(ii) Intermediate zone (Maghrebian Basin) corresponding to a southern branch of the Tethys (mainly
basinal sedimentation on oceanic and continental thinned crust); (iii) External zone belonging to the
Adria-Africa margin representing the southern boundary of the Maghrebian Tethys. 

Fig. 1 / Models 2 versione finale 29/7/2020 

 
 

 
Figure 1. Simplified tectonic map of the central-western peri-Mediterranean chains (after [2], revised).

The considered area is, therefore, a key target for understanding the development of subduction
zones that caused the closure of the basins and the development of the orogens. Therefore, special
attention will be paid to this phenomenon in the following sections. In particular, the old subductions
are recognized by the presence of HP-LT metamorphic rocks and ophiolite suites by means of
targeted field reconstructions and petrographic-geochemical analyses. Furthermore, also geophysical
and magmatological studies usually provide information on recent subductions. In fact, marked
asymmetries in the crustal and lithospheric mantle structures are usually due to the existence of a
subduction slab normally coincident at a certain depth with a positive anomaly of the P-wave velocity.

In the area, both continental and oceanic lithospheric elements were diachronously consumed
along minor and major plate boundaries so not favoring the development of cylindrical phenomena,
and, therefore, not easily recognized in the geological contexts considered. Really, the complex
evolution of the area makes it difficult to reconstruct the geodynamic events as evidenced by the
proliferation of different evolutionary models despite the many studies addressed to the subject.

It is quite clear that the methodological approach followed by different authors has a weight in
the resulting interpretation; the following are also important: (i) the direct knowledge of the most
significant segments of the chains considered; (ii) the quality and quantity of collected and considered
data; (ii) the comparison with reliable data resulting from the reconstructions of other authors.
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In this section, some papers showing representative models have been selected for a comparison.
They are considered as “key cases” both for the specificity of the used methodology and the
results achieved about the paleogeographic and paleotectonic reconstructions of the main Cenozoic
basins involved in the peri-Mediterranean chains (Betic-Maghrebian-Apennine system) development.
The results will be considered based on parameters that allow delineating their relationships with the
used methodology, to obtain useful indications and guidelines for future research.

Many geological models on paleogeographic, paleotectonic and geodynamic eo-Alpine and
neo-Alpine evolution of the central-western Mediterranean area were published in the last four
decades. However, remarkable differences still persist in the reconstruction of the main events at the
different scales of phenomena.

In summary, it is not easy to answer to some questions that many researchers ask themselves,
such as, for example: (i) With what confidence can a paleogeographic and/or paleotectonic
reconstruction be considered? (ii) How is it possible to evaluate the quality of the data used
for the reconstruction? (iii) How can the actual discriminant between direct (field and laboratory)
and indirect data be found? (iv) Do field observations still have their essential and priority value?
These are questions that researchers solve by means of their assessments carried out according to the
knowledges concerning a certain topic and the choice of an appropriate methodological approach.
To provide some answers to these questions, some selected papers, grouped according to the affinity of
methodological investigation used, are examined below as key cases.

3.1. Paleogeography-Based Models

Historical models based on interdisciplinary data from classical geology (field observations,
geological mapping, stratigraphy, lateral correlations, structural analysis, mineralogy and petrography,
geochemistry, etc.) have provided paleogeographic and paleotectonic reconstructions of the Cenozoic
basins included in the peri-Mediterranean chains. A first general reconstruction of the geological
evolution of these basins was carried out by different authors ([3–6] among others). The main results
are outlined in Figure 2. These reconstructions consider the occurrence of a single Tethyan oceanic
branch separating the African-Adria Plate from the Iberia Plate from whose margin a continental
block later detached to constitute the future Internal Zones of the Betic-Rifian-Tellian-Apennine chains.
This type of interpretation was successively deepened and supported by different authors (see later).

