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Abstract: This paper presents the application of machine learning for classifying time-critical condi-
tions namely sepsis, myocardial infarction and cardiac arrest, based off transcriptions of emergency
calls from emergency services dispatch centers in South Africa. In this study we present results
from the application of four multi-class classification algorithms: Support Vector Machine (SVM),
Logistic Regression, Random Forest and K-Nearest Neighbor (kNN). The application of machine
learning for classifying time-critical diseases may allow for earlier identification, adequate telephonic
triage, and quicker response times of the appropriate cadre of emergency care personnel. The data set
consisted of an original data set of 93 examples which was further expanded through the use of data
augmentation. Two feature extraction techniques were investigated namely; TF-IDF and handcrafted
features. The results were further improved using hyper-parameter tuning and feature selection. In
our work, within the limitations of a limited data set, classification results yielded an accuracy of up
to 100% when training with 10-fold cross validation, and 95% accuracy when predicted on unseen
data. The results are encouraging and show that automated diagnosis based on emergency dispatch
centre transcriptions is feasible. When implemented in real time, this can have multiple utilities, e.g.
enabling the call-takers to take the right action with the right priority.

Keywords: emergency medical services; emergency medical dispatch; sepsis; cardiac arrest;
myocardial infarction; machine learning

1. Introduction

The emergency medical services (EMS) dispatch centre is often a patient’s first point
of entry into the emergency care system. The call taker’s role is to identify the urgency
of the case and assign the appropriate prioritisation so that dispatchers may promptly
allocate the appropriate resources. Once the case’s severity has been assessed, an ambu-
lance or rapid response vehicle is sent out based on the call’s priority. Cases categorised
as a “red priority” [1] in South Africa (patients in-need of immediate resuscitation) are
dispatched immediately with national response targets stating that emergency assistance
should take no longer than 15 min to get to the scene [2]. This is, however, dependant
on the availability of EMS resources since South Africa, like most other African nations,
has a shortage of emergency vehicles and advanced life-support providers [3] who are
equipped with the skills and experience in advanced decision-making. It is therefore cru-
cial, in an African context, that the call-takers accurately identify high-acuity cases so that
resources are allocated appropriately to those who require emergency medical assistance.
The misallocation of emergency medical resources due to poor call-handling sensitivity
and over-prioritisation is also a significant challenge in higher income countries, such as

Healthcare 2021, 9, 1107. https://doi.org/10.3390/healthcare9091107 https://www.mdpi.com/journal/healthcare

https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0002-6678-3891
https://orcid.org/0000-0001-6631-1539
https://orcid.org/0000-0002-1486-4446
https://orcid.org/0000-0003-2337-0699
https://doi.org/10.3390/healthcare9091107
https://doi.org/10.3390/healthcare9091107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/healthcare9091107
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare9091107?type=check_update&version=1


Healthcare 2021, 9, 1107 2 of 10

Germany [4] and The United Kingdom [5]. The impact of this work extends far beyond
under-resourced countries as the improvement of the accuracy of call triage remains a
global challenge.

The contributors to the inaccuracies in acuity prediction are multi-factorial, however,
a key contributor is the reliance on the description of the situation from the caller. The
caller may be the patient themselves, or most often, a bystander. The communication is
further complicated due to varying levels of education and the vast range of languages
and dialects spoken in South Africa, which affects how callers describe their case and in
turn, how call-takers interpret the description. Current means of determining acuity has
low accuracy which ultimately leads to unnecessary delays and resource waste [6].

