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Abstract: Since the discovery of COVID-19 at the end of 2019, a significant surge in forecasting
publications has been recorded. Both statistical and artificial intelligence (AI) approaches have
been reported; however, the AI approaches showed a better accuracy compared with the statistical
approaches. This study presents a review on the applications of different AI approaches used in
forecasting the spread of this pandemic. The fundamentals of the commonly used AI approaches in
this context are briefly explained. Evaluation of the forecasting accuracy using different statistical
measures is introduced. This review may assist researchers, experts and policy makers involved
in managing the COVID-19 pandemic to develop more accurate forecasting models and enhanced
strategies to control the spread of this pandemic. Additionally, this review study is highly signifi-
cant as it provides more important information of AI applications in forecasting the prevalence of
this pandemic.

Keywords: artificial intelligence; review; COVID-19; forecasting

1. Introduction

COVID-19 is a global pandemic that has been rapidly spreading worldwide [1]. It has
affected more than 100 million people and caused about two deaths per million as of the
end of January 2021. Originating in Wuhan, China, it has spread to about 200 countries. As
there is no treatment to this disease, the main way to control this pandemic is by applying
strict quarantines and lockdown procedures [2]. Forecasting of the COVID-19 spread has
attracted the attention of many scientists, researchers and policy makers, as it helps in
developing suitable plans and applying protective measures to combat the spread of the
pandemic [3].

Longer-term forecasting of COVID-19 prevalence plays a critical role in making piv-
otal decisions such as the potential to open universities, schools, houses of worship and
workplaces. It may also help to define the precautions and restrictions for citizens to reduce
disease transmission. These restrictions should be carefully investigated to minimize their
impact on different economic outcomes, such as poverty and unemployment [4]. More-
over, forecasting of COVID-19 prevalence may help in establishing vaccine and therapy
plans and selecting hot spots that that should receive more attention from policy makers.
Nonetheless, numerous forecasting approaches have been reported in the last two years
to predict the spread of the COVID-19 pandemic. Mathematical and statistical based
approaches have been widely used to predict the spread of COVID-19 in many countries
and regions [5,6]. Apart from statistical and computational forecasting models used to
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model the spread of COVID-19 pandemic, AI models have recently excelled [7,8]. The
outperformance of the AI models over other conventional models has been reported in
several investigations [9–13]. This motivated us to prepare this literature review to shed
light on the application of AI tools to predict the spread of this pandemic. In this paper,
the commonly used models will be briefly explained. Then, the evaluation criteria of
the forecasted results will be presented. Finally, a comparative study and discussion of
different published articles as well as the future prospects will be discussed.

2. Artificial Intelligence Models

The commonly used AI models utilized in modeling the COVID-19 pandemic are
introduced in this section. These models are nonlinear autoregressive ANN (NARANN),
adaptive neuro-fuzzy inference system (ANFIS), hybrid fractal-fuzzy approach (HFFA),
Bayesian neural network (BNN), long short-term memory network (LSTM), variational
autoencoder (VAE) and singular spectrum analysis (SSA). The fundamental concepts and
mathematical modeling of each approach are briefly explained.

2.1. Nonlinear Autoregressive ANN

Nonlinear autoregressive ANN (NARANN) is a special of ANN family that mimics
the behavior of biological nervous system. It has been widely used in forecasting of one-
dimensional time series for different engineering systems such as industrial production [14],
fluctuation of groundwater level [15] and solar radiation [16]. Due to its nonlinear nature,
it succeeded to model time series data that has transient nature and high variability [17].
The mathematical formulation of NARNN can be expressed as follows:

ξ(t) = β(x(t− 1), ξ(t− 2), . . . ., ξ(t− e)) + δ(t) (1)

where ξ(t) is the response of time series at time t, and e denotes the delay of the network.
ξ(t− 1), ξ(t− 2), . . . ., ξ(t− e) represent the historical responses. β(.) is a function with
unknown value and it is computed during the training stage by obtaining the optimal bias
and weights. δ(t) is a time compensation function employed to estimate the error with
respect to time.

The typical structure of NARANN is presented in Figure 1. It contains an input layer
followed by one or multiple hidden layers and an output layer. The number of processing
units in the hidden layers and the synaptic weights between them could be adjusted to
maximize the forecasting accuracy of the network by obtaining the optimal structure of
NARANN. In Figure 1, w1 and w2 are the synaptic weights and yt is the model out output.
Increasing the processing units in the hidden layer requires much computational costs
and may cause inappropriate over-fitting during a training process, while decreasing the
processing units in the hidden layer may result in reducing the model accuracy as well as its
generalization capabilities. As with any other ANN, NARANN is trained using real-world
data using any training algorithm such as Levenberg-Marquardt backpropagation training
algorithm. Once the network is trained, it may be used to predict the behavior of the time
series in the future.

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a machine learning tool in which ANN is incorporated with fuzzy logic. It
has been used to predict the response of different engineering systems such as drought
forecasting [18], tropical cyclones [19] and oil consumption forecasting [20]. It figures out
the knowledge between input and output process variables by employing If-Then fuzzy
rules.

