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Abstract: An effective method of identifying and discriminating undersaturated gas accumulations
remains unresolved, resulting in uncertainty in hydrocarbon exploration. To address this problem,
an unsupervised machine learning multi-attribute analysis is performed on 3D post-stack seismic
data over several blocks within the deepwater Gulf of Mexico and within the Carnarvon Basin,
offshore Australia. Results reveal that low-saturation gas (LSG) reservoirs can be discriminated from
high-saturation gas (HSG) reservoirs by using a combination of instantaneous attributes that are
sensitive to small amplitude, frequency, and phase anomalies with self-organizing maps (SOMs). This
methodology shows promise for de-risking prospects, even if it is not quantitative, particularly in
frontier and exploration basins where wells may not exist or be very limited. However, this method
only proved to be successful within the Gulf of Mexico and yielded limited results in the Carnarvon
Basin. This difference is most likely due to the Carnarvon Basin having a different amplitude response
resulting from a different burial history and fluid saturations when compared to the Gulf of Mexico.
Therefore, this method is non-transferrable, and a different combination of attributes may be needed
in other LSG-prone basins.

Keywords: machine learning; unsupervised; self-organizing maps; seismic interpretation; direct
hydrocarbon indicator; low-saturation gas; Gulf of Mexico; Scarborough gas field

1. Introduction

The discrimination of low-saturation gas (LSG) reservoirs (less than 25%) from com-
mercial quantities of gas remains one of the most challenging problems in petroleum
exploration [1]. The ambiguity of LSG is primarily due to the elastic properties of gas, in
particular the bulk modulus. The bulk modulus is a measure of the rock’s incompressibility
when a force such as a seismic wave is applied. Due to the elastic properties of the gas’s bulk
modulus on the bulk rock, a small, uneconomical, amount of hydrocarbon gas included
in the pore space of the reservoir rock will reflect seismic energy back to the surface in a
similar manner to a larger, and economical, accumulation of gas in the pore space (Figure 1).
These rock physics relationships, with the inclusion of gas, will cause an LSG reservoir
to have a similar seismic amplitude response to that of a commercial, high-saturation gas
(HSG) reservoir [2,3]. The seismic reflection in both the LSG and HSG accumulations
creates a bright amplitude anomaly within certain lithology and pressure regimes within
the Gulf of Mexico and within the Scarborough gas field, offshore Australia [2—4]. These
amplitude responses were analyzed within two producing fields in the Gulf of Mexico and
the Scarborough gas field, offshore Australia (Figure 2A,B).
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Figure 1. Change in rock properties with increasing gas saturation. The bulk modulus quickly
decreases with a relatively small amount of gas saturation. This bulk modulus similarity between
low- and high-gas saturation is the crux of the LSG gas differentiation problem.
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Figure 2. Location of the 3D seismic surveys used in this study. Two of these datasets are located in (A)
offshore Gulf of Mexico, while the other dataset is located in (B) offshore Australia within the Northern
Carnarvon Basin. Gulf of Mexico protraction grid and seafloor outlines taken from the BOEM.
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There have been several amplitude and rock physics analyses performed in the past to
better characterize LSG in the subsurface with limited success under specific conditions
that cannot be applied in a typical exploration scenario [3,5-7]. In recent years, machine
learning techniques have gained a significant foothold within the geoscience community.
Recent studies have shown promising applications of machine learning techniques to
reflection seismic data to aid in the interpretation of geologic patterns [8-11]. Some of
these applications are at the sub-seismic resolution scale since machine learning works on a
sample interval basis, as opposed to being limited by the seismic wavelet [8,12].

This study aims to exploit the advances of machine learning and multi-attribute
seismic analyses to test the limits and determine if small seismic waveform variations can
be detected and properly attributed to the low- and partially-saturated gas reservoirs.

2. Geologic Settings
2.1. King Kong and Lisa Anne Prospects, Offshore Gulf of Mexico

The King Kong and Lisa Anne (KK/LA) prospects lie approximately 160 mi (257 km)
south of New Orleans, within Green Canyon Blocks 473 and 474, offshore of the Gulf of
Mexico (Figures 2A and 3). These prospects occur in Plio-Pleistocene age sediments, share
the same geologic model, and are mapped on the same reflector in seismic data. They
are deepwater sand reservoirs that were deposited in a minibasin from a northerly source
controlled by underlying salt bodies [3]. While the King Kong Prospect is a structural
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four-way closure, the Lisa Anne Prospect is positioned on the hanging wall of a large
normal fault (Figure 3). Sand quality within both reservoirs is excellent, with porosities
of roughly 30% [3]. Although both prospects appear to have similar seismic amplitude
anomalies, the Lisa Anne proved to be an uncommercial prospect, having only about 5-25%
gas saturation [3].