 

 

 
Figure 2 

 
Figure 2. Reproduction of some paleogeographic and paleotectonic evolutionary models of the
central-western peri-Mediterranean region (redrawn and simplified). (A) Jurassic evolution (After [4]);
(B) From Cretaceous to Miocene (after [5]; (C) From Cretaceous to Miocene (after [6–9]): AL, Alboran;
KA, Kabilides; PE, Peloritani; CA, Calabria. The reconstructions show two opposite subductions
occurring in the same oceanic branch.
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New contributions based on similar approaches were provided later by different authors;
particularly noteworthy are those of Wildi [10], who studied the stratigraphic and tectonic evolution of
the Cenozoic basins involved in the Tell-Rif chains and Martín-Algarra [11], who proposed an Alpine
evolution of the Internal and External Betic units along the contact zone.

Based on an interdisciplinary classical approach supported by lateral regional correlation,
an evolutionary model was proposed by Guerrera et al. [12]. This model considers a general framework
of the Late Oligocene-Miocene syn-/late-orogenic stratigraphic successions involved in the chains
extending from the Betic Cordillera to the Southern Apennines, which is partially alternative to
the previous interpretations. Starting from a late Jurassic paleogeography (beginning of the Alpine
history), this model considers the presence of an intermediate and independent microplate, which was
separated from the African and European continental margins by at least two western Tethyan oceanic
branches (Figure 3). Numerous subsequent studies allowed to deepen and improve this model also
with significant scientific contributions from research of different institutions. In fact, many papers
developed and enriched the original idea with new and important contributions by means of different
data and reconstructions ([13–37] among others and references therein).

 

 

 
 

Figure 3 

Figure 3. Redrawing of original figures showing the progressive improvements of paleogeographic
and paleotectonic evolutionary models of the central-western Mediterranean region that consider the
presence since Jurassic of two Tethyan oceanic branches separated by a microplate located between
African and European Plates. Sketch maps showing the area in: (A), Cretaceous times (after [20],
revised); (B), Cretaceous to Late Miocene (after [31], revised); (C), (two boxes), Cretaceous and Middle
Miocene times (after [1], revised); (D), Early Miocene (after [32], revised). All reconstructions result
from an interdisciplinary classical geology approach.
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3.2. Plate Kinematics-Based Models

Interpretations concerning the evolution of the central-western Mediterranean area have been
also based on Plate Tectonics rules and processes and have been addressed to the reconstruction of the
kinematics of different plates involved ([38–45], among others).

In general, these reconstructions concern the kinematics of continental blocks bounded by active
faults, the temporal range of activity and rotational parameters. In particular, Schettino and Turco [42],
Schettino and Turco [44] determined both the style and timing of back arc processes, calculated the
Euler poles of the involved plates and presented information about the distribution of the oceanic
crust and types of tectonic structures that are recognizable in the area. Magnetic field data useful to
identify approximately the extension of the oceanic crust, the kinematics of transcurrent faults, fracture
zones and other tectonic lineaments were also used to provide Plate Tectonics-based evolutionary
models of the central-western Mediterranean region (Figure 4). These models appear to be useful in
the case of presence of weak tectonic activity and when the boundaries of continental blocks are neither
deformed nor affected by metamorphism. In these latter cases, reconstructions become very complex
and difficult. 

 
Figure 4 Figure 4. Reproduction of evolutionary paleogeographic sketch maps showing the evolution of the

central-western Mediterranean region from 33.1 my (late Cretaceous) to 10.9 my (late Miocene) and
considering the presence of a single ocean between African and European Plates (elaboration according
to Plate kinematics-based models; after [44], redrawn).

Since the 1990s, some computer software to create plate kinematics models were introduced and,
recently ([46]), the free software GPlates (see Section 3.5) was developed to provide constraints for the
reconstructions of plate evolution according to the rules of Plate Tectonics modelling.