Each applied rule has antecedent part defined as fuzzy inputs and a consequence
part depends on crisp input variables. Fuzzy inputs are combined with each other using
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logistic mathematical operator (AND operator). The fuzzy rule Fr of a logic system that
has n input variables is defined as

Fr : i f x1 is Br
1, x2 is Br

2 , . . . , xi is Br
i , . . . .and xn is Br

n → (2)

then yr = br
0 + br

1x1 + . . . + br
i xi + . . . + br

nxn

where xi and yr denote the input variable number i and fuzzy output number r, respec-
tively; Br

i denotes the membership function, br
0 and br

i denote the bias and the regression
coefficient, respectively.

Figure 1. The typical structure of NARANN.

In a typical ANFIS structure, there are five consequence layers as shown in Figure 2,
the tasks of each layer are explained as follows.

Figure 2. A typical structure of ANFIS.

In the first layer, membership degrees for each input variable are computed, thus
this layer acts as fuzzification layer. Before calculating the membership degrees, the
regression coefficients, membership functions and the fuzzy rules must be defined. After
defining the primary fuzzy rules, the training process of the ANFIS model is executed.
During the training process, the prediction error of the model is minimized via optimizing
regression coefficients and membership functions. Two optimization algorithms are utilized
to accomplish the optimization process; namely, least-squares algorithm and gradient
descend algorithm. The first algorithm is used to optimize the regression coefficients,
while the used second algorithm is employed to optimize the internal parameters of the
membership functions.
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In the subsequent layer, after computing the membership degrees, the antecedent part
of fuzzy rules is subjected to the following firing function:

ur = ∏n
i=1Br

i (xi ) (3)

In the subsequent layer, the normalized weights are computed by

u′r =
ur

∑r ur
(4)

In the fourth layer, the consequence value of the applied rules is computed based on
the defined regression coefficients as follows:

yr = br
0 + ∑n

i=1br
i xi (5)

In the fifth layer, the final output of ANFIS is computed as follows:

y = ∑ru′ryr (6)

2.3. Hybrid Fractal-Fuzzy Approach

Hybrid fractal-fuzzy approach (HFFA) us a hybrid approach in which fuzzy logic is
integrated with fractal theory. The fuzzy logic based system is used to express the time
series knowledge. Fractal theory has shown promising applications in modeling complex
engineering problems [21,22]. The main concepts of fuzzy logic and fractal dimension will
be discussed in this section.

The fractal dimension of a certain object could be expressed as

b = lim
a→0

[lnE(a)]/[ln(1/a)] (7)

where E(a) is the number of boxes employed to shield an object and a denotes a mea-
sure parameter of the box size. The fractal dimension is computed as a function of the
number of boxes used to shield the object boundary for different a sizes and then b is
obtained using logarithmic regression. The box dimensions could be estimated using the
following equation:

lnE(a) = lnβ− blna (8)

where b denotes the fractal dimension, which could be estimated using a least squares method.
Fuzzy rules could be used as a forecasting tool. First, the input space or time series

should be partitioned so that the geometrical objects are distinguished based on their
characteristics. Considering the geometrical objects as time series patterns, fuzzy clustering
techniques could be applied to cluster the data, then fuzzy rules are constructed. These
fuzzy rules will act as a forecasting tool for a certain time series application.

For m objects OB1, OB2, . . . OBm, clustering using fuzzy technique can be used to
obtain pairs (ui, vi) for all m. Then a fuzzy rule is defined by

I f U is u1 and V is v1 then Object is OB1
I f U is u2 and V is v2 then Object is OB2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

I f U is um and V is vm then Object is OBm (9)

These fuzzy rules can be used in time series prediction.
In case of executing time series forecasting, data analysis should be carried out to

explore the periodicities and trends within the data. Then, the time series is clustered
into m objects OB1, OB2, . . . OBm. Objects OB1, OB2, . . . OBm is classified based on their
geometrical complexity into L or N for linear and non-linear, respectively. Assume the time
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series has the form v1, v2, . . . vm. Then, the fuzzy rules are expressed in a general form for
time series forecasting as follows:

I f L is u1 and N is v1 then Object is OB1
I f L is u2 and N is v2 then Object is OB2

. . . . . . . . . . . . . . .

I f L is umand N is vm then Object is OBm (10)

Consequently, the membership functions are defined for the two different fractal
dimensions, namely, linear and non-linear.

2.4. Long Short-Term Memory Network (LSTM)

LSTM is a well-known recurrent neural network (RNN). Like any other RNN, LSTM
has many identical modules connected with each other to form a chain architecture, which
is utilized as an artificial memory to process and store data [23]. LSTM is widely used
in forecasting time series because of its deep learning capabilities that enable it to mem-
orize and learn sequential evidence. It has superior advantages over other RNN models
as it overcomes the main problems of RNN, such as vanishing/exploding gradient and
instability. Moreover, LSTM has a good ability to detect patterns in time series, such as
trends, autocorrelations, seasonality, and noise. It succeeded to predict different engineer-
ing time series such as explosibility of underground mines [24], electricity load [25], soil
behavior [26], water yield of solar stills [27] and air pollution [28].

