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Abstract: In order to prevent possible loss of life and property, existing building stocks need to be
assessed before an impending earthquake. Beyond the examination of large building stocks, rapid
evaluation methods are required because the evaluation of even one building utilizing detailed
vulnerability assessment methods is computationally expensive. Rapid visual screening (RVS)
methods are used to screen and classify existing buildings in large building stocks in earthquake-prone
zones prior to or after a catastrophic earthquake. Buildings are assessed using RVS procedures that
take into consideration the distinctive features (such as irregularity, construction year, construction
quality, and soil type) of each building, which each need to be considered separately. Substantially,
studies have been presented to enhance conventional RVS methods in terms of truly identifying
building safety levels by using computer algorithms (such as machine learning, fuzzy logic, and
neural networks). This study outlines the background research that was conducted in order to
establish the parameters for the development of a fuzzy logic-based soft rapid visual screening (S-
RVS) method as an alternative to conventional RVS methods. In this investigation, rules, membership
functions, transformation values, and defuzzification procedures were established by examining the
data of 40 unreinforced masonries (URM) buildings acquired as a consequence of the 2019 Albania
earthquake in order to construct a fuzzy logic-based S-RVS method.

Keywords: earthquake; seismic assessment; rapid visual screening; fuzzy logic

1. Introduction

An earthquake, which is a natural catastrophe, occurs as a result of a significant
amount of ground shaking and affects a large area. Even though certain earthquake
zones are susceptible to long-period ground motions, the impact of earthquakes that cause
significant damage to building stocks is not taken into consideration or given proper
concern when structural design projects are prepared and/or buildings are constructed.
Additionally, structures in the building stock that are located in seismic-prone areas are
vulnerable to hazards if they were constructed prior to the development of seismic design
codes. Since determining that possible structural and vital losses could be caused by
an impending major earthquake, a pre-earthquake assessment of existing buildings is
essential in order to take urgent precautions. Therefore, various seismic vulnerability
assessment methodologies are utilized to evaluate existing buildings. These methodologies
consist of three stages, starting from rapid visual screening (RVS), preliminary vulnerability
assessment (PVA), and detailed vulnerability assessment (DVA).

The structural seismic assessment of buildings may be conducted by using DVA
methods. Software utilized for comprehensive structural analysis is employed to develop
DVA models. DVA is inherently complex since analyses are conducted while taking into
consideration nonlinear structural analysis; the finite element analysis method or the
applied element method; and linear or nonlinear material properties. DVA approaches
include pushover analysis, time history analysis, incremental dynamic analysis, cloud
method, and so on. Using these methods to analyze existing structures is more challenging
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than designing a brand-new structure. However, because these techniques are the most
reliable, they are used to determine the safety level of certain buildings. Standards such as
Eurocode 8 [1], FEMA 356 [2], and FEMA P-695 [3] provide extensive descriptions of these
procedures. Employing a high number of design engineers with expertise in structural
seismic assessment is required in order to use DVA methods on a large building portfolio.
However, since hiring a large number of engineers is costly and these approaches need a
lot of computation, less expensive alternatives should be utilized.

Structural material properties, site ground characteristics, and structural drawings
must be collected to carry out a PVA method for a second-stage building evaluation ap-
proach. To calculate the loads necessary to build even a simple structural model, structured
drawings must be collected or developed. After examining existing buildings, if the build-
ings do not show enough capacity, further DVA methods have to be applied. The data
gathered for PVA can also be utilized for DVA.

DVA of building stock is messy; therefore, a reliable RVS method needs to be developed
to assess structural vulnerability in a short time compared to PVA and DVA methodologies.
Therefore, traditional RVS methods, which were developed for the first stage evaluation of
large building stocks, have been utilized. The initial examples of conventional RVS methods
are FEMA-154 (ASCE 1988) [4] and FEMA-155 (ASCE 1988) [5]. Subsequently, many other
traditional RVS methods, i.e., Europe—EMS-98 Scale [6] and RISK-UE Project [7]; New
Zealand—NZSEE [8]; Greece—OASP [9]; Canada—NRC [10]; Italy—GNDT [11]; India—
IITK-GSDMA [12]; and Turkey—RBTE-2019 [13] and EMPI [14], have been developed
mainly based on the methodology proposed by FEMA 154 and 155 [4,5]. Furthermore, it
has been stated by Bektaş and Kegyes-Brassai that some conventional RVS methods were
developed for special building types (i.e., hospital buildings and school buildings) [15]. The
State Organization of Schools Renovation of Iran (SOSRI) [16], the SAARC Disaster Manage-
ment Center (SDMC) [17], and the National Institute of Building Sciences (NIBS) [18] all use
RVS methods that were developed for pre-earthquake assessment of school buildings. Dif-
ferent RVS techniques have been developed in order to assess various building types. For
instance, the Japanese technique can be used to assess reinforced concrete structures while
different building types can be assessed using the FEMA P-154 [19], RISK-UE Project [7],
and NZSEE [8] methods. Since it is crucial to rank the inspected structures based on their
need for repair and further evaluation, buildings can also be categorized according to the
requirements for intervention by employing RVS methods.

