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Abstract: Acute kidney injury (AKI) is a common complication of hospitalization that greatly and
negatively affects the short-term and long-term outcomes of patients. Current guidelines use serum
creatinine level and urine output rate for defining AKI and as the staging criteria of AKI. However,
because they are not sensitive or specific markers of AKI, clinicians find it difficult to predict the
occurrence of AKI and prescribe timely treatment. Advances in computing technology have led to the
recent use of machine learning and artificial intelligence in AKI prediction, recent research reported
that by using electronic health records (EHR) the AKI prediction via machine-learning models can
reach AUROC over 0.80, in some studies even reach 0.93. Our review begins with the background
and history of the definition of AKI, and the evolution of AKI risk factors and prediction models
is also appraised. Then, we summarize the current evidence regarding the application of e-alert
systems and machine-learning models in AKI prediction.
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1. Introduction

Acute kidney injury (AKI), defined as increased serum creatinine level or decreased
urine output, is the most common and adverse complication of hospitalization in pa-
tients [1]. The incidence of AKI among inpatients ranges from 5% to 10%, and it ranges
from 20% to 70% among patients admitted to an intensive care unit (ICU) [2–5]. AKI inci-
dence varies by clinical condition; approximately 20% of patients with Stevens–Johnson
syndrome or toxic epidermal necrolysis developed AKI, and 56% of patients with severe
sepsis developed AKI. Among patients who have undergone surgery, AKI incidence varies
by the type of operation, ranging from 25% for trauma surgery to as high as 50% for cardiac
or aortic surgery [6,7]. Although the quality of medication data and the effectiveness of
treatment have greatly improved recently, the incidence of AKI has continually increased,
possibly due to the aging population and rising comorbidities, such as diabetes mellitus
and hypertension.

After an initial AKI episode, the risk of chronic kidney disease (CKD), long-term
dialysis and mortality are significantly increased in the affected patients [8–14]. According
to a previous meta-analysis, patients with AKI had higher risks of CKD, end-stage renal
disease (ESRD), and mortality than patients without AKI; the hazard ratios were 8.8, 3.1,
and 2.0, respectively [10]. Among patients with AKI, those with dialysis-dependent AKI
had even poorer renal outcomes than patients with non-dialysis-dependent AKI [14,15].
Although investigators had identified that patients with hypertension or diabetes mel-
litus, those requiring readmission for cardiovascular disease or sepsis, those receiving
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cardiovascular surgery or neurosurgery, and those taking nephrotoxic agents (nonsteroidal
anti-inflammatory drugs, radiocontrast, hydroxyethyl starch, and nephrotoxic antimicro-
bials) were prone to experience AKI [16–18]. No accurate tool has been established for
identifying patients at risk of AKI and for predicting AKI occurrence. At the same time,
patients only exhibit imperceptible signs of AKI or even exhibit no clinical symptoms in the
early stages of AKI. Once oliguria, hematuria, or anasarca is present, patients may already
have considerable parenchymal injury and require renal replacement therapy. Although
research on novel biomarkers has increased in recent years, advances in clinical informatics,
artificial intelligence (AI), and machine learning may enable the development of additional
approaches for the prediction and estimation of AKI risk through the processing of elec-
tronic medical records (EMRs) [19]. In this article, we review the progress in the application
of machine learning systems for AKI risk prediction.

1.1. AKI Definition

The definition of AKI has evolved over the past few decades, ranging from the ini-
tial Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE)
classification and the Acute Kidney Injury Network (AKIN) criteria to the most recent
Kidney Disease Improving Global Outcome (KDIGO) guidelines [1,20,21]. The KDIGO
guidelines have been the most widely used definition of AKI over the past decade, and ac-
cording to these guidelines, AKI is divided into stages by severity on the basis of increasing
serum creatinine level and urine output rate data. However, the serum creatinine level
and urine output rate are not sensitive or specific markers of AKI. The interpretation of
changes in renal function is prone to error when conducted on the basis of serum creatinine
level. First, because creatinine is not only glomerular-filtered but also secreted by tubules,
creatinine clearance overestimates the true GFR, especially in cases of decreased renal
function [22,23]. Second, serum creatinine level is influenced by muscle mass (creatinine is
a product of muscle catabolism), diet (a protein-rich diet results in higher serum creatinine
level), and drugs (for example, trimethoprim and cimetidine interfere with the tubular
secretion of creatinine) [24,25]. Third, the production of muscular creatine is influenced by
disease status; for example, it is lower and greater in severe hepatic disease and rhabdomy-
olysis, respectively [22,26]. Lastly, serum creatinine level is not significantly elevated until
48 h after renal injury, and delayed elevation detrimentally affects the timely identification
of renal injury [27,28]. Although urine output rate may reflect renal function decline in
a timelier manner, it is still affected by the patient’s volemic status and is influenced by
diuretic treatment.