LSTMs can learn dependencies found in data and can remember huge amounts of
information. A typical LSTM model consists of multiple modules connected in a chain
manner. LSTM network has a combined short-term and long-term memory and has the
ability to preserve cell state. The key parameter of the LSTM network is the memory cell.
A typical LSTM cell, which acts as a fundamental network unit is shown Figure 3. The
existence of input, output and forgot gates enhances the learning capabilities of LSTM.

Figure 3. A typical LSTM cell.

LSTM network identifies the trivial evidence that may be omitted from the processed
data. The importance of certain information within the data is identified via passing the
data through a sigmoid activation function, which acts as a forget gate as it removes the
trivial part of the processed data. This function has an output ft defined as follows:

ft = σ
(

U f [ht−1, Xt] + d f

)
(11)

where σ is the sigmoid function, d f is the applied bias at the gate and U f is the weight
matrix of the gate.
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The input Yt of the following module is passed through two activation functions: tanh
and sigmoid. These functions make a decision on saving or omitting information from the
data. The sigmoid function makes a decision regarding excluding or updating the new
input (0 or 1). The tanh function defines the updated weight of the input and assigns it a
significance index with numerical values between −1 and 1. The computed output of the
two functions produces the new cell state Ct by adding it to the old memory to Ct−1. These
calculations are performed as follows:

St = σ(Ui[ht−1, Xt] + di) (12)

Tt = tanh(Un[ht−1, Xt] + dn) (13)

Ct = Ct−1 ft + TtSt (14)

where, Ct−1 and Ct denote the cell states at time t− 1 and t, respectively, dn denotes the
applied bias at the gate, and Un is the weight matrix of the gate.

The final output Ot is given by;

Ot = σ(Uo[ht−1, Xt] + do) (15)

where, do is the applied bias at the gate, and Uo is the weight matrix of the gate.

2.5. Bayesian Neural Network (BNN)

BNN is an advanced ANN integrated with an inference system, which is used in
many applications such as electricity load forecasting [29], wind power forecasting [30] and
hydrologic forecasting [31]. It overcomes the problems related to conventional ANN, such
as over-fitting caused by the uncertainty of synaptic weights estimation. The Bayesian-
based training algorithm may help in solving these problems. It applies a probability
density function on the network weight space. This function is used to express the belief
degree of the weight vector. It is initialized by equating it with a prior distribution. Then,
the data is processed via the application of Bayes’ theorem. Finally, the function is converted
into a new posterior distribution. Therefore, instead of computing the best weights by
conventional approaches via executing a minimization process of a defined error function,
the Bayesian approach estimates a whole distribution for the network parameters. The
determined posterior distribution is utilized as an inference prediction tool to forecast the
new responses of the new input variables.

The training process of BNN is presented in Figure 4. The key target of the training
process is to reduce the error between the predicted values and the real world values. This
minimization process is defined by applying some rules: B(x), UO(x) and UH(x) until the
stopping criteria Er is fulfilled. This process could be represented mathematically un the
following form:

L(VI) = L(VI) + min( fO( fH(VI .UH + bH).UO + bO)− L(VI)) (16)

where L(VI), UH , UO, bH and bO denote the real value, the matrix of hidden layer weights,
the matrix of output layer weights, the vector of bias of the hidden layer and the vector of
bias of the output layer, respectively. fH(.) and fO(.) are the hidden and output functions,
respectively, which are given by

fH(x) =
2

1 + exp(−2x)
− 1 (17)

fO(x) = x (18)
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Figure 4. The training of BNN.

Once the forecasting model is established, it may be used to forecast the future
behavior of time series using the following equation:

L(IV) = fO( fH(IV.UH + bH).UO + bO) (19)

where IV denotes the latest inputs values in a vector form and L(IV) denotes the fore-
casted vector.

2.6. Variational AutoEncoder (VAE)

VAE is a machine learning technique that exploits the advantage of learned inference
and could be established using gradient-based methods. The term variational represents
the variational inference technique, which belongs to statistics-based methods. The term
auto-encoder represents the unsupervised ANN model used to learn data coding. VAE is
an auto-encoder model with enhanced training algorithm, which overcomes over-fitting
problem by using a special regularization technique. It also creates a latent space with
appropriate characteristics that permit the executive of efficient generative process. The
basic architecture VAE is shown in Figure 5. VAE has a decoder (shown in green in the
figure) and an encoder (shown in blue in the figure) like any other conventional auto-
encoder. During the training of the model, the reconstruction error between the input
data and the reconstructed encoded–decoded data is minimized. The input data is passed
through the encoder E(y|x) via the latent space. At that time, y ∼ E(y|x) , is created
from the code distribution. After that, the coded point is decoded by passing through the
decoder D(x|y) . Finally, the reconstruction error is computed and the network is updated
via a back-propagation process.

Figure 5. The architecture of VAE.
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The training process is accomplished via minimizing a loss function f (e) that consists
of a reconstruction term and a regularization term. The first term is used to enhance
the encoding–decoding process, while the second term is used to regularize the latent
space structure. The latent distribution is chosen to match a standard distribution, such as
Gaussian distribution. The loss function is given by:

f (e) = Gy∼E(yx)(log(xy))− KL(E(y | x) || D(y)) (20)

The reconstruction term Gy∼E(yx)(log(xy)) enables the decoder to learn the recon-
struction of the training data. The regularization term is expressed as a function of the
Kulback–Leibler KL(.) divergence between the distribution of the encoder E(y | x) the
latent sample y, |D(y) . The KL(.) measures the loss when E is used to represent D.