Figure 3. Inline 2391 taken through the KK/LA 3D seismic survey across the King Kong and
Lisa Anne wells over Green Canyon Block 473 and 474, offshore Gulf of Mexico (modified from

O’Brien [3]).

2.2. Ursa Gas Field, Offshore Gulf of Mexico

The Ursa field is a prolific producing deepwater field located approximately 130 mi
(210 km) southeast of New Orleans within the Mississippi Canyon, offshore Gulf of Mexico
(Figure 2A). The deepwater depositional environment of the Mars—Ursa intraslope basin
is controlled by cycles of salt tectonics as well as turbidites. Amalgamated channelized
sands and sheet sands act as reservoirs for the system and are overlain by condensed
sections [13]. Within the Ursa Well #1, several hydrocarbons pay intervals, occurring at
depths of 12,000 ft and from 17,000 to 20,000 ft within Pliocene to Miocene age sands. These
are stacked pinch-out reservoirs against salt-bounded mini-basin flanks, similar to the play
observed in the King Kong/Lisa Anne prospects. Sand quality is also excellent within
the field, with an approximate porosity of 25% [13]. However, well log and AVO analysis
revealed that one of the upper reservoir intervals was an LSG interval as the velocity was
lower than the oil-saturated intervals (Figure 4) [2].
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Figure 4. Inline 2804 taken through the Ursa Field 3D seismic survey. The hydrocarbon intervals and
a synthetic from Hilterman, 2001 are highlighted on the seismic section. Notice how the amplitude for
the LSG interval exhibits a similar response to the other hydrocarbon producing intervals (modified
after Hilterman [2]).
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2.3. Scarborough Gas Field, Offshore Australia

The Scarborough gas field is situated on the Exmouth Plateau, in the Carnarvon Basin,
offshore Australia (Figure 2B) [14]. The plateau is a passive margin between continental
and oceanic crust that was formed as a result of the break-up of Australia and India.
Sub-horizontal detachment faults dipping towards the Australian continent undercut the
plateau at a depth of approximately 6.2 mi (10 km) where the continental crust transitions
into oceanic crust [15]. The plateau, with dimensions of approximately 248 mi by 372 mi
(400 km by 600 km), is bounded by transform faults toward the northeast and southwest [4].
A complex series of extension, fracture, uplift, truncation, and subsidence events have
affected the plateau since the Mesozoic era [4].

The Scarborough reservoir is a three-tiered fan sequence that consists of Early Creta-
ceous deepwater turbidite sands deposited in a basin-floor fan setting [16]. With a water
depth of about 1970 ft (900 m) and situated from 6240 to 6570 ft (1900 to 2000 m) below sea
level, the reservoir is roughly 65 to 100 ft (20 to 30 m) thick [4,14,16]. These turbidite sands
were sourced from the fluvio-deltaic Barrow Group, located approximately 31 mi (50 km)
south of the field [14]. The Lower Fan unit contains the majority of the gas-in-place with
porosities of 20-30% and is overlain by lower net-to-gross and lower quality Middle and
Upper Fans [14,17]. The areal extent of the reservoir (a gas saturation higher than 50%) was
defined using five exploration wells and available 3D seismic coverage (Figure 5A-C) [4].
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Figure 5. (A) A horizontal time slice taken at 2.169 s through the Scarborough seismic survey
displaying the high amplitude anomaly of the Scarborough gas field. (B) A CSEM study by Ray
et al. [4] where they defined the 50% gas saturation outline within the Scarborough gas field (modified
after Ray et al. [4]). (C) Interpreted arbitrary seismic section highlighting the Scarborough gas
anomalies, key horizons, and wells used for this study.
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The geologic backgrounds for the KK/LA and Ursa fields are fairly similar to one an-
other, demonstrating comparable porosities, traps, and depths. However, the Scarborough
field is significantly shallower with a different basin history and may illustrate a different
amplitude response from the Gulf of Mexico fields.

3. Methodology
3.1. Available Data

Three, full-stack 3D datasets will be used for analyzing the varying amplitude re-
sponses of different gas saturations within the Gulf of Mexico, offshore United States and
in the Carnarvon Basin, offshore Australia. While gathers and angle-stacks would be bene-
ficial for our analysis, they were unavailable and were therefore not included in this study.
Well logs for the King Kong and Lisa Anne as well as the Ursa Field were also unavailable
as they are proprietary. However, a total of five wells were used in Scarborough gas field,
offshore Australia.