Although conventional RVS techniques have been widely accepted and tested and
they are good at identifying buildings that need to be assessed by DVA methods, they
are not good enough to accurately identify building vulnerability class [20]. Therefore,
in addition to the numerous nationally developed conventional RVS techniques, there is
plenty of other research on the review and comparison [21–23], implementation [24,25],
development [26–28], and improvement [29,30] of these techniques. However, according to
research conducted by Harirchian and Lahmer [31], the accuracy of the RVS techniques
of FEMA P-154 [19] and EMPI [14] is less than 30%. In addition, it is difficult to improve
some of the conventional RVS techniques since they were established based on expert
opinion (such as NRC [10]). Therefore, by utilizing the knowledge (data) acquired from
past earthquakes, soft rapid visual screening (S-RVS) methods have been developed to
present more accurate methods in addition to conventional RVS methods. S-RVS methods
have been developed in recent years, as they can be easily adjusted taking into account
recent advancements and data gathered from previous earthquakes. S-RVS methods are
developed using soft computing algorithms, such as machine learning [32–34], fuzzy
logic [35,36], and neural networks [37–39].

In one of the initial developments of an S-RVS method, Tesfamariam and Saatcioglu
used the fuzzy inference system [40]. This method was developed for reinforced con-
crete buildings based on building post-earthquake screening data collected after the 1994
Northridge earthquake. Later, Dritsos and Moseley [20] proposed another S-RVS method
by combining fuzzy logic and artificial intelligence algorithms. The developed method
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demonstrated improvements in terms of accurately classifying the building damage states.
It was also highlighted that there is room for further improvements in S-RVS methods. Ad-
ditionally, fuzzy logic-based S-RVS techniques are often developed for reinforced concrete
structures (Harirchian and Lahmer, Moseley and Dritsos, Elwood and Corotis, Demartinos
and Dritsos, Moseley and Dritsos, Şen, Ketsap et al. [31,41–46]). Likewise, Mazumder et al.
devised a fuzzy logic algorithm-based S-RVS technique for masonry buildings [47].

Since it is crucial to demonstrate the applicability of a developed method, it is nec-
essary to compare its evaluated results with post-earthquake screening data or detailed
vulnerability assessment based findings. The developed methods were not always checked
using post-earthquake screening data or DVA methods based on evaluation findings [47,48].
Therefore, it is necessary to provide a general development strategy and show the capability
of a fuzzy logic-based S-RVS method development to set the relation between building
characteristic parameters and vulnerability.

In the last three decades, while developing an accurate RVS method, the implementa-
tion of the current conventional RVS techniques resulted in different conservative building
vulnerability classification outputs [22,23,31]. Additionally, it is a challenge to draw com-
parisons even between the revised RVS approach and the prior version in terms of outcomes
(such as FEMA 154 [49] and FEMA P-154 [19]). In recent years, in order to develop a fu-
ture version of conventional methods, soft computing algorithms have been implemented.
However, there has not been a study conducted to explain the background research for
developing a fuzzy logic-based S-RVS method development. Therefore, this study de-
tails the background research acquired to design a fuzzy logic-based S-RVS method, and
it defines the parameters that need to be employed as an enhancement to conventional
RVS methods. Other studies conducted by authors using post-earthquake building sur-
vey data collected after the 2019 Albanian earthquake, which are a continuation of this
study, revealed that the proposed method surpasses the conventional RVS method with
57.5 percent [50] and 67.5 percent [51] accuracy, respectively. Finally, this study can be
distinguished from previous research by describing crucial calculation steps and reporting
the results that demonstrate how an S-RVS technique was established using the recom-
mended methodology.

2. Determining RVS Parameters for S-RVS Implementation

To determine the earthquake resistance of buildings, the parameters specific to the
buildings and the region need to be considered. As illustrated in Figure 1, some of these
parameters include the site’s seismicity as shown by the design and site-specific acceleration
response spectra [40], the presence of corner columns in URM buildings, and the type
of floor (rigid or flexible) [52]. The parameters considered in each of the conventional
RVS methods and the effect of each parameter on the computation of the building safety
level differ.

By identifying the appropriate parameters employed in the existing conventional
RVS methods and organizing the selected parameters in a hierarchical structure, the fuzzy
logic-based S-RVS method can be established. A sample hierarchical fuzzy logic-based
S-RVS method development that takes into account the parameters of conventional RVS
methods is depicted in Figure 2.

In addition to the parameters presented in Figure 2, alterations to the soft story, short
columns, infill wall layout, torsional irregularity, pounding possibility, previous damage,
maintenance, etc. should be placed suitably in the hierarchical structure. The explanation
and examination of some of the parameters given above are explained below.
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Figure 1. Some of the site and building-specific parameters: (a) site-specific acceleration response spectrum; (b) design acceleration response spectrum; (c) URM 
building with corner columns and rigid floor (Bektaş [50]).

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.0 1.0 2.0 3.0 4.0

Sp
ec

tr
al

 A
cc

el
er

at
io

n 
(g

)

Period (sec)

Figure 1. Some of the site and building-specific parameters: (a) site-specific acceleration response spectrum; (b) design acceleration response spectrum; (c) URM
building with corner columns and rigid floor (Bektaş [50]).
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2.1. Plan Irregularity

The structural eccentricity that arises in a structure as a result of an irregularity in the
layout is identified as plan irregularity. In earlier earthquakes, plan irregularity has been
observed to have a reducing effect on the seismic load resistance of structures by increasing
stress concentrations [47]. A structural system that does not have a parallel plan might
potentially cause a torsion effect. Torsion is induced by a difference between the center
of mass and the center of rigidity caused by structural irregularities in the plan. Large
plan and diaphragm openings should be considered critical forms of plan irregularity since
they have an adverse effect on seismic load transmission to vertical load-carrying elements.
Plan irregularity is a classification of structural plans with re-entrant corners that have plan
shapes like E, L, T, U, +, etc. A building is linguistically designated as Yes if there are any
plan irregularities; otherwise, it is No.