2.7. Singular Spectrum Analysis (SSA)

SSA is an advanced time series analysis tool, which is classified as a nonparametric
spectral estimation technique [32]. It has been used in forecasting different engineering time
series such as annual precipitation and hourly water temperature [33], mutual investment
funds [34], wind speed [35] and electricity consumption [36]. In a typical SSA model,
a conventional time series analysis is integrated with signal processing, multivariate
geometry, multivariate statistics and dynamical systems. It has two main phases. The
first is the decomposition phase in which the time series is broken down into several
components, such as cyclical, seasonal and trend components. This phase facilities the
extraction of signals and a reduction of related noise. The second is the reconstruction phase
in which data forecasting is accomplished via reconstructing the decomposed components.

The decomposition phase is accomplished via executing two steps: embedding and
singular value decomposition. During the embedding step, the time series {y1 y2 . . . yM} is
converted into a trajectory matrix Y with dimension N × L. Each column in this matrix has
the form of Y1 = (yi yi+1 . . . yi+N−1 ), where L = M− N + 1. During the decomposition,
the established trajectory matrix Y is decomposed into Y = ΨΩΦT where Ψ and Φ are
two orthogonal matrices and Ω is a diagonal matrix. The diagonal elements of Ω are
τ1 τ2 . . . τN , which represent the singular values of Y. The decomposed trajectory matrix is
given by

Y = Y1 + Y2 + . . . + Yd (21)

where d is the maximum i such that τi ≥ 0 and Yi = τi + ΨiΦ
T
i .

The reconstruction phase is accomplished via executing two stages: grouping and
diagonal averaging. In the grouping stage, the elementary matrices Yi is divided into many
groups and the generated matrices within each new group are summed. For a certain
group I, a new matrix YI is formed and defined as YI = Yi1 + Yi2 + . . . + Yip. By applying
singular value decomposition Y, the following decomposition is obtained:

Y = YI1 + YI2 + . . . + YIM (22)

In the diagonal average stage, each decomposed matric YIJ is transformed into a
Hankel matrix. The transformed matrix can be transformed into a time series form with
a length M. To obtain the following expansion Y = ỸI1 + ỸI2 + . . . . + ỸIM with ỸIi = HYIi
with new elements ỹs over the anti-diagonals computed by ỹs = ∑(l,n)∈Ys

yln
|Yc | , where

Ys = {(l, n) : l + n = c + 1, 1 ≤ l ≤ L, 1 ≤ n ≤ N} and |Yc| is the number of elements in Yc.
The forecasting process could be accomplished with two main processes, namely,

recurrent forecasting and vector forecasting.
The recurrent forecasting is executed according to the following procedures:

1. The new time series XM+h={x1, x2, . . . ., xM+h } is defined as follows:

xi =

{
Ỹi, f or i = 1, 2, . . . ., M

∑N−1
j=1 ejxi−j, f or i = M + 1, M + 2, . . . ., M + h (23)
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where the coefficients vector V = (eN−1 , eN−2, . . . ., e1, )
T is computed as follows:

V =
1

1− ϕ2 ∑i∈IπiΨi (24)

2. The numbers xL+1, xL+2, . . . , xL+h represent the recurrent forecast with an h step.

The vector forecasting is executed according to the following procedures:

1. Define a new time series vector U as follows;

Ui =

{
Y̌i, f or i = 1, 2, . . . ., L

YUi−1, f or i = L + 1, L + 2, . . . ., L + h + M− 1
(25)

where Y̌i = ∑ j∈ I ΨjΨ
T
j Yi , YUi−1 =

(
ΓU i−1

VTU i−1

)
, Γ = ΦΦT +

(
1− ϕ2) YYT , and U i−1

represent a vector of Ui−1 last components.
2. The time series {x1, x2, . . . ., xM+h+N−1 } is obtained by averaging the diagonal of

constructed matrix U = [U1 : . . . . : UL+h+M−1].
3. The numbers xL+1, xL+2, . . . , xL+h represent the vector forecast with an h step.

3. Evaluation Criteria

The statistical metrics are used as indicators to evaluate the performance of AI models.
The most common used statistical metrics are root mean square error (RMSE), normalized
root-mean-square error (NRMSE), coefficient of variation (COV), coefficient of determi-
nation (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), overall
index (OI), efficiency coefficient (EC), mean relative error (MRE), and residual mass coeffi-
cient (RMC) [37].