Within the Gulf of Mexico, two surveys will be used. The G3D201407-02 3D, also
known as the Green Canyon Phase II, post-stack seismic survey was collected in 1989 by
Western Geophysical and covers approximately 580 mi? (1500 km?) in the Gulf of Mexico
(Figure 2A). This dataset covers the KK/LA prospects. The processing was also conducted
by Western Geophysical and had a recording length of 9.5 s using a 4 ms sampling rate.
The dataset is positive standard polarity. The second dataset, the G3D1304-002A through C
survey, also known as the Shell Mississippi Canyon survey, was collected in 1988 by Shell
and covers roughly 420 mi? (1089 km?) in the Gulf of Mexico (Figure 2A). This dataset
covers the Ursa gas field. The processing was conducted by Shell and had a recording
length of 9.6 s using a 4 ms sampling rate. The dataset is positive standard polarity.

Within the Scarborough gas field, offshore Australia, the Scarborough 3D (HEX03A)
seismic survey will be used to examine varying levels of gas saturation. The dataset was
acquired and processed by WesternGeco Australia between March and July 2004. This
survey covers approximately 351 mi? (910 km?) and is located about 92 mi (240 km) north
of Barrow Island (Figure 2B). Ten, 4000 m long streamers were used, at a separation of
75 m and a depth of 6.5 m. The acquisition energy source used a dual 3000 cubic inch
Input-Output (IO) sleeve-air source, clustered arrays. The array centers were 50 m apart
at a depth of 5 m. This energy source was fired every 18.75 meters along the pre-plotted
survey line. The operating pressure of the towed source array was 2000 psi. The survey had
a recording length of 6.1 s using a 3 ms sampling rate. The dataset has negative standard
polarity. Five wells were used for this study, which all contained gamma rays, resistivity,
density, and neutron porosity.

3.2. Methods and Workflow

Potential gas prospects have been traditionally identified through the use of seismic
reflection data with certain types of seismic amplitude anomalies referred to as Direct
Hydrocarbon Indicators (DHIs) [18]. Dozens of recognized DHIs exist, and they vary
depending on particulars of each basin—such as depth, rock type, and fluid type pressure.
Gas presence in Tertiary Gulf of Mexico rocks is identified as a DHI AVO class 3 that
displays a larger amplitude response in the far angles compared to the near angles [19,20].
In full-stack seismic, the gas is highlighted as a bright spot [18]. Additionally, a velocity-sag
anomaly is occasionally observed in seismic time volumes beneath large accumulations,
where the seismic reflectors appear to be pulled down with increasing time due to the
presence of lower velocity gas [18]. Although these seismic DHIs point to the presence of
gas, they cannot quantify gas saturation to a degree where the economic validity of the
reservoir can be reliably determined. DHIs are only indicators that hydrocarbons could be
present, and thus, are vulnerable to uncertainty. This low-saturation gas phenomenon is
pervasive, occurring in hydrocarbon basins globally from the Gulf of Mexico, to the North
Sea, and the Niger Delta [2,3,13,21,22].
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Despite decades of research from primarily the rock physics discipline, minimal im-
provement in identifying gas saturation variations from seismic data has been
achieved [3,5-7,23,24]. A robust method of identifying and discriminating potential LSG
occurrences remains unsolved, resulting in an additional factor in hydrocarbon explo-
ration risk. Furthermore, even with well logs available, gas saturations may be unclear.
Therefore, a new methodology is proposed, which uses unsupervised machine learning
multi-attribute analysis on 3D, post-stack seismic data with principal component analysis
(PCA) and self-organizing maps (SOMs). This study used Paradise Version 3.1, a commer-
cial tool provided by Geophysical Insights, to conduct our PCA and SOM investigations.
This methodology is outlined in Figure 6 and shows promise for de-risking prospects, even
if it is not quantitative. This method can be particularly helpful in frontier and exploration
basins where wells may not exist or be very limited.

Optimize SOM
parameterization ¢
Run PCAto Look at SOM
determine most classification
i important - Run SOM ' probability
attributes for SOM thresholds
Determine best
. SOM and overlay
Run attributes ~ (— ™ with amplitude
interpreations
Map seismic
> anomaly in
amplitude section v

Evaluate results and
effectiveness of better
highlighting anomalous

features in the data

Figure 6. Iterative SOM workflow used to evaluate the accuracy and effectiveness of each SOM result.
Several combinations of instantaneous attributes and SOM parameters were evaluated in this study.

The initial analysis used PCA methods applied to a set of seismic attributes from
the 3D post-stack seismic survey within the Green Canyon, Gulf of Mexico. PCA is a
linear mathematical technique that reduces a set of variables, such as seismic attributes,
to a set that illustrates the majority of the independent information. variation [25,26].
Therefore, PCA will aid in identifying meaningful combinations of attributes that better
delineate between low-saturation and high-saturation gas reservoirs. This method has
been applied to a myriad of geophysical applications [8,9,12,27,28]. The first principal
component accounts for the most variability in the data with each succeeding orthogonal
component accounting for the remaining variability. Although the first principal component
highlights the largest linear attribute combinations that best represent the variability of the
bulk of the data, it may not identify specific features of interest to the interpreter. Therefore,
succeeding principal components were evaluated because they may be associated with low-
saturation gas characteristics that were not identified with the first principal component.
Additionally, many attributes that are useful for characterizing high-amplitude anomalies,
such as attributes sensitive acoustic impedance changes, were pre-selected to be used
within the PCA. Nonetheless, PCA will reduce these seismic attributes down to a smaller
subset that is representative of most of the data’s independent variability.