The current research within South Africa in developing telephonic triage algorithms
based on caller descriptions relies heavily on manually-created verbatim transcriptions.
Approximately 1500 calls are handled daily in the dispatch center [7], making the process
of manual transcription both tedious and inefficient. Manual transcription is heavily relied
on since artificial intelligence driven speech-to-text applications are not sensitive to South
African dialects and only recognise pronunciations from higher-income countries. Machine
learning (ML) and natural language processing (NLP) have been repeatedly used to boost
productivity [8–10] and are, thus, viable solutions to manual transcription. A recent study
found that ML and NLP can be applied to the emergency department triage, and noted
to predict patient disposition with a high level of accuracy [11]. ML can be described as a
sub-field of artificial intelligence which attempts to endow computers with the capacity
of learning from data, so that explicit programming is not necessary to perform a task [9].
The aim of this study was to determine whether ML is a feasible option in classifying
emergency call transcriptions, based off of the caller’s description of the patient.

This study is one of the very few attempts in the world of its kind and more specifically,
the only of its kind conducted in South Africa. The research is still in its early development
and there lies enormous potential for real-life application with further research. Some of
the major challenges in a project of this nature are as follows:

• South Africa, like many other African nations, has multiple spoken languages. These
languages, sometimes, differ substantially in their grammatical structure and syntax.

• The generation of curated data that has ethical clearance is costly and time-consuming.
Hence, data sets are typically limited in size.

2. Methods
2.1. Data Collection

The data set comprised of manually transcribed emergency call conversations from
various EMS contact centres in South Africa. The transcriptions were originally collected
in various South African languages, namely: English, Afrikaans, Zulu and Sesotho. These
anonymised transcripts were obtained from previous studies on the telephonic descriptors
of myocardial infarction [3], sepsis [7] and out-of-hospital cardiac arrest [12]. The telephonic
conversations were transcribed and subsequently verified as either a sepsis, cardiac arrest
or myocardial infarction diagnosis. All non-English transcriptions were translated using
the Google Translate API (Application Programming Interface) [13]. The current procedure
for transcribing the calls from audio-to-text does not have a standardized format (i.e., each
diagnosis had a slightly different format) therefore, the “cleaning” of the data was handled
differently for transcripts from each region. After translating the text to English, the call
agent and caller text was separated since the ML model will only analyse the caller text.

The Pareto Principle, also called the 80/20 (train/test) split, was applied to divide the
data set into training and test sets. The Pareto Principle states that for many phenomena,
80% of consequences come from 20% of causes. It has since become a popular train/test
split in data science. The data samples in the test set do not appear in the training set since
k-fold cross validation was used. This was done prior to augmentation to ensure that the
ML models generalize well to completely unseen data.
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2.2. Data Augmentation

Increasing the size of the data set is an essential step in reducing overfitting, as well
as mitigating the inefficiencies of manual transcription within a low resource context.
The ML algorithms would simply not be able to form useful patterns and relationships
between the data points if the size of the data set is not sufficient. Commonly known
for its use in image processing, data augmentation is one solution to the challenges of
working with a small data set. Data augmentation involves the artificial generation of
additional training examples. It has been shown in some work [14] that simple data
augmentation operations, collectively termed as Easy Data Augmentation (EDA), can boost
text classification performance by reducing overfitting on smaller data sets. The four simple
yet, powerful operations to achieve increased performance on text classification tasks are
noted below.

• Synonym Replacement: Randomly chooses n words from a single sentence provided
that they are not stop words. Each word is replaced with one of its randomly cho-
sen synonyms.

• Random Insertion: Randomly selects a word in a sentence and finds a random syn-
onym. The synonym is then placed in a random position in the sentence. This is done
n times.

• Random Swap: Two randomly chosen words in the sentence swap positions. This is
done n times.

• Random Deletion: Randomly removes each word in the sentence with a probability of p.

Since the number of original transcripts was not equal across the three diagnosis
groups, different values for the total number of augmented sentences are chosen to com-
pensate for the imbalance in samples. Maintaining a balanced class distribution throughout
the data set is crucial to mitigate any biases learned towards classes with greater represen-
tation in the data.

It is important to note that the test data was separated from the training data prior to
augmentation. Data augmentation was only applied to the training data. This is to ensure
that the ML models are capable of generalizing to real transcripts.