As the numerical value of RMSE, NRMSE, MRE, MAE, MAPE, RMC and COV being a
small, the discrepancy is small and the model accuracy increases. They can be calculated as

RMSE =

√
1
ns

∑ns
i=1(di − yi)

2 (26)

NRMSE =

√
ns ∑ns

i=1(di − yi)
2

∑ns
i=1 yi

(27)

MRE =
1
ns

ns

∑
i=1

di − yi
di

(28)

MAE =
1
ns

ns

∑
i=1
|di − yi| (29)

MAPE =
1
ns

ns

∑
i=1

|di − yi|
|di|

(30)

RMC =
∑ns

i=1 yi −∑ns
i=1 di

∑ns
i=1 di

(31)

COV =

((
RMSE

y

)
× 100

)
(32)
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As the value of R2, OI and EC increases (approaches the unity), the model has high
accuracy. They are calculated by

R2 =

(
∑ns

i=1

(
di − d

)
(yi − y)

)2

∑ns
i=1

(
di − d

)2
×∑ns

i=1(yi − y)2
(33)

EC = 1− ∑ns
i=1(di − yi)

2

∑ns
i=1

(
di − d

)2 (34)

OI =
1
2

(
1−

(
RMSE

dmax − dmin

)
+ EC

)
(35)

where, ns, d, and y denote the number of iterations, actual and the forecasted data, respec-
tively. dmin, dmax, and d represent the minimum, maximum and mean values of the target
data, while y represents the mean value of the predicted dataset.

4. Comparative Study and Discussion

In this section, the published studies on the applications of AI techniques for fore-
casting COVID-19 spread are discussed. The reported comparisons between different AI
techniques as well as conventional statistical techniques are also presented.

4.1. Statistical Models

Many forecasting studies have been carried out by employing statistical and mathe-
matical approaches to predict the prevalence of COVID-19 pandemic. An auto-regressive
integrated moving average (ARIMA) model was employed to predict COVID-19 spread for
one month in Pakistan [38]. The increase rate of confirmed cases, recoveries and deaths has
an exponential trend. The same approach was applied to predict the COVID-19 cases in
South Korea and Japan [39]. A hybrid ARIMA model incorporated with wavelet-based ap-
proach was developed to predict the daily cases in India, South Korea, Canada, the United
Kingdom and France on a real-time basis [40]. A high correlation between the mortality
rate and four control variables, namely, total number of cases, age, lockdown period and
total number of hospitals have been reported. Another hybrid model composed of discrete
wavelet and ARIMA model was developed to predict the pandemic spread in Spain, Italy,
France, the United Kingdom, and United States [41]. A modified version of ARIMA in-
corporated with α-Sutte indicator and called SutteARIMA has been developed to predict
the total cases of COVID-19 in Spain [42] and another modified version incorporated with
Kalman filter has been developed to predict the total active cases, deaths and recoveries in
Pakistan [43]. A comparison investigation has been carried out between ARIMA model,
support vector regression (SVR), ridge regression, random forest, cubist regression and
stacking-ensemble learning as statistical-based models to assess their capabilities to predict
total confirmed cases in Brazil [44]. Support vector regression and stacking-ensemble learn-
ing showed the best forecasting accuracy among the other investigated models. Gaussian
spreading hypothesis have been employed to predict the epidemiological behavior in eight
countries, namely, Greece, Germany, Netherlands, Spain, Italy, France, the United Kingdom
and the United States based on the historical data reported by the Chinese government [45].
It has been reported that applying strict measures has a significant role in reducing the
disease spreading. Reduced-space Gaussian regression modeling was applied to predict the
spreading of the pandemic in United States via applying a hybrid incorporation between
Bayesian system and geographic information system [46]. Another mathematical-based
epidemiological model called susceptible/infectious/recovered model was employed to
predict the transmission dynamics of the COVID-19 outbreak in China, Italy, Spain, Russia,
Germany, France, South Korea and the United States [47]. This model is used to predict
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the infected cases as a time series, disease spread, pandemic duration, and the disease
reproductive number.

The dynamic epidemiological behavior of the COVID-19 outbreak in three Chinese
cities, namely, Beijing, Shenzhen and Guangzhou has been investigated using the ecological
niche models [48]. Nine socioeconomic factors have been considered, namely, population
density, pandemic data of infected communities, number of subway stations, number
of bus stops, total length of roads, number of supermarkets, number of shopping malls,
number of hospitals, number of appointed hospitals and average prices of rental houses. It
was recommended that local hygienic authorities should adjust their interventions in the
COVID-19 hotspots with high population density.

Grey prediction models have also been employed to predict the spread of COVID-
19 pandemic [49]. A comparison investigation has been carried out between three grey
models, namely, grey model, fractional nonlinear grey Bernoulli model, and nonlinear grey
Bernoulli model, to evaluate their accuracy to predict the total number of cases in Italy, the
United Kingdom and the United States. Fractional nonlinear grey Bernoulli model showed
the best prediction accuracy compared to the others.

COVID-19 infected cases was predicted by fitting asymptotic distributions to the re-
ported data [50]. The proposed approach was employed to compare between the pandemic
behavior of the outbreak in Italy and China. Death rate due to the pandemic in Italy was
predicted using patient information based algorithm [51]. A new iterative method was
proposed to predict daily growth rate of confirmed cases in four countries (United States,
Germany, Slovenia, and Iran) based on the reported cases, recoveries and deaths [52].
Exponential approach was proposed to predict the total cases outside China; a heuristic
computing approach was employed to determine exponential curve parameters.