2.2. Vertical Irregularity

Buildings frequently have vertical irregularities due to usage and architectural con-
cerns. However, building irregularities can have a substantial detrimental impact on the
seismic performance of buildings [47]. Among the main factors of damage during strong
earthquake excitation, vertical irregularities are considered factors that cause sudden vari-
ations in strength and stiffness alongside the height of a building. Vertical irregularities
arise when there are discontinuities in the load-carrying system, which include uneven
mass distributions at floor levels and changes in the vertical geometric configuration of a
building. The location of a building on a steep slope, large wall openings, weak and/or
soft stories, variations in floor heights, and in-plane or out-of-plane setbacks are all factors
that lead to vertical irregularity. Inconsistencies in the lateral load resisting system (such
as weak story, soft story, or setbacks) that cause irregularities to increase the likelihood
that buildings would be damaged during an imminent earthquake. Soft and weak stories
emerge because of a considerable amount of difference in structural system stiffness and
strength variation in the lateral load-carrying system at floor level, respectively. In order
to minimize regional stress concentrations, practitioners should follow well-established
design procedures and refrain from making dramatic variations to the load-resisting system.
The severity of an irregularity in a structure influences the intensity of the corresponding
effect of inconsistency. Buildings are linguistically labeled as Yes or No in conventional RVS
methods in terms of vertical irregularity existence.

2.3. Construction Quality

The earthquake resilience of existing buildings is degrading, as there is an increased
amount of deterioration in material properties. The seismic behavior of structures is influ-
enced by material deterioration, foundation instability, and wall fractures. Furthermore,
damages that occur are attributed not only to the deterioration of material attributes but also
to poor workmanship. Poor construction quality is caused by poor-quality material, plaster
removal, cracks in masonry walls, improper masonry patterns, lack of or non-enforcement
of capacity design principles, improper construction procedures, construction errors, and
so on. The construction quality of a building is characterized as moderate when there
are surface or appearance flaws on floors; ceilings; masonry walls; uneven surfaces; hits;
scratches; efflorescence; etc. The construction quality of a building is evaluated as Poor,
Moderate, or Good based on all of the factors mentioned above.

2.4. Workmanship

Among other parameters, the resilience of a building during an impending earthquake
excitation is associated with the quality of workmanship (good execution, faulty execution,
etc.) during the construction phase. The application of in-effect official legislation for con-
struction is associated with plumb walls and flat elements as a result of the workmanship.
To determine the quality of the workmanship, factors such as concrete quality, construction
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quality, vibrator compaction quality, implementation of prepared material at the appropri-
ate time interval after preparation, application of adobe brick construction procedures, and
labor mastery are considered. Building quality can be classified as Poor, Average, or Good
based on workmanship [54].

2.5. Material Quality

The quality of the materials used in building construction influences the capability
of the building to withstand severe seismic loads that may arise during an earthquake.
Buildings constructed using lower than sufficient-quality materials triggered more severe
damage to the structures than envisaged since they lacked the required strength.

2.6. Damage and Deterioration

In addition to existing damage to engineering structures, deterioration also adversely
affects a building’s performance during an earthquake. In this context, in determining a
building’s seismic performance, existing damage and deterioration in the building are taken
into account. Due to a lack of necessary maintenance in an occupied building, deterioration
takes place. Some of the deterioration types are time-dependent concrete, mortar, and
wall deterioration. Degradations in the structure are also defined by the emergence of
cracks or deterioration in elements of buildings. The formation of these sub-parameters
may be associated with poor workmanship and/or poor material quality [55]. Based
on the existence and/or degree of observed damage and deterioration in a building, the
damage and deterioration parameter is classified with linguistic operators of none, minor,
or severe [56].

2.7. Year of Construction

Since the construction year (age) reflects construction quality, utilized design technique,
and the corresponding seismic detailing of members for the building project, it is critical in
assessing building vulnerability. The utilized seismic design standard results in the ductility,
rigidity, strength, and details of the structure [31]. Due to ancient construction procedures
that overlook seismic details in contemporary building requirements, old structures cannot
be anticipated to function well during an impending earthquake. The construction year
provides information about the building design regulations as well as allows for the
classification of corresponding standards of Low, Moderate and High, according to their
historical development. For instance, when the development stages of Albanian standards
were taken into account, the developed categorization could be calculated, as shown in
Table 1.

Table 1. Construction year transformation based on the seismic design codes in Albania (compiled
by authors based on De Iuliis & Tesfamariam [57,58]).

Low Moderate High

YC ≤ 1942 1942 ≤ YC ≤ 1978 1978 ≤ YC ≤ 1990 YC ≥ 1990

0.9 −0.01 × YC + 20.27 −0.03 × YC + 59.8 0.1

As a result, in order to adapt the existing classification technique to another location,
thresholds need to be altered again based on the seismic standards used in the region
under consideration.