Parameter α, indicating the percent of words which will be changed, was set to 0.05 for
each diagnosis data set. This parameter value was recommended in the original research
paper [14] for data set sizes of less than 2000.

2.3. Machine Learning

For a ML algorithm to learn from a training set, it needs to find relationships and
patterns through a set of features. Language processing is deemed challenging since one
can not directly use the raw text to train models. Therefore, it is necessary to implement
feature extraction techniques to convert the text into matrices or vectors of features.

Term Frequency—Inverse Document Frequency (TF-IDF) and handcrafted features
were implemented as feature extraction techniques. TF-IDF is an important technique
in trying to retrieve information from text. The feature extraction technique computes a
weight to each word, as seen in Equation (1), which represents the importance of a specific
word relative to the entire document.

TF − IDF = TermFrequency(TF) ∗ InverseDocumentFrequency(IDF) (1)

The features for TF-IDF and a combination of TF-IDF with handcrafted features
were used to train four classification algorithms: Support Vector Machine (SVM), Logistic
Regression, Random Forest, and K-Nearest Neighbor (kNN). The performance results were
then tabulated and compared. Table 1 below lists the default parameters which were kept
as is when evaluating with TF-IDF.
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Table 1. Classification algorithms and respective parameters applied.

Algorithm Parameters

SVM C=1.0 ; kernel = ‘rbf’ ; degree = 3

Random Forest max_depth = None ; min_samples_split = 2 ; n_estimators = 100

kNN n_neighbors = 5 ; weights = ‘uniform’

Logistic Regression penalty = ‘l2’ ; C =1.0 ; solver = ‘lbfgs’ ; max_iter = 100

Dummy strategy = ‘stratified’ ; random_state = None

A baseline performance model was implemented to determine what the accuracy would
be when simply guessing. This is implemented through scikit-learn’s DummyClassi f ier. The
classifier’s behavior is independent of the training data and instead uses other strategies
for classification, such as most frequent class or random predictions. Since the ML tasks
aim to increase the accuracy rate of classification, a baseline performance acts as a floor
value for the minimum value which the real classifiers should out-perform.

2.4. Feature Engineering

Creating features can be challenging when there is limited research on the classification
task. The two objectives of creating domain-specific features is to determine whether it
can increase the overall performance and if it can provide insight into which categories of
descriptors contributed the most to the classification of each respective disease.

The features selected were based on previous works [3,7,12], where keywords used
to describe sepsis, cardiac arrest, and acute myocardial infarction patients were identified
from calls to EMS centres in South Africa. The papers quantified the frequency of keywords
and from this, the ranking of descriptor categories could be realised per diagnosis. The
categories with their respective descriptors were used as individual features. Since TF-IDF
is used, which is a word-level feature extraction technique, catching individual words as
features is appropriate. A short summary of each feature is listed below:

1. Gastrointestinal Symptoms: vomiting, diarrhea, nausea, indigestion, heartburn,
constipation.

2. Mental Status Symptoms: unconscious, unresponsive, confused, disorientated, stroke,
delirium.

3. Mobility Problems: unable to stand/walk/move, laying down, needs assistance
walking.

4. Malaise Descriptors: sick, ill, bad, deteriorated.
5. Heart Related Pain: heart attack, heart.
6. Chest Related/No pain: pain, chest.
7. Breathing Difficulty: not breathing, stopped breathing, struggling to breathe.
8. TF-IDF: TF-IDF embeddings.

Since raw text data can not be fed into ML algorithms, it is necessary to transform the
strings of categorical variables to numerical vector spaces. One hot encoding is used to
replace the categorical variable by a Boolean variable, 1 or 0, which indicates whether or
not a certain variable was present for that observation—0 indicating non-existent and 1
indicating that the word is present in the transcript. All handcrafted features consist of a
Boolean check to determine whether the individual transcripts had at least one descriptor
from each category. Single word descriptors were reduced to their lemma (the base form of
a word as found in a dictionary) and then passed through a WordNet [15] synonym finder.
WordNet is a large lexical database of English which resembles a thesaurus by grouping
words with similar meanings.