The total reported cases in Nigeria was estimated using different statistical models,
namely, simple linear, quadratic, quartic, cubic, logarithm linear, logarithm quadratic,
logarithm quartic, logarithm cubic and inverse linear regression models [53]. The quartic
regression model was reported as the best accurate model, among others. The model
parameters were calculated using four different approaches, namely, least absolute de-
viation, Cochrane Orcutt, Hildreth–Lu, ordinary least squares, and Prais-Winsten. The
least absolute deviation approach was reported as the best one among others in terms of
accuracy, robustness and speed.

Two mathematical models were developed to determine the variations in the daily
reported cases [54]. In the first model, the confirmed cases were computed based on the
total number of active cases, the number of infected persons people were in close contact
with, the rate of performed tests and the mortality rate. In the second model, the Fourier
decomposition technique was employed to decompose the COVID-19 time-series in terms
of cosine and sine functions. The models were applied to predict the total cases and its peak
value in United States, Italy, and India. The SIDARTHE dynamical model was employed to
model COVID-19 pandemic [55]. The population of infection is divided into five population
subcategories, namely, infected, diagnosed, ailing, recognized and threatened. The effects
of the employed control strategies, such as vaccination and different treatment strategies
on the infection population subcategories, were investigated.

However, there are many statistical approaches reported in the literature to predict
COVID-19 spread. Most of these approaches have been reported to have lower accuracy
compared with AI approaches based on different statistical indicators. Moreover, most of
approaches are valid only for short-term forecasting. On the other hand, AI approaches
succeeded to forecast the COVID-19 spread for both short and long terms.

4.2. Artificial Intelligence Models

AI models have been rapidly developed to predict COVID-19 spread. The commonly
used AI models utilized in modeling the COVID-19 pandemic are introduced in Section 2.
These models are NARANN, ANFIS, HFFA, LSTM, BNN, VAE and SSA. ANFIS has been
applied to predict the future number of COVID-19 cases in the United Kingdom [56] and
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Malaysia [57]. In the first study, a parametric comparison has been carried out to obtain the
optimal ANFIS model based on model accuracy considering different model parameters. To
enhance the forecasting accuracy of ANFIS, it has been integrated with a virus optimization
algorithm to forecast COVID-19 cases in the United States [58]. Virus algorithm gas
been used to optimize the membership functions and the regression coefficients instead of
conventional optimization techniques, which have tendency to be trapped into local optima.
The effects of population density and climatology factors on the pandemic spread were
investigated. Population density was reported as a major factor that affects the infection
rate. In another study, ANFIS has been integrated with chaotic marine predators algorithm
to obtain its optimal parameters that maximize the forecasting accuracy [59]. The flow
chart of the hybrid ANFIS/chaotic marine predators algorithm is shown in Figure 6. The
results of the proposed algorithm have been compared with that of standalone ANFIS as
well as the optimized ANFIS using particle swarm optimization. The proposed algorithm
had better forecasting accuracy; however, it had the highest computational cost among
other investigated algorithms.

Figure 6. The flow chart of the hybrid ANFIS/chaotic marine predators algorithm used as an
optimized forecasting tool [59].

HFFA has been employed for forecasting the cases and deaths of COVID-19 consider-
ing four main inputs, namely, confirmed cases with linear fractal dimension, confirmed
cases with nonlinear fractal dimension, deaths with linear fractal dimension and deaths
with nonlinear fractal dimension [60]. The fractal dimension was utilized to determine
the complexity of the time series, while fuzzy logic was utilized to characterize the fore-
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casting uncertainty. The proposed approach was used to predict the COVID-19 spread in
10 countries in Europe, Asia and America for a long forecasting period (one month).

SSA was employed to predict the confirmed case in the top 10 affected countries
(United States, Brazil, India, France, Russia, Spain, United Kingdom, Mexico, Colombia and
Argentina) considering both vector and recurrent forecasting algorithms [9]. The obtained
results by SSA were compared by those obtained by ARIMA, ETS, NNAR, ARFIMA and
TBATS. The evidence from that study indicated that there is not a single algorithm that may
be considered as best for all investigated countries, which have different pandemic trends.

Recurrent SSA has been also used in forecasting COVID–19 cases in Malaysia [61].
The obtained results indicated that the proposed model is able to predict the spread of the
outbreak with reasonable accuracy as it has over-forecasted by 0.36% with high correlation
between predicted and confirmed cases. However, it cannot capture the sudden variation
in the COVID-19 spread caused by the applied motion control strategies.

BNN was employed to predict the accumulated confirmed cases in five American
states and five Brazilian states [62]. Moreover, it was reported that including the metro-
logical conditions, such as precipitation and temperature, enhances the accuracy in the
forecasting models. BNN had a higher forecasting accuracy compared with other investi-
gated standalone models, such as support vector regression, cubist regression, quantile
random forest, and k-nearest neighbors.

A hybrid approach composed of an RVFL model and a discrete wavelet transform
was developed to predict the spread of COVID-19 in Russia, Brazil, Peru, India, and
the United States [63]. The forecasting accuracy of the proposed approach is compared
with the SVR model and the standalone RVFL model. The approach succeeded to obtain
accurate forecasting for long period (60 days) and showed better performance compared
with other models.