Consequently several papers concerning the Mediterranean region and presenting modelling
performed using the GPlates software were published recently (e.g., [47–50]) and also animations
based on GPlates modelling can be found in websites ([51–53]). The obtained results were used to
support evolutionary models of the central-western Mediterranean region; however, they do not
always lead to coincident reconstructions. In fact, they allow different paleogeographic frameworks to
be reconstructed, some of which support the presence of intermediate microplates located between
the African and European Plates and others instead that provide for the presence of a single ocean
between Europe and Africa.

3.3. Tectonic and Magmatic Data-Based Models

Progressive elaboration ([54,55]) presented a geodynamic evolution of the Cenozoic basins of
the central-western Mediterranean and surrounding areas during the last 50 my, mainly integrating
different tectonic and magmatologic observations aimed to better identify the geodynamic events.
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In particular, the reconstruction of the geodynamic evolution results from the comparison between
tectonics and igneous petrology constraints.

This model highlights that the magmatic evolution of the Cenozoic basins of the Mediterranean
area inferred from the geochemical composition of the magmatic rocks linked to subduction zones
cannot be easily reconciled with simple magmatological models proposed for the Pacific subductions.
In fact, the classic approach based on the geochemical composition of magmatic rocks to interpret the
synchronous tectonic features cannot be used in complex geological systems such as the Mediterranean
area. These authors considered this aspect as related both to the contemporary activity of Cenozoic
subduction zones that strongly modified the chemical composition of the upper mantle and mostly
to the presence of ancient modifications linked to the previous orogeny. The evolution proposed by
these authors is represented by different figures reported in their paper, and they are partially and
schematically reproduced in Figure 5.

The relationship between calc-alkaline volcanism and tectonic setting has been used to
reconstruct episodes of the western-Mediterranean-Tyrrhenian oceanic opening ([56]). This approach
highlights a detailed reconstruction of the main volcano-tectonic events from early Oligocene up
to late Pliocene. Space-time features indicate that calcalkaline volcanism is not linked only to
subduction because a temporal gap would exist between the steep subduction beneath the Apennines
and the previous, flat-type plunge subduction beneath of the European plate, which have an
opposite direction and produce the accretion of the Alpine age orogen and the double vergence.
The reconstructed events show continuum phenomena not strictly related to the main orogenic phases
(late Alpine, Apennine-Maghrebian and later phases) usually recognized and used as geodynamic
evolution reference.

A reconstruction based on geochemical-petrographic data of volcaniclastic rocks of the northern
Apennine was utilized to propose an evolutionary model of the Cenozoic basins of the Mediterranean
area ([57]). The geodynamic phases reconstructed in the Cenozoic would have been controlled
by different subduction slabs that led the authors to an original reconstruction of the orogenic
elements involved. In fact, the paleogeographic-geodynamic evolution proposed is very different with
respect to reconstructions based on interdisciplinary studies concerning the regional geology of the
central-western Mediterranean area and which establish, in our opinion, some important constraints
([2], and references therein).
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Figure 5. Reproduction of evolutionary paleogeographic and paleotectonic sketch maps of the
central-western Mediterranean and schematic geological sections of the area in the latest Cretaceous
(70 my) and latest Oligocene (25 my), (after [54]) and considering on the basis of previous studies
(i.e., [58], [9], among others) the presence of two oceanic branches separated by a microplate located
between African and European plates.

3.4. Geophysical Study-Based Models

By means of geophysical interpretations concerning the peri-Mediterranean Cenozoic basins
evolution, different subduction models were considered: (i) delamination and slab roll-back
processes [59–62]; (ii) convective removal of mantle lithosphere [63,64]; (iii) partial or total break-off

and/or tearing [47,65,66]. A part of geophysical studies showed a marked asymmetry in the crustal
and lithospheric mantle structures along the Gibraltar Arc region, between the south-Iberia and
north-Morocco margins. These features coincide with a positive anomaly of the P-wave velocity at
a certain depth, which is interpreted as related to a relict of a detached subduction slab below the
Betic–Rif orogen. Platt and Vissers [67] proposed a Miocene extensional collapse of the Gibraltar Arc
area after the continental thickening related to subduction and collision of blocks during the Paleogene.