Following PCA analysis, the attributes deemed the most successful for differentiating
between different levels of gas saturation are then incorporated into a SOM. Due to the
multidimensional nature of PCA results, SOMs are employed to help visualize these
complex relationships [28]. Once the SOM model is optimized for KK/LA prospects within
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the Green Canyon Phase II survey, the same model will then be applied to the Ursa (Shell
Mississippi Canyon 3D seismic survey) and Scarborough (Scarborough 3D seismic survey)
fields to evaluate its effectiveness for differentiating between high and low saturation
gas reservoirs.

A SOM is a collection of neurons that classify data samples into categories based
on their various geological or geophysical properties. For a successful analysis, it is
critical to properly configure the SOM initialization hyperparameters. Therefore, several
SOM hyperparameters, such as the number of neurons and epochs, were evaluated to
determine optimal parameterization. We resumed the methodologies established by Roden
et al. [8,9,12] for investigating seismic data where they provide suggestions for optimizing
SOM hyperparameters. The SOM was run ona 5 X 5 neuron count (total of 25 neurons) with
100 epochs (iterations) over the entire 3D seismic volume. These neuron dimensions and
number of epochs were used because they are robust enough to highlight minute changes
and details within the seismic data, such as varying gas saturations, while also being
computationally efficient. Our initialization parameters were similar to those proposed
by Roden et al. [8] as well as Roden and Santogrossi [29]. Roden et al. [8] recommend
60-100 epochs of training when applying SOMs to interpret seismic data. Both papers also
found that a 5 x 5 neuron count was ideal for identifying DHISs [8,29]. We built upon their
methodologies and evaluated how different neuron counts would affect our SOM results.
Further exploratory data analysis revealed that neuron dimensions higher than 5 x 5 tended
to classify noise within individual neurons and display insignificant information. Neuron
dimensions lower than 5 x 5 were insulfficient for extracting meaningful information about
varying gas saturation. Finally, to visualize and interpret SOM results, the neurons are
nonlinearly mapped to a 2D colormap that preserves the topological ordering of the input
space [8,9,29,30]. Interpreters can then identify and visualize the location of the neurons
in the 3D survey [8,9,29,30]. The color of each neuron can be modified on the Paradise’s
interactive 2D colormap to better reveal geological features within the dataset [8,9,29].
Further detailed explanations of the SOM neuron classification and visualization processes
for the Paradise tool can be found in Roden et al. [8], Roden and Santogrossi [29], as well as
Smith and Treitel [30].

Inlines (IL) containing noticeable gas saturations, such as IL 2391 (shown in Figure 3),
showed highly anomalous eigenvalues from the PCA results compared to other lines in
the survey (Figure 7). These anomalous eigenvalue responses are most likely attributed
to the anomalous amplitude responses present within that line. Further analysis of these
anomalous lines revealed that instantaneous attributes that identify changes in amplitude,
frequency, and phase tended to cluster together to reveal highly anomalous areas within the
seismic. For example, the sweetness and envelope seismic attributes ranked as the highest
attributes within the second eigenvector for IL 2391 (Figure 7). In Figure 7, “Percentage”
represents the degree to which the attribute contributed towards that specific eigenvector
whereas “Percent Total” lists the variance for each of the attributes from all the eigenvectors.
Sweetness and envelope appeared to contribute the most towards the second eigenvector
while also representing 62.00% and 58.04% of the variance for all the eigenvectors. This
signifies that those two attributes captured a significant amount of the variability within the
dataset. Following a similar workflow used for the second eigenvector, the highest-ranking
attributes from the first few eigenvectors were chosen to be incorporated into the SOM
analysis over the entire dataset. These attributes are the full-stack amplitude, envelope,
Hilbert, cosine of instantaneous phase, relative acoustic impedance, and sweetness.
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Figure 7. PCA results for Inline 2391 (shown in Figure 3) of the KK/LA 3D seismic survey. The highest-ranking attributes from the first few eigenvectors were
chosen to be incorporated into the SOM analysis over the entire dataset. These attributes were envelope, Hilbert, the cosine of instantaneous phase, relative acoustic
impedance, and sweetness. These attributes were also combined with the full-stack amplitude.
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4. Results

Once the SOM hyperparameters were optimized, this study then evaluated the number
of attributes to use within the SOM model. This was determined through iterative PCA
and SOM analysis. The optimized SOM model used the following instantaneous attributes:
full-stack amplitude, envelope, Hilbert, cosine of instantaneous phase, relative acoustic
impedance, and sweetness. These attributes for the KK/LA SOM are shown in Figure 8A-F,
and Table 1 describes the definitions and uses of these attributes.