LSTM has been applied to predict COVID-19 cases in Canada [64], India [65], India,
the United States [66], and Peru, Russia and Iran [67]. It succeeded to predict the trend
of the pandemic despite of the nature of the transmission rate trend (linear, cubic, or
exponential growth).

Three LSTM architectures, namely, stacked LSTM, convolutional LSTM and bi-directional
LSTM have been investigated and compared with each other to predict the cumulative
infected cases in India and the United States for one month ahead [66]. The convolutional
LSTM model had the best accuracy followed by bi-directional, while the stacked LSTM
model had the worst accuracy.

A comparative study between ARIMA, LSTM and NARNN has been carried out
to predict COVID-19 cases in eight European countries, namely, Germany, the United
Kingdom, Denmark, France, Belgium, Finland, Turkey and Switzerland [12]. Despite of
the differences in human behavior, applied measures and available data for each country,
LSTM had much higher forecasting accuracy compared to ARIMA and NARNN for all
countries investigated within that study. In another study conducted on Saudi Arabia data,
the three approaches were compared [11]. ARIMA and NARANN had a higher forecasting
error compared with LSTM as their RMSE are higher than that of LSTM by 909% and 357%,
respectively. Thus, LSTM has outperformance over ARIMA and NARNN in forecasting
COVID-19 cases, as shown in Figure 7.

Transfer learning has been applied in LSTM networks to predict the spread trend of
COVID-19 cases and deaths in France, Germany, India, Brazil and Nepal based on the data
of early infected countries such as the United States and Italy [68]. The network was trained
using data of early infected countries. LSTM succeeded to capture the complex patterns of
the pandemic spread in the United States and Italy and in utilizing them in the forecasting
process. LSTM has been also used to predict the number of Chinese tourists that travel
to the United States and Australia during the COVID-19 pandemic based on the tourism
data collected after the 2003 SARS outbreak [69]. It was reported that the delay of vaccine
discovery would significantly decelerate the economic recovery. In addition, the application
of preventive measures could affect the prediction accuracy of the proposed approach.
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Figure 7. (a) Time series plot of the reported COVID-19 cases and forecasted data by NARANN, ARIMA and LSTM; (b) the
RMSE for three approaches [11].

An optimized version of LSTM has been proposed by [70] to predict the spread of the
COVID-19 pandemic. The Bayesian optimization technique was used to select the optimal
LSTM parameters, such as activation function, learning rate and number of neurons. The
hybrid LSTM/Bayesian optimization technique is shown in Figure 8. The proposed method
has been used for short and long horizon forecasting. The optimized LSTM outperforms
the standalone LSTM as well as the optimized version of CNN.

Figure 8. The hybrid LSTM/Bayesian optimization technique for forecasting COVID-19 data [70].

The number of daily positive cases, recovered cases and deceased cases in India was
forecasted using LSTM and curve fitting approach [71]. The effect of the applied preventing
measures, such as hotspots lockdown and social distancing on the outbreak spreading, have
been investigated. The spread of the outbreak can be significantly reduced by applying
strict preventive measures.

A comparison study between ANN and two mathematical approaches, namely, logistic
and Gompertz, to predict the total cases in Mexico was carried out by [72]. A good fit
between the reported data and those predicted by ANN, logistic, and Gompertz models
with correlation coefficient of 0.9999, 0.9996, and 0.9998, respectively. It was declared that
the forecasted results may significantly differ from the reported ones, if social distancing
policies and testing strategies would be changing in the coming days. Recurrent ANN
model was developed to predict the daily mutation rate of COVID-19 [73]. The developed
model was applied to the United States, Australia, China and the world. A comparison
investigation was carried out to evaluate the forecasting accuracy of three commonly used
models: ARIMA, nonlinear autoregression neural network and LSTM ANN [12]. The
results of the three investigated models were compared with actual reported data and
the forecasting accuracy was evaluated using different statistical criteria. LSTM ANN
showed the best accuracy among all investigated models to predict the total cases in eight
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countries, namely, Switzerland, Finland, Germany, Denmark, France, Turkey, Belgium, and
the United Kingdom. In another study, LSTM ANN has been employed to predict the
infected cases in Canada [64]. The spread of the pandemic in Canada is lower than that of
the United States and Italy, which reveals the effective control policies employed by the
Canadian government. The transmission of the disease in Canada has a linear trend in
contrary to that of the Unites States and Italy, which has an exponential trend. Based on
the obtained results, the COVID-19 pandemic was expected to end by December 2020. The
number of confirmed total cases in Egypt was forecasted using nonlinear autoregressive
artificial neural networks, which showed a better forecasting accuracy compared with
conventional autoregressive integrated moving average approach [10].

A novel hybrid approach consists of LSTM optimized by grey wolf optimizer for
forecasting the future cumulated infected cases in the United States, India and the United
Kingdom was proposed by [74]. The proposed approach utilized Google Trends and
official reported data of the pandemic spread in training the network. The hybrid approach
outperformed other conventional statistical approaches, such as ARIMA.

Five artificial intelligence approaches, namely, RNN, LSTM, bi-directional LSTM,
GRUs and VAE have been developed to forecast recovered and confirmed cases in six
different countries (United States, China, Italy, France, Spain, and Australia) based on
short-period collected data [75]. VAE had better forecasting accuracy compared with other
proposed approaches for all countries.