2.8. Structural System

Different types of structural systems show diverse characteristics in terms of potential
damage formation and resistance to damage. Therefore, the type of structural load-carrying
system can identify a building’s expected lateral strength and ductility during an impending
seismic excitation. The seismic vulnerability of unreinforced masonry (URM) and reinforced
concrete (RC) structures varies depending on the type of building. Linguistic classes must
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be transformed into exact values in order to examine a structural system’s effect on building
damage states. While URM buildings are classified as standalone, row end, or row middle, RC
buildings are classified as C1, C2, or C3, and their transformation is shown in Table 2.

Table 2. Structural system transformation for URM and RC buildings (compiled by authors based on
Tesfamariam & El Sabbagh [58,59]).

URM RC

Standalone Row End Row Middle C1 C2 C3

0.9 0.85 0.8 0.7 0.25 0.35

2.9. Site Seismic Hazard Analysis

In order to assess earthquake-induced ground motion effects on existing structures,
the site seismic hazard module considers the structural period, site seismicity, and site
conditions. The seismicity of a region is associated with factors, such as focal depth, rupture
type, rupture amount, fault type, and distance from the building site to the fracture site.
The impact of seismic activity varies based on the transmission path of the arising seismic
energy, site topography, and the characteristics of the bedrock and site soil conditions. The
following are steps to determine the site seismic hazard module, as illustrated in Figure 3:

1. Compute the fundamental structural period (Ta) of the building as given in Equa-
tion (1).

2. Evaluate the acceleration response spectra from the site-specific earthquake record as
indicated by the blue (continuous) line in Figure 4.

3. Compute the corresponding spectral acceleration (Sa) values indicated by the red
scatter to the Ta from the acceleration response spectra shown in Figure 4.

The fundamental structural period (Ta) is calculated using the building height, which
is evaluated by taking the average floor height and the number of floors into account. In
this context, a fundamental structural period (Ta) of buildings can be calculated using
ASCE/SEI [60] Equation (1).

Ta = Ct ∗ h3/4
n

hn = n ∗ havg
(1)

where, n is the number of floors, havg is the average story height, hn is the height of the
building, and Ct is the dimensionless coefficient of the fundamental structural period
depending on building type (such as Ct = 0.05 for URM buildings and 0.075 for concrete
moment resisting frame structures). The site-specific or design acceleration response spec-
trum was generated to assess corresponding spectral acceleration values to the determined
fundamental structural period, as depicted in Figure 4 with red dots. These spectral accel-
eration values correspond to the fundamental structural periods of two- to nine-story URM
buildings from left to right with red dots based on the x-axis, respectively. The data on the
URM buildings considered in this study were collected after the 2019 Albania earthquake.

Through the application of suitable fuzzy clusters, the determined spectral acceleration
values (which are illustrated in Figure 4 with red dots) for the site seismic hazard module
were incorporated into the fuzzy logic system-based S-RVS hierarchy shown in Figure 2.
Eventually, the site seismic hazard module in conjunction with building vulnerability will
be used to determine building damageability.
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2.10. Site and Soil Conditions

Site condition considers the local soil type at the site of the considered building for
seismic examination. The local site soil conditions could differ from building to building
even in the same neighborhood. Therefore, an in situ investigation needs to be performed to
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classify site soil properties. Site characteristics can amplify ground shaking and, on extreme
occasions, result in liquefaction and/or landslides. Site seismicity (such as peak ground
acceleration in ground surface) is related to the local site soil conditions and subsequently
affects the severity of damage in buildings by amplifying earthquake intensity depending
on soil layer properties and thicknesses. Site soil properties are classified based on the
average shear wave velocity of soil (Vs30).

2.11. Number of Stories

Since higher buildings may undergo greater deformation and cause damage during an
earthquake, the building height is an essential performance indicator. In addition, building
design regulations restrict the number of floors depending on the seismicity of the area
where the building will be built and the type of building. Although the floor numbers are
not directly shown with their fuzzy members within the hierarchical schema, the number
of floors is used to determine the building height required for the calculation of the site
seismic hazard module.

2.12. Building Damageability

The damage score assigned to the output variable indicates the likelihood of a structure
being exposed to a certain level of damage. The intermediate parameters of building
vulnerability and site seismic hazard analysis are used as input parameters to compute
building damageability. This integration process yields values ranging from 0 to 1 indicating
the degree of building damageability. Building damageability can be divided into different
ranges to determine building damage classes. Generally, building damage classes are
categorized into five damage levels, such as very low, low, moderate, high, and very high.
The building damageability index on the basis of the considered damage type intervals
is linguistically identified in accordance with the computed output. The output index
acquired can be translated linguistically to reflect building damageability levels. Building
damageability categorization of damage states is displayed in Tables 3 and 4.