Because both serum creatinine level and urine output rate are nonspecific and inac-
curate markers of AKI, multiple novel biomarkers have been investigated for predicting
or diagnosing AKI in a timely manner. The following novel biomarkers have been identi-
fied for the early detection of AKI: cystatin C, neutrophil gelatinase-associated lipocalin,
kidney injury molecule 1, liver type fatty-acid binding protein, urine angiotensinogen
(AGT), and calprotectin. Chen and colleagues reported that serum cystatin C, urine NGAL,
and serum interleukin-18 (IL-18) played valuable roles in the early detection of AKI in
a cardiac care unit (CCU) and that the areas under the receiver operating characteristic
curve (AUROCs) of serum cystatin C, urine NGAL, and serum IL-18 for AKI prediction
were 0.895, 0.886, and 0.841, respectively. Multiple regression analysis indicated that urine
NGAL, serum IL-18, and sodium levels at CCU admission were independent risk factors
for 6-month mortality. Among these factors, urine NGAL had the highest discriminatory
power, and the Youden index indicated that it yielded the most accurate prediction of
patient mortality [29]. Some studies have described pseudo-worsening renal failure (also
termed pseudo-AKI), which is a common clinical condition in patients with cardiorenal
syndrome in which increases in serum creatinine level are induced by diuretic treatment
rather than by tubular necrosis or interstitial nephritis. These studies have suggested that
the novel biomarker calprotectin can distinguish a true AKI episode from a pseudoepisode
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of diuretics-related AKI [30,31]. Chang et al. aptly reported that calprotectin had an
excellent AUROC of 0.946 for predicting intrinsic AKI [32].

Although the novel AKI biomarkers identified in recent studies have greatly im-
proved and enabled the earlier detection of AKI, many difficulties remain in applying
these biomarkers in clinical settings. Vanmassenhove and colleagues noted that the early
diagnosis of AKI by using novel serum and urinary biomarkers remains cumbersome,
especially in settings in which the timing and etiology of AKI are not well defined [33].
Another difficulty is that tests for novel biomarkers are not widely commercially available
or can be expensive and repeat examinations may be required during the process of AKI
diagnosis. Moreover, Marx et al. concluded that it is almost impossible to depend on one
universal serum or urine biomarker to determine the risk, diagnosis, severity, and outcome
of AKI and to discriminate between etiologies of AKI and monitor its course [34]. AKI is a
nonuniform, complex condition with a wide spectrum of causes and pathophysiological
mechanisms; therefore, the requirement of several biomarkers or marker panels that cover
different aspects of AKI seems reasonable for standardizing diagnoses [34,35]. However,
examining multiple novel biomarkers or evaluating the patient’s condition by using marker
panels may further increase the costs of predicting or diagnosing AKI early and accurately.
Therefore, the most cost-effective method appears to be identifying which patients with
AKI are at high risk before arranging a biomarker examination for them.

1.2. AKI Risk Factors and Risk Scores

Some studies that have focused on identifying significant risk factors for AKI have
determined that both patient susceptibilities and exposure are crucial in AKI develop-
ment. Patient susceptibilities include age, gender, race, and comorbidities. Among all
comorbidities, CKD has been identified as a major risk factor for AKI due to its associ-
ated loss of autoregulation, loss of renal reserve, and susceptibility to nephrotoxic agents.
Moreover, diabetes mellitus, hypertension, cardiovascular disease, hyperuricemia, obesity,
and liver disease have all been reported as risk factors for AKI [19,36,37]. Exposure to
sepsis, nephrotoxic agents, surgical intervention, and shock have been identified as contrib-
utors to AKI [16,17]. A multicenter international cross-sectional AKI–EPI study reported
that sepsis, hypovolemia, and nephrotoxic drug exposure were the three most frequently
reported etiologies of AKI in patients with a critical illness [16]. The incidence of AKI
may be higher among patients with poor physical condition after certain exposure; for
example, an aging patient may have a higher risk of AKI after cardiac surgery. However,
AKI risk differs by the physical condition and nephrotoxic exposure; this renders accurate
risk assessment challenging.

After the risk factors for AKI were identified, investigators began focusing on estab-
lishing a risk score by using a combination of independent AKI predictors, assessment of
relative impact, and external validation. A precise risk prediction score must be able to
identify at-risk patients and guide physicians in preventing, diagnosing, and treating the
disease. Different scoring systems have been constructed for assessing the risk of AKI in
specific groups of patients; these prediction models include age, gender, baseline renal
function, and comorbidities, and specific predictors can be added depending on surgery
type, medication, and procedure-related data.