Each function returns a 1-dimensional array, with a length of 1077 for the training data
(total number of training data points) and 20 for test data. The arrays are then ‘stacked’
to form 1077 × 7 (7 features) and 20 × 7 matrices respectively. These are the matrix
representations of the features distribution across the data sets.
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2.5. Hyper-Parameter Tuning and Feature Selection

Machine learning algorithms may require parameters that are not learned as part of
the training process, these are known as “hyper-parameters”. It is necessary to determine
an optimal set of hyper-parameters through a hyper-parameter tuning process to develop
models that achieve the best performance on the task for that particular architecture.
Feature selection is a process of choosing input features that are likely to contribute the
most information needed to predict the desired targets. Feature selection reduces the
dimensionality of input data which reduces the complexity of the problem and makes it
easier to solve with simpler models. Simpler models are desirable as they are more likely
to reduce overfitting and, therefore, generalize well to unseen data.

An exhaustive hyper-parameter tuning technique was implemented using a grid search
with cross-validation. Feature selection was performed using univariate statistical tests. Each
technique was applied to the TF-IDF and TF-IDF with handcrafted features, respectively.

3. Results
3.1. Data Augmentation

As mentioned previously, the number of transcripts was enhanced with the use
of a data augmentation technique, EDA. Table 2 below outlines the number of original
transcripts in each diagnosis group, the corresponding naug value and the total number of
augmented data samples per diagnosis.

Table 2. Number of original training samples per diagnosis and the corresponding augmentation
factor naug.

Class No. Original Transcripts naug Total

Sepsis 21 16 336
Myocardial Infarction 23 16 368

Cardiac Arrest 27 14 378

Figure 1 below is an example of one original caller text from a sepsis transcript.
Figure 2 shows four examples of augmented transcripts derived from the original text in
Figure 1.

Figure 1. Original caller dialogue from a sepsis transcript.

Figure 2 below is an example of four out of sixteen augmented transcripts derived
from the original transcript in Figure 1.
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(a) Augmented Transcript 1 (b) Augmented Transcript 2

(c) Augmented Transcript 3 (d) Augmented Transcript 4

Figure 2. Examples of augmented transcripts.

3.2. TF-IDF Model Performance

The code for TF-IDF feature extraction and model performance can be found in the
paper’s GitHub repository at https://github.com/ANTTAY001/The-feasibility-of-using-
machine-learning-to-classify-calls-to-South-African-emergency-dispatch-cent (accessed
on 1 August 2021). The classification results for TF-IDF features can be seen in Table 3
showcasing the results when evaluating with 10-fold cross validation and also when
predicting on totally unseen data.

Table 3. Classification results for TF-IDF feature extraction when using 10-fold cross validation and
on unseen data respectively.

Algorithm Cross-Validation (%) Train/Test Split (%)

SVM 100 ± 0.00 90

Random Forest 100 ± 0.00 95

kNN 100 ± 0.00 95

Logistic Regression 100 ± 0.00 75

Dummy 33 ± 0.08 20

3.3. Feature Engineering Model Performance

Table 4 below lists the classification results for TF-IDF features with the handcrafted
features as explained in Section 2.4.

Table 4. Classification results for TF-IDF feature extraction with handcrafted features when using
10-fold cross validation and on unseen data respectively.