Most of these papers proposed a single W- to NW-directed subduction of the African Plate beneath
the Betic system, which fits perfectly with the Miocene evolution and closure of the Maghrebian Flysch
Basin. Instead, these studies did not provide information about previous subduction processes (i.e.,
the closure of NF-LP Ocean) responsible for the formation of Alps and that on the contrary are well
documented by models pointing out a double and opposite subduction which causes at different
times the development of the Alpine Chain (Cretaceous-Paleocene) and Apennine-Maghrebian Chain
(Oligo-Miocene). Really, the occurrence of the oldest subduction is mainly based on the presence
of HP-LT metamorphic rocks and ophiolite suites, which were supposed to have formed further
away to the East of their current position (i.e., [31,34,54,61], among others). Probably, this older
subduction slab was later interrupted, laminated and removed during the Oligocene to Early Miocene
by a NW-SE strike-slip fault zone, which displaced the crustal block towards W, to reach its present
position ([3,4,35,68,69] among others). Considering the time elapsed and the total displacement, the
inexistence of geophysical evidence for these subduction mechanisms can be explained considering the
detaching and melting of the subduction slab, and the resorption by convective flows during magma
production [70].
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3.5. Paleomagnetic Study-Based Models

When they exist, paleomagnetic data available at the regional scale constitute the most rigorous
way to restore the paleo-positions of the continents associated to oceanic openings [71]. Some important
papers aimed to paleogeographic reconstructions based on paleogmagnetic data have been published
about the study area in a specific sector or at the regional Mediterranean scale. Therefore, Lowrie and
Alvarez [72] studied the rotation of the Italian Peninsula during the Cretaceous to Eocene period in the
Umbria Apennines scaglia-like sediments. Scheepersa et al. [73] analyzed marine marls of the middle
Pleistocene by proposing a clockwise rotation of the Calabria-Peloritani block (South Italy). Studies at
the scale of the Mediterranean aimed to the study of the Tertiary extensional basins within the Alpine
orogeny using paleomagnetic approach have been also proposed by Durand et al. [74] and Jolivet and
Faccenna [75].

Furthermore, some of the above mentioned Plate kinematics-based models [41–44] use also
paleomagnetic data to identify the extension of the oceanic crust, the kinematics of transcurrent faults,
fracture zones and other tectonic lineaments during the oceanic opening. Nevertheless, these goals
seem to be achievable for continental blocks which still today maintain a similar shape (Balearic Islands,
Corsica-Sardinia Block, etc.). Furthermore, after a subduction the continental blocks usually form part
of an orogenic chain and through the collision become part of nappes, being affected by thrusts, folds
and metamorphism. In these very common cases, it becomes very difficult to restore and to reconstruct
the events and their development by means of paleomagnetic studies and, therefore, other types of
studies must be applied.

3.6. Underlining the Tool GPlates Software

The abovementioned GPlates software is a free software for calculation and interactive 2D–3D
visualization, which has been recently introduced [46,49–51] for Plate Tectonics reconstructions. GPlates
software allows displaying geological reconstructions for a single moment of geological timeline or
through animate sequences over a defined geological period. The software also allows time-derivative
information (plate-motion velocity fields and flowlines) to be calculated, and sometimes data were
exported into other geospatial software for further elaboration. Some examples of the Cenozoic
basins of the central-western Mediterranean area have been realized. These reconstructions show
the evolutionary steps of different geodynamic frameworks characterized by a single subduction
(providing for a single oceanic branch of the Tethys) or by two opposite subductions (presence of two
Tethyan oceanic branches separated by an intermediate microplate) involving the Africa-Adria and
European margins.