Table 1. Definitions, uses and sources for all the attributes presented within this study. The King
Kong prospect from Figure 8A-F is shown under the vertical slice example.

Instantaneous .. . .
Attribute Name Definition Vertical Slice Example Uses Sources

high Instantaneous envelope is useful for
highlighting lithology, porosity, and
hydrocarbons, since the attribute is

sensitive to subtle changes in acoustic

Calculated from the

complex trace to

Envelope highlight the sig-
nal’s instantaneous

energy. impedance.
low
[31,32]
90-degree pos Useful for highlighting discontinuities,
. transform /rotation of such as faults or lithology changes, and
Hilbert - . -
the seismic trace 0 for analyzing AVO anomalies as the
complex trace. attribute is proportional to reflectivity.
neg
The advantage of using cosine of
instantaneous phase as opposed to
% instantaneous phase is that it is a
. . continuous parameter and does not
Obtained frpm taking have a discontinuity at £180°. This
. the cosine of . . .
Cosine of arctansent of the attribute is helpful for detecting
Instantaneous g unconformities, faults, and lateral [31-33]
complex trace value - . -
Phase stratigraphic changes since the

divided by the real

attribute tracks reflector continuity. It
trace value.

is also important to note that
instantaneous phase is devoid of any
amplitude information; therefore, all
the events are represented.

Since the attribute is showing a relative
impedance contrast, it can be useful for
identifying sequence boundaries, [32,34]

Calculated using a
running summation

Relative Acoustic on the real trace and

Impedance applying a high-pass discontinues, and can potentially
Butterworth filter. indicate porosity or fluid content.
First discovered by Radovich and
Computed by . . .
R Oliveros [35], sweetness is a relative
dividing the envelope L .
value helpful for determining relative
Sweetness by the square root of - . . [35-37]
. net-to-gross ratios and to identify
instantaneous ” e
sweet spots” in hydrocarbon
frequency. )
exploration.
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Figure 8. All the attributes from PCA that were used as an input into the KK/LA SOM where (A) is the full-stack amplitude, (B) is the envelope, (C) is the Hilbert,
(D) is the cosine of instantaneous phase, (E) is the relative acoustic impedance, and (F) is the sweetness. The saturated King Kong Reservoir is shown by the black

and orange arrows whereas the undersaturated Lisa Anne prospect is shown by the red arrow.
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(A) mri X

4.1. KK/LA SOM Results

The goal of the multi-attribute analysis is to qualitatively attempt to distinguish be-
tween high- and low-saturation gas reservoirs. The undersaturated Lisa Anne prospect
exhibits a similar amplitude and seismic attribute response to the one observed for the
higher-saturated King Kong prospect (Figure 8A-F). However, when using an unsuper-
vised, multi-attribute analysis, the King Kong prospect can be isolated from the undersatu-
rated Lisa Anne prospect (Figure 9A-C). Figure 9A highlights two very bright amplitude
anomalies known as the KK/LA prospects, whereas Figure 9B shows the raw SOM result
for the same line with all of the neurons highlighted. Figure 9C displays the SOM results
displayed with the anomalous neurons of interest (Neurons 11 and 16).
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Figure 9. (A) Post-stack seismic amplitude vertical profile of Inline 2391 illustrating the King Kong
and Lisa Anne prospects with (B) showing the raw SOM result with all the neurons displayed. (C)
Shows the same SOM result with only the neurons of interest displayed with a probability threshold
of 10% applied. Here, the SOM marks the top and base of the King Kong prospect (black arrow),
while not highlighting the Lisa Anne prospect (red arrow). This demonstrates that the SOM was able
to differentiate between a high- and low-saturation gas reservoir.