Algorithm Cross-Validation (%) Train/Test Split (%)

SVM 100 ± 0.00 85

Random Forest 100 ± 0.00 90

kNN 100 ± 0.00 55

Logistic Regression 100 ± 0.00 90

Dummy 33 ± 0.08 30

https://github.com/ANTTAY001/The-feasibility-of-using-machine-learning-to-classify-calls-to-South-African-emergency-dispatch-cent
https://github.com/ANTTAY001/The-feasibility-of-using-machine-learning-to-classify-calls-to-South-African-emergency-dispatch-cent
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3.4. Hyper-Parameter Tuning and Feature Selection

After TF-IDF feature extraction and handcrafted features were analysed, the hyper-
parameter search technique, GridSearchCV, was conducted. Table 5 below is a summary
of the best performing models. All models produced showed 100% accuracy with 10-fold
cross validation therefore, the accuracy results on unseen data will be compared. A full
report of all model results can be found in the GitHub repository, listed above in Section 3.2.

Table 5. Summary of best performing models and respective classification algorithms.

Model Algorithm Train/Test Split (%)

TF-IDF SVM 95
hline TF-IDF Random Forest 95

TF-IDF KNN 95
hline TF-IDF + GridSearchCV Log. Regression 90

TF-IDF + GridSearchCV SVM 90

TF-IDF + SelectKBest SVM 95

TF-IDF + Features Random Forest 90

TF-IDF + Features Log. Regression 90

TF-IDF + Features + GridSearchCV Random Forest 95

TF-IDF + Features + SelectKBest Log. Regression 85

3.5. Best Model

The best performing model, as seen in Table 6, was the SVM algorithm using TF-IDF
best performing features (95) with default parameters of C = 1.0, radial basis function
kernel and third degree polynomial kernel function. The model achieved a 100% accuracy
on training data for 10-fold cross validation and 95% predicted accuracy on unseen data
with a total of 107 features.

Table 6. Classification results for TF-IDF feature extraction with handcrafted features when using
10-fold cross validation and on unseen data respectively.

Model Algorithm Unseen Data (%)

TF-IDF + SelectKBest SVM 95

4. Discussion
4.1. Data Augmentation

Data augmentation served its purpose of creating additional data samples to reduce
overfitting. The application of EDA greatly influenced the performance of the classification
algorithms even though very simple operations for augmentation were applied. As seen in
the original transcript (Figure 1) and respective augmented transcripts (Figure 2), it can
be concluded that the augmented transcripts maintain the key elements of the original
transcript. Due to the nature of the EDA operations, certain sentences are nonsensical, yet
still syntactically plausible. We can therefore deduce from the above that the augmented
data is valid. Since a word-level approach was used for feature extraction (i.e., TF-IDF), the
implementation of EDA is appropriate for creating additional data samples.

4.2. TF-IDF Features

When analysing the TF-IDF feature extraction, all algorithms produced a 100% accu-
racy when tested through 10-fold cross validation. The accuracy decreased when tested on
the unseen test data, which is expected; however the results for a number of models were
still acceptable and showed that they were able to generalize well to unseen examples. The
best performing algorithms for TF-IDF only features were SVM, Random Forest and kNN
with a 95% accuracy on unseen input data with default model parameters.
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4.3. TF-IDF + Hand-Made Features

The classification accuracy performance of the TF-IDF + handcrafted features with
default model parameters was lower than with only the TF-IDF features. Random Forest
and Logistic Regression performed the highest with 90% accuracy on unseen data and
100% accuracy with 10-fold cross validation. The kNN algorithm performed considerably
lower (55% vs. 95%) when custom features were added. A possible reason for this is that
kNN algorithms classify documents in the Euclidean space as points. When increasing
the dimensions of the input data it is less likely that points drawn from a probability
distribution (i.e., a particular class) would be close together. The result is that it becomes
more difficult to distinguish which classes the test examples belong to. Thus, a decrease in
classification accuracy is expected.

Overall, all models faced overfitting problems when the custom features were added.
This could be due to the fact that the features created additional weights for words that
were already TF-IDF weights making the features redundant and in turn the training
samples become sparse.