Table 3. Classification of the building damageability (compiled based on Ploeger [61]).
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None Light Moderate Heavy Collapse 
0.0–0.01 0.01–0.1 0.1–0.3 0.3–0.6 0.6–1.0 

3. Fuzzy Logic-based S-RVS Method Development 

None Light Moderate Heavy Collapse

0.0–0.01 0.01–0.1 0.1–0.3 0.3–0.6 0.6–1.0

3. Fuzzy Logic-Based S-RVS Method Development

In 1965, Zadeh [63] proposed fuzzy logic to consider uncertainty and vagueness. Fuzzy
logic has the ability to combine qualitative reasoning with numerical calculations. Fuzzy
modeling, which establishes the connection between crisp input and crisp output, basically
consists of fuzzy sets and fuzzy logic theory. The fuzzy inference system, which is the
basic decision-making component of the fuzzy logic system, is divided into three steps:
input processing (fuzzification), fuzzy inference engine (rules and inference), and output
processing (defuzzification and/or type reduction), as illustrated in Figure 5.
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After completing the determination of parameters, which was presented in the pre-
vious section, building screening data needs to be collected to develop S-RVS methods.
Then, to enhance existing conventional RVS methods using fuzzy logic or to introduce
new S-RVS methods, the necessary definitions for the fuzzy logic implementation schema
shown in Figure 4 must be defined. In light of the explanations made in the sub-headings
below, the features that need to be considered in order to create the necessary definitions
are explained in order. Finally, the essential developments that have been done in this study
for fuzzy logic-based S-RVS technique development for URM structures are described in
the sub-sections that follow based on data from the 2019 Albania earthquake.

3.1. Input Processing

Input processing (granulation or fuzzification) is performed by assigning values
between 0 and 1 to linguistic parameters [46]. To quantify linguistic expressions as input
points, membership functions with membership values ranging in [0, 1] intervals were
employed. In a fuzzy set, 0 denotes non-membership, 1 denotes complete membership in
the core of a triangular membership function, and a value between (0, 1) denotes partial
membership. Various types of membership functions, such as trapezoidal, triangular, and
so on, have been defined in the literature. The membership functions are defined based
on expert opinions and previous studies. The context-dependent membership function
type was chosen based on usability [64]. Suitable membership functions for some of the
input parameters considered in this study were developed by taking into account the
knowledge from in-depth literature research and the acquired experience of the authors
from reviewing [15] and implementing [65] conventional RVS methods and reviewing and
developing S-RVS methods [51,66]. The developed membership functions of the considered
input parameters, which are plan irregularity, vertical irregularity, construction quality,
construction year, and structural system, are illustrated in Figure 6. Instead of using the
linguistic description (low, moderate, high) to represent the intensity of the existence of a
parameter, fuzzy logic systems employ transformed values. The x-axis of the membership
functions represents the existence percentage of the corresponding parameter. Based on
the expert’s judgment, the range of these values could be decided to be between 0 and
1, or 0 and 100. The corresponding range for the considered membership functions was
derived to be between 0 and 1 for the input parameters, as shown in Figure 6. For instance,
if the construction quality membership function was taken into consideration, the values of
0 and 1 on the x-axis correspond to extremely poor and very good quality observations,
respectively. The range of values between 0 (extremely poor) and 1 (very good quality)
could also be expressed with linguistic classifications, for example, low (poor), moderate
(moderately poor), and high (good quality).
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Intermediate parameters are indicators that have two input variables: an input pa-
rameter with an intermediate parameter or two intermediate parameters. Intermediate
parameters, in addition to input parameters, are another type of parameter to which
membership functions need to be assigned. Intermediate parameters (increased demand,
decreased resistance, structural deficiency, and building vulnerability) were obtained as
a consequence of processing the input parameters using the fuzzy logic system, which
is illustrated in Figure 5. Expert opinion and trial and error-based modification experi-
ments were been performed to develop suitable membership functions for the considered
intermediate parameters. The determined values of these intermediate parameters, whose
membership functions are illustrated in Figure 7, were employed as input parameters in
the subsequent phase, which are presented in Figure 2. Similar to Figure 6, Figure 7 defines
the x-axis range of the parameters outside the membership function of the site seismic
hazard parameter between 0 and 1. However, because the spectral acceleration values
of the developed method could be large in extreme events, the x-axis of the site seismic
hazard membership function was set between 0 and 2 g. In order to evaluate intermediate
parameters, the established membership functions of input and intermediate parameters
were employed to set up a fuzzy logic system. Then, using the associated crisp input values,
intermediate parameters were calculated.

In addition to the input and intermediate parameters considered in this study, the
building damageability parameters’ membership function needed to be implemented
to identify each building’s damage state. Building damageability can be defined as the
last parameter that is no longer an input parameter. The risk parameters to express
building damageability, which were considered in this study to determine the building
damage state, are divided into five linguistic categories: very low, low, moderate, high, and
very high. Building damage states were more accurately determined by optimizing the
membership functions of the building damageability risk parameters, as shown in Figure 8.
The membership function for building damageability in Figure 8 includes an analogous
y-axis and x-axis that, similar to those in Figure 6, exhibit membership values and are a
proportion of the parameter that falls between 0 and 1.
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Linguistic classifications need to be transformed into numerical values to use linguisti-
cally classified building features inside the mathematical calculation algorithm of fuzzy
logic. Therefore, defining intervals for parameters of each input characteristic, as employed
by Tesfamariam and Saatcioglu [40], to calibrate the model is one of the initial applications
of such computations. The calibration of the parameters employed in this investigation [40]
was later utilized in other research by Harirchian and Lahmer and Iuliis et al. [31,64]. Based
on this calibration, linguistic construction quality categories of poor, moderate, and good
were converted into numerical values of 0.99, 0.70, and 0.01 [57,58]. However, it should be
noted that these values were calibrated based on the considered post-earthquake screening
data of reinforced concrete structures in previous studies. Therefore, it was required to
use optimization techniques to transform the linguistic construction quality categories of
poor, moderate, and good based on the considered data. In this study, model calibration was
conducted by minimizing the root mean square error and increasing the accuracy of the
model in terms of determining building damage states based on collected post-earthquake
URM building screening data from the 2019 Albania earthquake (Figure 9).
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3.2. Fuzzy Inference Engine and Rule Formation

A fuzzy inference engine was used to set up a relationship between input and output
variables. To characterize the relationship between the premise and consequent values,
fuzzy logic-based rules needed to be constructed, which are comprised of expert opinion or
previous information. These rule-based statements represent the perspectives of decision
makers or judgments concerning an uncertain issue. The if–then Mamdani [67] fuzzy
rule base consists of input sets and output based on a conditional statement, as shown in
Equation (2).