These neurons are showing the data points which had a probability threshold of less
than 10%, meaning that the data points are filtered to show those that only have a 0-10%
chance of being classified within those clusters. By using this probability cutoff, the SOM
is displaying the highly anomalous data points that had a 10% chance of being grouped
within that neuron. Therefore, these anomalous data points are displaying anomalous
amplitude responses. Other neurons grouped noise or different geologic features such
as bedding and other lithology variations. In Figure 9C, the top and base of the King
Kong prospect are well defined, with the Lisa Anne prospect effectively suppressed and
undefined. A 3D analysis revealed that the SOM results continuously follow the amplitude
anomalies observed in the seismic data. This continues throughout the two reservoir
intervals, with the King Kong reservoir extent clearly defined, and the Lisa Anne extents
remaining indiscernible (Figure 9C).
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4.2. Ursa SOM Results

The KK/LA SOM model was then applied to the Shell Mississippi Canyon 3D seismic
survey over the Ursa gas field, offshore of the Gulf of Mexico. We used the same seismic
attributes that were used in the KK/LA SOM. The attributes for the Ursa SOM are shown
in Figure 10A-F. Well log and AVO analysis from Hilterman [2] revealed that one of the
upper reservoir intervals was an LSG interval (Figures 4 and 10A). In Figure 10A-F, the
LSG interval is marked by Circle 1, whereas the productive hydrocarbon intervals are
marked by Circles 2-5. Looking at all the attribute responses in Figure 10A-F, the LSG
interval demonstrates a similar response to the higher hydrocarbon-saturated reservoirs in
the lower intervals.
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Figure 10. All the attributes from the KK/LA PCA that were used as an input into the Ursa SOM
where (A) is the full-stack amplitude, (B) is the envelope, (C) is the Hilbert, (D) is the cosine of
instantaneous phase, (E) is the relative acoustic impedance, and (F) is the sweetness. The LSG-prone
interval is shown by Circle 1, whereas the hydrocarbon intervals is shown by Circles 2-5. LSG and
hydrocarbon intervals modified after Hilterman [2].

However, once all the attributes are combined using the SOM, the LSG interval
becomes significantly smaller and less continuous compared to the higher saturated hydro-
carbon intervals (Figure 11A—C). The LSG interval appears significantly more continuous
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TWT (s) Y

in the amplitude section of Figure 11A and the raw SOM section with all the neurons
highlighted, whereas it is less apparent and discontinuous in Figure 11C. Figure 11C is the
same SOM from Figure 11B with only the neurons of interest displayed with a probability
threshold of 10% applied. The prolific hydrocarbon intervals below the LSG interval ap-
pear to be more continuous in the SOM result observed in Figure 11C. However, the LSG
interval is still somewhat apparent in the Ursa SOM, whereas the LSG interval is almost
indiscernible in the KK/LA SOM (Figure 9B).
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Figure 11. (A) Post-stack seismic amplitude vertical profile of Inline 2804 illustrating the LSG interval
and hydrocarbon intervals within the Ursa gas field, whereas (B) shows the raw SOM results of
that same line. (C) Shows the same SOM result with only the neurons of interest displayed with a
probability threshold of 10% applied. In this window, the hydrocarbon intervals are better highlighted,
whereas the LSG interval is significantly suppressed. This demonstrates that the SOM was able
to differentiate between a high- and low-saturation gas reservoir. LSG and hydrocarbon intervals
modified after Hilterman [2].

4.3. Scarborough SOM Results

Once the SOM was successfully applied to the KK/LA prospects and to the Ursa gas
field, the model was then applied to the Scarborough gas field, offshore Australia. The
same seismic attributes from the KK/LA and Ursa SOM are shown for the Scarborough
gas interval in Figure 12A-F. The seismic attributes taken over the Scarborough gas inter-
val exhibit similar responses to one another, where the individual attributes provide no
indication of varying gas saturation levels (Figure 12A-F). However, once the individual
attributes are incorporated together into a SOM, the saturation of the Scarborough gas
field can be better characterized (Figure 13A-C). A study by Ray et al. [4] characterized the
areal extent of the Scarborough reservoir by applying a Bayesian inversion on controlled
source electromagnetic (CSEM) data from five exploration wells and available 3D seismic
coverage (Figure 5B). From their synthetic studies, they were able to map the outline of the
Scarborough reservoir where gas saturation was higher than 50%. The Scarborough SOM
result, with a probability threshold of 10% applied, appears to match quite well with the
saturation outline proposed by Ray et al. [4] (Figure 13C).
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Figure 12. All the attributes taken at time slice 2.169 s from the KK/LA PCA that were used as an
input into the Scarborough SOM where (A) is the full-stack amplitude, (B) is the envelope, (C) is the
Hilbert, (D) is the cosine of instantaneous phase, (E) is the relative acoustic impedance, and (F) is
the sweetness.
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Figure 13. (A) Post-stack seismic amplitude time slice at 2.169 s illustrating the amplitude anomaly
within the Scarborough gas field, whereas (B) shows the raw SOM results of that same time slice.
(C) Shows the same SOM result with only the neurons of interest displayed with a probability
threshold of 10% applied. In this view, the entire extent of the gas reservoir is highlighted. This
boundary coincides well with Ray et al. [4]'s 50% saturation line. However, this method proved to
be unsuccessful within this survey as it did not give us any qualitative information regarding gas
saturation throughout the reservoir.
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5. Discussion