GPlates software was used for investigations addressed to correlate geological elements (points,
lines and polygons) during changes both of their relative position and of deformation style, and to
define time dependent elements based on Plate Tectonics assumptions. This particular approach results
in the possibility to elaborate different models for a single region. The fundamental differences are
represented by: (1) the initial configuration of tectonic elements; (2) criteria used to determine the finite
reconstruction poles; and (3) geological features (tectonics, stratigraphy, volcanism, etc.) considered
in different times. Therefore, applying only this software does not always help to decide the best
reconstruction. As GPlates reconstructions for the central-western Mediterranean Cenozoic basins
are based on rigid plate models, the final results are highly influenced by the starting model used
(e.g., [25,47–49]) in different types of GPlates animations.

4. Discussion and Final Remarks

Geological models of the central-western Mediterranean area often are not easily integrated
because they are based on different types of data sets collected using different methodological
approaches and differently processed. A major problem for a better understanding of the geodynamic
evolution of the Cenozoic basins of this region is often related to the achievement of results by means



Geosciences 2020, 10, 366 10 of 18

of single disciplines (geology, stratigraphy, geophysics, tectonics, magmatology, plate kinematics, etc.),
applying their own specific methodological approach instead of using a multidisciplinary approach
which would ensure a greater control of data and a major degree of validation for the reconstruction of
geodynamic events and related models.

Some of the models mentioned in Section 3 result from very different methodological
approaches and testify this necessity. However, it is necessary to point out that in some cases
also interdisciplinary-based geological models do not take into account fundamental constraints
resulting from other disciplines (e.g., geophysics or magmatology).

Anyhow we believe that all reconstructions at all scales and levels of detail are valid but the lack
of a direct and/or indirect “contact” with rocks and field geology often results in a data deficit that
should suggest a greater interpretative caution. In our opinion this “contact” cannot be lost because
the recognizable geological history is always contained in the rocks even if insuperable interpretative
limits are represented by: (i) a large part of the information on geological history has been destroyed
by Earth geodynamics (i.e. successive orogenic phases, etc.); (ii) the rocks analyzed are only a very
small part of the existing ones.

For the abovementioned reasons, the models should be born with the greatest multidisciplinary
approach possible and without underestimating constraints imposed by previous interpretations,
especially when the latter offer results related to the analysis of rocky successions with the maximum
temporal resolution which would support a more defined reconstruction of geological events.

An example of marked interpretative differences still remaining in the geological literature of the
Mediterranean area concerns the reconstruction of the paleogeographic setting after the Hercynian cycle.

In fact, a part of models reconstructs a geological history where the main actors are the margins
of the main plates (Europe and Africa-Adria), which are separated by a single Tethyan oceanic
branch. In this context, the Alpine history would be accomplished (Eo-alpine, Cretaceous; Meso-alpine,
Paleocene; Neo-alpine, Neogene; phases) by means of various tectonic mechanisms followed away by
an Apennine-Maghrebian history. These models allow to a relatively simpler interpretative solution
with some difficulty of recognition about the distinction of the two different stories because the
Alps and Maghrebian-Apennine chains are considered continuous and hinged to the same original
paleogeographic framework.

Another part of models, and in particular those based on an interdisciplinary approach including
different fields of classical geology (but not only), considers a more complex post Hercynian
paleogeography characterized by the presence of one or more microplates. An example is represented
by the Mesomediterranean Microplate that represents an area, located since Jurassic between the
African and European Plates to separate at least two oceanic (or with thinned continental crust)
branches of the western Tethys. The Alpine System s.s. developed during the Cretaceous-Eocene from
the western branch (i.e., the Ligurian Piemontese-Nevado Filabride Ocean) while the post-Alpine
System, which is represented by the Miocene Betic-Maghrebian-Apennine orogenic belt originated
from the eastern branch (Maghrebian Ocean). So the intermediate microplate participated in the
orogenic evolution as an internal zone first in the eo-Alpine history (subduction towards SE) and
successively in the neo-Alpine Apennine-Maghrebian evolution (subduction towards NW. Therefore,
marked and not easily reconciled paleogeographic and paleotectonic differences exist between the
two groups of models. For example, the Mesomediterranean Microplate should not be confused with
the AlKaPeCa, the latter corresponding in the original definition to a continental block originated
and separating from the European Margin during the neo alpine Maghrebian-Apennine evolution.
Moreover, also the specific events (reconstruction based on stratigraphic records, magmatic events,
geological cycles, tectonic phases, age, etc.) considered in different models show important differences.