Ri : i f x1 is Ai1 and x2 is Ai2 then y is Bi, i = 1, 2, . . . , n (2)

where x1 and x2 denote crisp inputs, Ai1 and Ai2 represent the input fuzzy sets (an-
tecedence). Moreover, the fuzzy logic operator and is employed in the if–then rule to
define fuzzy intersection. Additionally, the term or is defined as a fuzzy union. y denotes
crisp outputs, Bi denotes the output fuzzy sets (consequence), and the number of rules is
represented as n. The parameters, which are vertical irregularity, plan irregularity, con-
struction quality, construction year, increase in demand, decrease in resistance, structural
deficiency, structural system, site seismic hazard, and building vulnerability, investigated
in this study were classified as Very Low (VL), Low (L), Moderate (M), High (H), and Very
High (VH). Figure 10 presents the generated fuzzy logic-based rule formulation matrices
for developing the S-RVS method using some of the widely considered RVS parameters.
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Finally, the fuzzy inference engine integrated the abovementioned predefined rules
and membership functions to conduct the fuzzy logic algorithm for developing an S-
RVS method. To provide crisp outputs, the corresponding fuzzy inference engine-based
evaluations were defuzzified, as outlined in Section 3.3.

3.3. Output Processing and Defuzzification

The output processing stage of fuzzy logic consists of defuzzification or both type-
reducer and defuzzification. Defuzzification is the last stage used to convert numerical
calculations to crisp output. There are a number of methods that have been developed to
perform defuzzification of fuzzy inference engine-based evaluated results. Many defuzzifi-
cation methods (e.g., the center of gravity, the center of the area, the mean of maxima, and
so forth) have been suggested to handle crisp outputs [40,68–70]. The weighted average ap-
proach [40,46–48,71,72], centroid [31], graded mean integration technique [73], and center
of area method [53] are some defuzzification techniques used to carry out defuzzification
process of fuzzy logic-based S-RVS methods. Even though several defuzzification tech-
niques have been developed, they do not always yield the same outcomes [74]. Therefore,
the best method, which is highly capable of representing the relation between fuzzy values
and crisp outputs, needs to be chosen based on case-by-case circumstances.

Finally, probable input parameters and outcomes will be achieved based on inputs
when selecting the defuzzification technique that needs to be considered. Some of the key
aspects taken into account when deciding on the defuzzification technique are extensively
detailed below using building vulnerability and site seismic hazard analysis as the input
parameters for building damageability. For instance, when both the site seismic hazard
analysis and the building vulnerability are zero (not existence), the building damageability
is anticipated to be zero as well. Alternately, when building vulnerability and site seismic
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hazard analysis are one (full existence), building damageability is anticipated to be one. The
above-given defuzzification methods were employed sequentially in the developed S-RVS
method. Since the largest of the maxima defuzzification method incorporates the criteria
described above, it was employed in the development of the S-RVS method. Furthermore,
the implementation of the proper calibration techniques and considerations are extensively
illustrated in Section 3.4.

3.4. Model Calibration

Rules, membership functions, and transformation values may all be adjusted to con-
duct model calibration for the development of an accurate fuzzy inference system-based
S-RVS technique. In addition, the membership functions and rules could be adjusted
based on expert opinion, optimization, or post-earthquake screening data employed in
the adaptive neuro-fuzzy inference system (ANFIS) framework [75]. The optimization
of input variables was used to conduct the transformation of linguistic variables [58], so
instead of the existence of vertical irregularity being defined as yes, it was transformed to
0.8. Nevertheless, boundaries for each variable and objective function needed to be estab-
lished for this implementation in the Python programming language [76] based on written
code, as shown in Figure 9a. The SciPy library of the Python programming language was
utilized to calculate transformation values. Data from post-earthquake building screenings
were imported into the objective function, and relevant data analysis was conducted to
prepare the data for fuzzy logic system implementation. The optimization system was then
prepared to operate after integrating defined variables into the data frame and specifying
an objective function (minimizing either root mean square error or 1 minus one-to-one
damage state accuracy percentage).

The optimum transformation values are shown in Figure 9b based on the use of the
optimization approach, which is depicted in Figure 9a. Eventually, it should be highlighted
that the generated model may be capable of having more than one set of appropriate
optimized transformation values. Therefore, the best candidate set should be considered.

3.5. Validation and Comparison of the Developed Method

Since the accuracy of findings obtained from RVS methods is not expected to be very
high [77], more accurate building assessment data (such as post-earthquake screening
and/or detailed vulnerability assessment-based building examination data) needs to be
used to demonstrate the applicability of the developed S-RVS methods. Post-earthquake
building screening data was typically utilized to validate proposed RVS approaches in the
literature [68,78] and by the first author of study [50]. However, the suggested technique
may also be adjusted in accordance with the information gleaned through detailed building
vulnerability assessments. In addition, the information retrieved from the building exami-
nation, subject to expert judgment, can also be utilized to calibrate the proposed method.