Metaheuristic optimization approaches have been also used to predict the prevalence
of this pandemic [76]. A genetic-based programming approach has been developed to
predict the number of total cases and total deaths in three Indian states, namely, Gujarat,
Maharashtra and Delhi [77]. An enhanced ANFIS incorporated with two metaheuristic op-
timization algorithms, flower pollination and salp swarm algorithms, has been developed
to predict the prevalence of COVID-19 in China [78].

Apart from the utilization of AI models in predicting studies, they have been also
reported as powerful tools to diagnose the infected cases by processing X-ray imaging
of the chest to avoid human errors [79,80]. The most common reported AI approaches
to detect COVID-19 infections based on X-ray or CT images are CNN models [81–84].
Aswathy et al. [85] used two CNN models, namely ResNet-50 and DenseNet-201, to iden-
tify and assess the COVID-19 infection from CT images as well as the severity condition of
the patient. They succeeded in developing a single architecture of the model that can be
used to achieve both targets. Li et al. [86] utilized three other CNN models, namely VGG-16,
LeNet-5 and ResNet-18, to detect COVID-19 infection using X-ray images. EfficientNet
CNN was used to classify the diagnosed cases into normal, pneumonia andCOVID-19 cases
based on their X-ray images [87]. CoroNet CNN was used to classify the diagnosed cases
into normal, pneumonia-bacterial, pneumonia-viral and COVID–19 cases based on their
X-ray images [88]. ResNet50 and VGG16 CCN were utilized to detect COVID-19 infections
based on CT images [89]. The proposed models exhibited excellent accuracy when they
were used as binary classifiers (normal and COVID-19), but their accuracy degraded when
they were used as multiclass classifiers (normal, pneumonia, COVID-19). The same models
(ResNet-50, VGG-16) along with auto-encoder CNN and machine learning techniques,
such as nearest neighbor, logical regression, support vector machine, random forest and
stochastic gradient descent, were proposed to classify CT images of COVID-19 [90]. A
hybrid CNN, Sobel filter and support vector machine model was developed to detect
COVID-19 based on X-ray images [91]. First, X-ray images are filtered using Sobel filter to
detect the edges and contours of the images. Then, the filtered images are fed into to CNN
model and classified using a support vector machine. Saha et al. [92] proposed a hybrid
AIT to detect COVID-19 infection from X-ray images. First, a CNN model was utilized
to extract the main features of X-ray images. Then, machine learning approaches such as
support vector machine, random forest, and decision tree were utilized to detect COVID-19
infection based on the extracted features. Another hybrid CNN and deep neural network
was developed to examine CT images to detect COVID-19 infections [93]. Shorfuzzaman
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and Hossain [94] developed a Siamese neural network model to detect COVID-19 infec-
tions using X-ray images. A fine-tuned VGG16 CNN was used as an encoder to detect
unbiased feature in examined images. The diagnosis of the COVID-19 from the images was
formulated as N-way/K-shot classification problem where N and K denote the number of
data samples and class labels used to train the model. The model succeeded in obtaining
reasonable accuracy using a limited number of samples and examples during the training
process. The integration between AI models and the metaheuristic optimizers [95,96] has
been also reported as an efficient tool to diagnose COVID-19 infections.

More investigations should be carried out to develop hybrid AI models to predict and
forecast the prevalence of this pandemic as well as detect the infected cases via image pro-
cessing approaches. These hybrid models are composed of an AI model, such as ANN, AN-
FIS and RVFL integrated with metaheuristic optimizers [96] such as pigeon optimizer [97],
gradient-based optimizer [98], parasitism-predation optimizer [99], ecosystem-based op-
timization [100], Hunger games algorithm [101], flower pollination algorithm [102] and
political optimizer [103].

5. Conclusions

This study presents a review on the applications of AI techniques for forecasting the
prevalence of the COVID-19 pandemic. The basics and the mathematical formulation of dif-
ferent AI approaches used in this context are presented, including nonlinear autoregressive
neural network, adaptive neuro-fuzzy inference system, hybrid fractal-fuzzy approach,
long short-term memory network, Bayesian neural network, variational auto-encoder and
singular spectrum analysis. Different statistical measures used to evaluate the forecasting
accuracy of the AI approaches are discussed. Despite of the differences in human behavior,
applied measures and available data for each country, AI approaches had much higher
forecasting accuracy compared to conventional statistical approaches. The evidence from
the current review indicates that there is not a single approach that may be considered as
the best one for all investigated countries, which have different pandemic trends. Moreover,
the integration between AI forecasting approaches and advanced optimization methods
could significantly enhance the accuracy of the whole model with acceptable increase in the
computational cost. Thus, it is recommended to use hybrid models instead of standalone
models. A substantial concern should be paid towards the utilization of AI approaches
to capture the sudden variation in the Covid-19 spread caused by the applied motion
control strategies. Future work may focus on the integration between AI approaches and
metaheuristic optimization methods to enhance their forecasting accuracy. Forecasting the
trend of the economic recovery after this pandemic deserves the researchers’ attention.
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