As commented above, some methods (i.e., models based on geophysics, paleomagnetic data
and Plate kinematics) are applicable when the effect of tectonics is low or for recent phenomena, but
the task is much more difficult after strong deformation when superimposed subductions occur and
the stratigraphic record is partially or totally metamorphosed. The magmatic data-based models are
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limited to areas with the described types of magmatic suite and the GPlates software models are highly
influenced by the initial model introduced in the software. So, interpretative models should be born as a
result of the broadest multidisciplinary approach possible. Taking into account the lack of homogeneity
between the many models, an attempt to trace an evolutionary framework for the Cenozoic basins
of the central-western Mediterranean area has been carried out, trying to merge the main results
from different methodological approaches that are somewhat “dialoguing”. With this premise and
assumptions, we favored models based mainly on data obtained using the good interdisciplinary
practices of classical geology integrated and completed with other data resulting from models based
on different approaches as much as possible. In our view, this multidisciplinary approach leads to a
better understanding of the subduction processes, collision, and oceanic opening and spreading in the
central-western Mediterranean area associated to the birth of the Alpine chains.

In the considered context, related to the reconstruction of the geodynamic evolutionary framework
of a Tethyan sector, and in particular of the chains of the central-western Mediterranean area that
results from the evolution of this sector, the models providing for a more complex paleogeography are
to be considered more complete. In fact, the presence of different oceanic branches to separate one
or more microplates rather than the occurrence of a single oceanic area seems to be more suitable to
explain the compressive development of the chains. This type of reconstruction seems to result more
frequently from multidisciplinary elaborations carried out through classical geology investigations,
which consider field activities carried out in different sectors of the studied chains as an essential
starting point of the work and to which the highest number of different analyses are associated.
This path allows the reconstruction of an evolutionary paleogeographic and paleotectonic framework
to be accomplished, considering as much data as possible, and also pointing out all the recognized
events with the greatest detail.

Without diminishing the importance of differently-based alternative models that maintain their
absolute validity, this choice is conditioned, above all, by the high-level resolution of the temporal
reconstruction of events and by the use of data from direct analyses of rocks; this is because only rocks
contain the real data recording of the geological evolution and history. The different interpretative
models concerning the central-western Mediterranean chain systems allowed focusing evolutionary
reconstructions based on sufficiently verified main geological events. Other methodological approaches
led to formulate conceptually different complex evolutionary models derived without mutual
comparisons and data integrations.

A paleogeographic and paleotectonic interpretation representing an upgrading of previous
reconstructions is presented (Table 1). This reconstruction takes into account new data from different
sectors of the considered chains, especially concerning the Rif Chain. The main geological and
geodynamic events recognized in the examined peri-Mediterranean chains are schematically reported
in Table 1. The reconstruction is mainly based on previous multidisciplinary studies from our Research
Group that were carried out according to a classical geology approach.
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Table 1. Main geodynamic events in the eo- and neo-Alpine systems from Triassic to Pliocene recognized in different sectors of the central-western peri-Mediterranean
chains (after [1,2,37,76]).