The percentage of the buildings allocated to each damage state by employing an
RVS method was compared with real-world post-seismic damage state percentages of
buildings. Although this approach shows an important correlation among the number
of buildings assigned in each damage state, it is not sufficient by itself to describe the
accuracy of the system. Therefore, one-to-one, one class more severe, and one class less
severe classification of damage states were also considered to demonstrate the capability
of the system to identify building damage states, as was used by [50,51]. One-to-one
building damage state classification accuracy of the system was defined by comparing
real damage states and determined damage states, as performed by [50]. If the accuracy
of the one-to-one classification of an evenly distributed data-based method was high, it
directly demonstrated the high reliability of the proposed system. Although the one-to-
one building damage states classification is of utmost importance, it was necessary to
carefully examine the classification at a level up and down as a result of evaluation-based
categorization, as performed by [51]. When buildings with different characteristics than
the buildings considered for developing the S-RVS method were utilized, it was vital to
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demonstrate if the method tends to classify building damage states as one step less or
more severe before taking necessary precautions. Last but not least, the proportion or
quantity of building categories could be represented visually in a format that is simple to
comprehend and interpret, such as a confusion matrix as shown in Figure 11. In addition
to showing one-to-one building damage classification in diagonal cells, confusion matrices
also illustrate how much the damage states of buildings are classified into less severe and
more severe categories.
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4. A Representative Case Study

In 2019, an earthquake measuring 6.4-moment magnitude occurred in Durrës, Albania.
The hypocenter of the earthquake is 22 km in depth. There was extensive damage to nearby
residential locations. After the earthquake, the screening data of 40 URM buildings were
gathered by a team dispatched by Hungarian authorities. Figure 12 depicts representative
pictures that reflect the distinguishing aspects of the buildings under consideration. The
story levels of these buildings were rigid slabs, which were constructed from reinforced
concrete slabs.
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Table 5 illustrates the sample building screening data used to verify the S-RVS tech-
nique that was established. A total of 15% of the examined buildings had a high (D3)
damage class, 20% had a moderate (D2) damage class, and 65% had a low (D1) damage class.
Bektaş et al. [51] used building evaluation data together with the above-described approach
to develop a fuzzy logic-based S-RVS method.

Table 5. 2019 Albania post-earthquake building screening data to validate the S-RVS method.

Building
ID

Vertical
Irregularity

Plan
Irregularity

Construction
Quality

Construction
Year

Structural
System

Number
of Floors

Damage
State

1 No No Poor Before 1942 End 5 D3

2 Yes No Poor Before 1942 Middle 3 D2

3 Yes Yes Moderate Before 1942 Alone 5 D3

4 Yes Yes Good 1962–1963 End 4 D3

5 No No Poor 1975 Middle 5 D3

6 No No Good Before 1942 End 2 D3

7 Yes Yes Moderate Before 1942 Alone 3 D2

8 Yes No Poor 1965–1972 Middle 5 D2

9 No Yes Poor 1984 End 5 D2

10 No No Moderate Before 1942 End 2 D2

11 No Yes Poor Before 1942 End 5 D3

12 Yes Yes Good Before 1942 End 6 D1

13 Yes No Good Before 1942 Alone 6 D1

14 No No Good Before 1942 End 5 D2

15 Yes No Good Before 1942 Alone 5 D1

It is challenging to establish a straightforward correlation between building damage
state and building characteristic parameters. Therefore, to understand the building damage
state relationship with some of the taken-into-account elements (vertical and plan irreg-
ularity, construction quality, structural system), Figure 13 was drawn. While the y-axes
of Figure 13 represent the percentages in terms of damage states, the x-axes represent the
linguistic classes of the considered parameters, such as yes or no for vertical and plan irreg-
ularity. Most buildings with and without vertical and plan irregularities were classified in
the damage state as low, as shown in Figure 13a,b. The building damage class was generally
classified as low when the construction quality was good or moderate, as shown in Figure 13c.
However, it is challenging to draw this distinction for poor quality buildings. As can be
seen in Figure 13d, 85% of the alone buildings were classified in damage state low, and 59%
of end buildings were classified in damage state low; however, middle buildings were mostly
classified in low and high damage states.

Finally, a fuzzy logic-based S-RVS method was developed utilizing the building
screening data of URM structures that were gathered following the 2019 earthquake in
Albania. The following section provides explanations of relevant findings and discussions.
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5. Results and Discussion

Although there are several papers on the development of fuzzy logic-based S-RVS
methods by different researchers [20,47,53], the necessary steps and parameters for the de-
velopment of a fuzzy logic-based S-RVS method have not been presented previously. This
paper offers details about the presented S-RVS methodology. Subsequently, the advance-
ments of the S-RVS method developed by the authors in another study [51]—a continuation
of this study—compared to the conventional RVS methods are also presented here.