5. Recommendations for Future Work
5.1. Data Augmentation

The EDA technique to create synthetic data for classification purposes was success-
ful since a word-level featurisation method was implemented and the semantics of the
sentences were not of importance. However, many of the augmented sentences were
nonsensical since syntax was not taken into account. This is due to operations such as the
random insertion and deletion.

A solution to creating more meaningful augmented data which maintains semantic
structure would be to train a deep learning model which can learn semantic networks or
the co-occurrence of certain words. Such applications of text data augmentation are usually
trained on external data sets such as Wikipedia and WordNet (a lexical system which
resembles a thesaurus). However, the problem with training deep learning models for
emergency dispatch calls is that it makes the assumption that the sentences are consistent
with English grammar norms. This would not be applicable within the South African
context where English is not the first language of many. Secondly, training on a Wikipedia
data set also makes the assumption that the transcripts are scholarly and the data can
therefore be categorised into one of the topics on Wikipedia.

Thus, research and development of South African language corpora is greatly needed
for the improvement of classification algorithms.

5.2. Feature Engineering

Feature Engineering was particularly challenging since there is limited research in this
area of work. Identifying new features could possibly take on an entirely new study which
would focus on AI-driven text analysis to categorise transcripts into groups of similar
expressions which could take the form of patient descriptor categories. Unsupervised
learning applications such as Topic Modeling is one technique that would be highly
applicable. This could only be driven by the availability of a domain-specific corpus from
which the deep learning models can learn from. Applying unsupervised learning to find
new insights into the categories of words in a transcript could be highly beneficial in
identifying new keywords for describing a particular medical condition or finding hidden
semantic structures.

6. Limitations

Our findings only used data from three diagnostic groups in the classification algo-
rithm, thus, making it difficult to determine the specificity and sensitivity of the algorithm.
In real-time, call-takers would handle a range of different cases. Most of which would not
be classified as an emergency, thus it would be beneficial for the algorithm to be able to
classify the time-critical conditions amongst the less-critical calls. The study relied heavily
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on data augmentation due to the unavailability of sufficient transcriptions. This could
have impacted the findings since conversational interactions can be very unique to certain
regions and therefore, a machine would not be able to adequately replicate the conversation.
The availability of original transcripts would greatly enhance the results and quality of this
study. Additionally, the range of words and phrases from the call agent which contributed
to successful diagnosis was not investigated but a full list of the feature weights and its
respective importance for each class, i.e., the words and symptom categories, can be found
under the “Feature Weights/Importance” heading in the GitHub repository listed above in
Section 3.2. This could be highly beneficial for future studies to determine which questions
and phrases lead to successful decisions, thus assisting call takers globally.

7. Conclusions

This work introduced the application of machine learning for classifying emergency
dispatch centre call transcriptions of time-critical conditions; sepsis, myocardial infarction
and cardiac arrest. Early prioritisation remains a significant challenge in emergency care,
especially in under-resourced systems. As global migration increases, many countries now
have residents and visitors that speak a range of languages, not necessarily the native
language only. It has been demonstrated that this algorithm is capable of classifying
emergency pathologies for a Google translate accepted language, thus benefiting a range
of countries where multiple languages are spoken. However, future research is encouraged
to expand the range of pathologies taken into consideration by the algorithm so that it may
be more suitable for real-life application. This paper has shown that it is not only feasible
but possible to classify emergency medical call transcriptions using machine learning. All
of the classification models had remarkably high accuracy when trained via 10-fold cross
validation. The models which performed the best were SVM, Random Forest and kNN.
Low complexity classification models generalize well on smaller feature spaces which was
the case in this study. Further improvement of classification results rely heavily on the
availability of domain specific corpora, in this case data sets of South African language
and dialect, to further enhance the performance of data augmentation, feature engineering
and classification.
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Abbreviations
The following abbreviations are used in this manuscript:

EMS emergency medical services
NLP natural language processing
EDA Easy Data Augmentation
TF-IDF Term Frequency—Inverse Document Frequency
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