Taking a closer look at individual neuron weights from the SOMs, some attributes
appear to represent the entire variability of the dataset, while other attributes appear to
contribute towards the individual neuron’s ability to represent the amplitude anomalies
(Figure 14A—C). Overall, the clustering results from the KK/LA SOM reveal that the in-
stantaneous envelope had a total independence of 35.2%, followed by sweetness at 33.9%
and relative acoustic impedance at 12.9% (Figure 14A). Total independence represents the
weight that the attributes play during clustering over the entire dataset. Therefore, these
three attributes clustered 82.0% of the data with the remaining attributes, such as the cosine
of instantaneous phase, the Hilbert, and the full-stack amplitude, further delineating these
clusters to differentiate between low- and high-saturation gas reservoirs (Figure 14A). No-
tice that while these three attributes represented 82.0% of the dataset, they were not always
the most prominent within Neurons 11 and 16. Attributes such as the Hilbert contributed
nearly 30% towards Neuron 16, whereas it only represented 11.4% of KK/LA’s indepen-
dent variability (Figure 14A). Therefore, the Hilbert attribute played a significant role in
classifying the anomalous amplitude responses in the KK/LA SOM. A similar relationship
is also observed within the Ursa SOM, where the instantaneous envelope, sweetness, and
relative acoustic impedance represented 60% of the data’s variance compared to the cosine
of instantaneous phase, the Hilbert, and the full-stack amplitude, which represented the
remaining 40% (Figure 14B). Yet, these three attributes did not always have the highest
neuron independence. Notice how the Hilbert in Neuron 20 of the Ursa SOM contributed
over 25% towards that cluster, whereas it only represented 14.3% of Ursa’s independent
variability (Figure 14B). This same observation was also noted within Neurons 11 and 16 in
the KK/LA survey (Figure 14A).
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Figure 14. Neuron clustering results from (A) the KK/LA SOM, (B) the Ursa SOM, and (C) the
Scarborough SOM.

However, when looking at the Scarborough SOM clustering results, an opposite re-
lationship is observed from the KK/LA and Ursa SOMs (Figure 14C). Seismic attributes
such as the cosine of instantaneous phase, the full-stack amplitude, and relative acous-
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tic impedance now represent approximately 85.7% of the independent data’s variability
when this relationship was the inverse in the KK/LA and Ursa SOMs (Figure 14C). Yet
these attributes consistently contributed the most towards classifying anomalous ampli-
tudes in Neurons 21, 24, and 25 while the other attributes complimented the classification
(Figure 14C). In fact, now we observe that attributes such as sweetness and the instanta-
neous envelope represented 0% of the independent data’s variability and played a minor
role in the individual neuron classifications. These null values indicate that the KK/LA and
Ursa SOMs are not properly optimized for the Scarborough gas field (Figure 14A—C). These
SOM differences could be attributed to different amplitude responses from two different
basins, meaning that the amplitude responses in the Gulf of Mexico are different than
the amplitudes in the Scarborough gas field. These differences could be due to different
burial histories and pressure regimes [20,38]. They could also be due to differences in fluid
saturations, such as gas and brine [23,38]. Based on these results, the SOM models are
only optimized for within the Gulf of Mexico, as was noted within the KK/LA and Ursa
fields (Figures 9C and 11C), whereas a new combination of attributes is required for the
Carnarvon Basin, as was observed within Scarborough SOM (Figure 13C). Additionally,
it is important to note that these SOMs all used a probability threshold of 10% to better
represent the anomalous data points within the neurons. Therefore, these neurons are
highlighting the data points that only had a 0-10% chance of being classified within those
clusters. This probability threshold of the model further enhances the visualization capabil-
ities for the interpreter as it allows them to better capture the highly anomalous responses
within the data, which are not necessarily easily visualized through seismic amplitude and
attribute profiles.

Studies by Taner [31,33] and Chopra and Marfurt [32] noted that the instantaneous
envelope is useful for highlighting lithology, porosity, and hydrocarbons since the attribute
is sensitive to subtle changes in acoustic impedance. Additionally, the instantaneous enve-
lope attribute is derived using the Hilbert transform to illustrate the signal’s instantaneous
energy, which means that it is also using the complex portion of the seismic trace [31,32].
Therefore, this attribute could be effective for capturing the subtle amplitude differences
between low and high-saturation gas reservoirs within both the real and imaginary seismic
trace. When the instantaneous envelope is used in combination with other attributes that
are good for identifying DHIs, such as sweetness and relative acoustic impedance, the
SOM can qualitatively differentiate between high and low gas saturations in the KK/LA
and Ursa fields (Figure 9A-C and Figure 11A-C). Additionally, attributes such as Hilbert
and the cosine of instantaneous phase that are useful for analyzing AVO anomalies and
highlighting bed continuity, respectively, could be further complimented by the other
attributes to better classify the anomalous amplitude responses within the SOM [31,32].
However, this method proved to be limited in the Scarborough gas field as the results
yielded limited qualitative information about reservoir saturation (Figure 14A—C). Yet, the
Scarborough SOM did manage to highlight the amplitude anomaly created by the gas fairly
well. More work is needed to optimize the SOM model for the Scarborough gas field.