Figure 2 illustrates a generic hierarchical structure composed of a variety of parameters;
the developed S-RVS method by the authors considers an optimized number of parameters.
The Albanian post-earthquake (2019) building assessment data were used for this study.
The second section of this study provides a comprehensive overview for establishing the
parameters taken into account. The development of an S-RVS technique based on a fuzzy
inference system was described in Section 3. In Section 4, which summarizes the case
study, all the information presented prior to implementation was employed to develop the
S-RVS method.
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For the development of an effective S-RVS method, the selection of an appropriate
defuzzification method and accompanying calibration technique was highly significant.
Transformation values, rules, and membership functions could be defined purely based
on expert opinion; optimization techniques were implemented to calibrate the developed
S-RVS method.

Even though there are many studies conducted to develop S-RVS methods by em-
ploying fuzzy logic algorithms, these methods did not consider zero (not existence) or
one (full existence) of all input parameters in the hierarchical S-RVS system. When we
consider the existence of zero or one of all input parameters, building damageability is
also required to give zero or one value. Eventually, the provided S-RVS method met the
aforementioned conditions.

Additionally, several defuzzification techniques were used to select the best method.
Therefore, this issue and the corresponding defuzzification techniques were presented in
Section 3.3. The largest of maxima was ultimately chosen as the most effective defuzzifica-
tion method for this investigation.

This article outlines the background research that contributed to the development of
the fuzzy logic-based S-RVS method. The application process and related results are based
on data collected from the 2019 Albania earthquake, which were presented by the authors
in another paper [51]. The developed method’s accuracy of 67.5 percent was shown by
the use of the techniques described in Section 3.5. The accuracy of the developed S-RVS
method significantly outperforms the accuracy rate of the prior study (57.5%) conducted to
develop a fuzzy logic-based S-RVS method by the first author [50].

Limited research in the literature has examined the accuracy of established fuzzy
logic-based S-RVS methods by using post-earthquake screening data or DVA methods.
Harirchian and Lahmer [31] and Bektaş [50] contrasted the outcomes of implementing the
designed S-RVS technique and demonstrated the correctness rate of the method. Table 6
provides a comparison of the developed S-RVS methods in which accuracy rates are
demonstrated by comparing the post-earthquake screening data with the method presented
in this study based on the suggested methodology.

Table 6. Comparison of the developed S-RVS method with the literature.

Bektaş [50] Bektaş et al. [51] Harirchian and Lahmer [31]

Building type/Accuracy URM 57.5% URM 67.5% RC 62.2%

Given that conventional RVS techniques (FEMA P-154 [19] and EMPI [14]) have been
shown to have less than 30% accuracy in correctly identifying building damage states [31],
it can be concluded that the suggested methodology-based, established S-RVS technique
is evidently more accurate than conventional RVS methods. As a consequence, it has
been shown that the technique developed utilizing the methodology presented in this
research is highly accurate when compared to both earlier S-RVS methods and traditional
RVS methods. The outcomes not only demonstrate the method’s applicability but also its
capability for future advancements.

As a further development, a neural networks (NNs) algorithm can be interconnected
with the fuzzy logic algorithm to enhance the S-RVS method by taking into account the site
specificity of post-earthquake building screenings or detailed vulnerability assessments
based on the collected data. To perform such interconnection-based analyses, the AN-
FIS [75] environment, which is available as a Python library and within the Matlab fuzzy
logic toolbox, can be utilized to calibrate rules, membership functions, and transformation
values. Even though a fuzzy logic system is a static system (meaning that the amount
of data has no impact on the accuracy of the determination), the ANFIS environment is
utilized to transform the developed fuzzy logic-based S-RVS method into a dynamic system.
In addition, the ANFIS environment enables the S-RVS method to have self-enhancement
capabilities, such as machine learning and NNs. The ANFIS environment will be employed
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in future investigations to improve the developed S-RVS method. Finally, when employing
NNs instead of developing an S-RVS method using a pure fuzzy logic algorithm, the
distribution and quantity of data employed are crucial factors. For this reason, further
uniformly dispersed data need to be gathered to develop an S-RVS method based on linked
NNs with fuzzy logic algorithms.

Finally, to demonstrate the accuracy of the developed method, evenly distributed post-
earthquake screening data and/or detailed vulnerability assessment based on collected
building assessment data is required, which is the intention of the authors in further studies.

6. Conclusions

In order to assess potential losses before an impending earthquake or to gauge the
extent of damage after one, RVS methods are used to examine building stocks, which
is more time-effective than other methods, e.g., DVA. Based on the experience that the
authors have gathered from employing conventional RVS methods, these methods have
shown less accuracy compared to field data, so it is necessary to enhance the reliability of
these methods. In order to aid future researchers, the development of a fuzzy logic-based
S-RVS method was completely addressed and discussed in this paper. Therefore, the
classification of building damage states before and after an earthquake might be performed
more accurately using the system that has been proposed by the authors.

The parameters of conventional RVS methods were used by the developed and pre-
sented S-RVS method, which is shown in Figure 2. The screener may quickly gather some
of the corresponding input parameters that were taken into consideration (such as vertical
irregularity, plan irregularity, and structural system). Even if it is challenging to establish
a straightforward link between input parameters and the state of building damage, the
established S-RVS method is capable of forming a relationship between the parameters
taken into consideration. The developed method showed an accuracy rate of 67.5 percent,
significantly higher than existing RVS methods [51].

Given the subjectivity of field experts performing field screening and the ambiguity
of parameters, it is advised to apply a method based on fuzzy logic, such as the S-RVS
method, which was explained in this paper and the continuation study [51] of the authors.
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