Time
Range

Sectors with Eo-Alpine
Tectono-Sedimentary

Evolution *

Sectors with Neo-Alpine Tectono-Sedimentary Evolution
Main Basin Evolutionary Stages Main Geodynamic EventsBetic

Cordillera-Rif-Tell
Sicilian

Maghrebids Apennines

Late
Miocene-Pliocene
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In Figure 6, a general late-Jurassic-early Cretaceous paleogeographic sketch map is proposed.
This interpretation shows the main elements and domains of the Mediterranean Tethyan region that
resulted from the Hercynian evolution and after which the eo-Alpine and neo-Alpine hystory begins
(after [37], modified). The paleotectonic evolution is also represented by means of seven very simplified
sections (box B). These sections synthetically show the main crustal elements (oceans, continents and
sedimentary covers); subduction planes; main tectonic movements; and orogenic phases.Geosciences 2020, 10, x FOR PEER REVIEW 2 of 18 
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Piemontese Basins; B-M-A, Betic-Maghrebian-Apennines; MFB, Maghrebian Flysch Basin; IF, Internal 
Flysch (MFB); MF, Mixed Flysch (MFB); EF, External Flysch (MFB); B-AB, Back-Arc basins; BMA-O, 
Betic Maghrebian Apennine orogen; 1, Continental crust of the European and African margins; 2, 
Oceanic crust; 3, Continental crust of the Mesomediterranean Microplate (MM); 4, Meso-Cenozoic 
sedimentation; 5, Syn-orogenic flysch deposits (MFB); 6, Numidian deposits (MFB); 7, Late-orogenic 
flysch deposits. 
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Figure 6. Simplified paleogeographic sketch map in the late Jurassic-early Cretaceous representing
the main features and domains of the central-western Mediterranean Tethyan area (Box A); seven
synthetic sections showing the main crustal elements (oceans, continents and sedimentary covers),
subduction zones, main tectonic movements and orogenic phases representative of the evolution of
eo-alpine and neo-alpine systems (Box B) are also shown. Key: NF-LP, Nevado Filabride-Ligurian
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sedimentation; 5, Syn-orogenic flysch deposits (MFB); 6, Numidian deposits (MFB); 7, Late-orogenic
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Relationships between microplates and basins, tectonic transport, and opening and closing of
basins are also shown (data from [9,21,31,37,69,77,78]). In the reconstruction the Tethyan oceanic
branch recently recognized in the External Domain of the Rif Chain ([35,79–81]) was interpreted as
an oceanic branch sector located between the External zones of the Mesorif and Intrarif Domains
connected to the Maghrebian Flysch Domain [82].

In summary, some models concerning the paleogeographic, paleotectonic and geodynamic
evolution of the eo-Alpine and neo-Alpine chains of the Mediterranean region have been revised
considering the relationships between different methodological approaches, results and interpretations.

The main differences in the proposed models concern the kinematic reconstructions and the
paleogeographic and paleotectonic evolution of the area and mainly depend on the utilized study
method. In our opinion the most important differences area as follows: (1) the differences in the late
Jurassic-Early Cretaceous paleogeography mainly resulting in the presence of one or more Tethyan
branches between the European and African-Adria margins. More branches imply the occurrence
of one (or more) microplates between Europe and Africa-Adria; (2) the kinematic mechanisms that
caused the stacking of the different tectonic units (internal, intermediate and external units) and the
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resulting opposite vergence of the chains (Alps, Betics, Maghrebids and Apennines) mainly due to
the evolutionary transition from the eo-Alpine to Neo-Alpine phase; (3) the age and distribution
of the oceanic crust in the different Tethyan branches and related tectonic units, especially in the
Maghrebian Basin; (4) the timing of events. A modern biostratigraphy allows to a high temporal
resolution especially when studies are integrated with other disciplines.

A more appropriate terminological use during the reconstruction of evolutionary models is also
desirable to avoid not comply interpretations. A concrete example is provided by the often improper
use of the acronym AlKaPeKa (introduced by [5] to group Alboran, Kabylides, Peloritani and Calabria
domains) that originally belongs to the Iberian margin, also for the “Mesomediterranean microplate”
([1] and references therein) that instead represents an individual microplate.

Finally, the presented discussion on the different methodological approaches can help to clarify
some controversial aspects on the considered subject.
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