A recent study by Batzle [13] conducted a detailed, 3D reservoir model using fluid
substitution to better characterize the Ursa LSG interval. The report found that the Ursa
LSG zone may have a higher saturation than was originally thought and could be a
commercial hydrocarbon zone [13]. Therefore, this could be a reason why the Ursa LSG
zone is still visible in the SOM results, albeit significantly less continuous than the other
hydrocarbon intervals. Future work will involve obtaining well data, such as sonic logs, to
better characterize the hydrocarbon intervals. Furthermore, a closer comparison between
the amplitude section and the SOM result reveals that they are quite similar to one another
and map similar extents (Figure 13A-C). Therefore, it appears that the SOM model is
limited to better characterizing relative saturations between reservoirs in the same seismic
survey. Future work will involve better characterization of the Scarborough gas interval
to determine if there are higher saturation locations within the reservoir that would be
optimal for further production.
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Finally, another important note to consider for LSG is the detailed consideration of
containment. Most LSG is in a sprung trap—a gas accumulation that leaked from seal
failure and residual gas remains (5% to 25% gas saturation) [2,3,16,22]. O’Brien [3] noted
that hydrocarbon leakage up the regional fault normal fault may have been possible for
the Lisa Anne prospect. He observed shallow bright spots due to gas pockets and water
bottom coring [3]. While this does decrease the risk of hydrocarbon migration, it does
suggest an increased risk of containment [3]. Furthermore, while Hilterman [2] did not
discuss seal integrity in detail, Wojcik et al. [22] note the importance of incorporating seal
risk analysis within other turbidite reservoirs within the Gulf of Mexico. Finally, Foschi and
Cartwright [16] observed seal failure within the Scarborough gas field and characterized
a 100 km? (38 mi%) wide leakage zone with more than 500 pockmarks. This suggests that
there could be some LSG-prone regions within the field. However, many of the wells within
the field have considerably large gas saturations [14]. When looking at the SOM results, this
is not readily apparent, especially in the case of the unoptimized Scarborough SOM result
(Figures 9C, 11C and 13C). However, seal failure analysis has shown promising results for
further characterization of LSG reservoirs, and future work would incorporate a detailed
seal analysis of the discussed reservoirs [7,16,22].

6. Conclusions

Preliminary results suggest that instantaneous attributes that detect changes in the
amplitude, frequency, and phase tend to cluster together in the PCA to reveal highly
anomalous areas within the seismic. SOM results highlighted the top and base of the King
Kong prospect while the Lisa Anne LSG prospect remained undetected, showing that there
is a noticeable difference between both prospects (Figure 9C). Upon applying the KK/LA
SOM to the Ursa gas field, the SOM showed that the Ursa LSG interval became significantly
suppressed and less continuous compared to the higher saturated hydrocarbon intervals
present within the lower intervals (Figure 11C). Although the Ursa LSG interval is still
apparent in the SOM, whereas it was almost indiscernible in the KK/SOM, a study by
Batzle [13] found that the LSG zone may have a higher saturation than was originally
thought and could be a commercial hydrocarbon zone. Although these results may not give
a definitive saturation result, they do highlight a stark difference between both prospects.

However, it appears that the method is limited to only differentiating between relative
hydrocarbon saturations within the same seismic survey. Upon further analyzing the
neuron clusters, attributes such as the instantaneous envelope and sweetness represent 0%
of the independent data within the Scarborough SOM (Figure 14A—-C). This suggests that
the combination of attributes is unoptimized for the Scarborough SOM. This is most likely
due to the Scarborough gas fields having a different amplitude response resulting from a
different burial history and fluid saturations when compared to the Gulf of Mexico [20,38].

In the instance of neighboring prospects (as was the case with the KK/LA prospects)
or stacked reservoir systems (such as the Ursa gas field), these results can further be incor-
porated into hydrocarbon exploration risking to better understand DHIs in the subsurface
and prevent uneconomic wells from being drilled. Individually, some of these attributes
have no success in differentiating between high and low saturation gas prospects. How-
ever, employing a multi-attribute analysis provides clearer insight and more confidence
in delineating between high and low saturation gas reservoirs. Although not currently
available, supplementary research will incorporate seismic gathers, angle stacks, and well
data into this method to further improve results.
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