The Mehran risk score was proposed in 2004 for analyzing the risk of AKI and the
requirement of renal replacement therapy in patients with postpercutaneous coronary
intervention; according to later external validation conducted in 2016, the system exhibited
adequate performance for predicting contrast-induced nephropathy in patients with acute
coronary syndrome who underwent coronary angiography [38,39]. Large cohort studies
have revealed that surgery is a major cause of AKI, and the AKI incidence rate ranges
from 25% for trauma surgery to as high as 50% for cardiac or aortic surgery [6,7,40].
Additionally, cardiac surgery is associated with the highest AKI incidence among all types
of surgery, ranging from 2% to 50%, and the dialysis-dependent rate is 1% to 6% [41,42];
therefore, it is unsurprising that several prediction models have been established for AKI
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risk identification in patients who plan to undergo cardiac surgery. The earliest scoring
system EuroSCORE is based on European multicenter data published in 1999, and the
2010 Value of Age, Creatinine, and Ejection Fraction (ACEF) score is also based on data
from European databases [43,44]. The short-term risk (Society of Thoracic Surgeons, STS)
score was created in 2008 by using data from the national database of the American Society
of Thoracic Surgery; this score is used to evaluate adult preoperative cardiac surgery risk,
and professionals have retained and modified this prediction model [45,46]. In an externally
validated study, 196 patients received mitral valve repair, and their STS and ACEF scores
were compared; the STS renal failure score was the most accurate for predicting stage 2
and 3 AKI. Additionally, that study found that ACEF scores exhibited an AUROC similar
to that of STS renal failure scores across all AKI predictions (ACEF and STS score AUROCs:
0.758 and 0.797, respectively), but the ACEF score includes only three prediction factors:
age, creatinine, and ejection fraction; thus, the ACEF score is more convenient for clinical
physicians [41]. In another study that compared the preoperative risk models of AKI in
isolated coronary artery bypass grafting surgery, the EuroSCORE II, STS score, and ACEF
score all performed adequately for predicting stage 3 AKI; additionally, the ACEF score
exhibited satisfactory discriminatory power for predicting postoperative AKI, with an
AUROC of 0.781 [47].

Besides the comorbidities and acute illness conditions, race and epidemiology factors
also showed their impact on AKI incidence according to previous studies. Mathioudakis
and his colleagues had reported that blacks had a 50% higher age- and sex-adjusted odds of
AKI compared to whites (odds ratio: 1.51; 95% CI 1.37–1.66) based on the national databases
of the U.S. This association between the black race and increased risk of AKI persisted after
additional adjustment for multiple AKI-related risk factors [48]. In 2013, a meta-analysis
focused on AKI incidence worldwide reported that the pooled rate of AKI according to
KDIGO criteria showed a difference around the world. According to geographic regions of
the world and patterns of country economies and latitude, the pooled rate of AKI appeared
higher in South versus North America (29.6% versus 24.5%), Southern versus Northern
Europe (31.5% versus 14.7%), and South versus Western or Eastern Asia (23.7% versus
16.7% versus 14.7%). The pooled rate of AKI appeared higher in studies from countries
located south versus north of the equator (27.0% versus 22.6%), in addition, this study also
revealed that the AKI incidence was high in countries that spent >10% versus ≤5% GDP
on total health expenditure (25.2% versus 14.5%) [49].

Considering the influence of race and epidemiology on AKI incidence, some investiga-
tors have validated their scores against data from their country’s health insurance research
database to achieve high prediction performance. An example is the ADVANCIS score,
which is used to predict AKI in patients who receive percutaneous coronary intervention
(PCI) for coronary artery disease; the score was validated against data from Taiwan’s
National Health Insurance Research Database. The ADVANCIS score uses eight clinical
parameters (age, diabetes mellitus, ventilator use, prior AKI, number of intervened vessels,
CKD, IABP use, and cardiogenic shock), and the score ranges from 0 to 22; additionally,
an ADVANCIS score of ≥6 is associated with higher in-hospital mortality risk [50]. In ad-
dition to modifying risk prediction models in accordance with epidemiological factors,
researchers have included novel biomarkers as prediction factors in some modern AKI pre-
diction score systems and have assessed the association between biomarkers and patients’
clinical information. Zhou et al. established a prediction score of AKI in patients with acute
decompensated heart failure by setting urine NGAL and urine AGT as risk factors [51].

Although various scoring systems have been established to address different clinical
conditions, most prediction models can perform only as single-point AKI prediction models,
such as predicting AKI incidence after a specific type of surgery or before the use of a
contrast agent, making it difficult to reflect changes in real-time. Furthermore, some of
these scoring systems cover several factors, including baseline condition, clinical data,
and novel biomarkers, making them too complex for clinical use. With the development
of information technology, some hospitals have integrated these prediction systems into
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their medical informatics systems (MISs), and these clinical risk assessment tools have been
increasingly used because they enable the automated analysis of data. Because race, genes,
disease prevalence, and medication differ between countries, the combined use of an MIS
and risk prediction scores potentially enable the use of data from local databases to assess
the risks of AKI and the requirement of renal replacement therapy.

1.3. From Automated Electronic Alerts to AI

As MISs become more popular, systems that provide automated electronic alerts
(e-alerts) have become increasingly feasible; in such a system, the electronic records and
clinical information of patients are analyzed using an algorithm that predicts whether
early or subclinical AKI is present [52]. These systems are expected to aid patient care by
making clinical evaluation and treatment timelier. Park and his colleagues had investigated
an AKI alert system with automated nephrologist consultation in which clinicians could
generate automated consultations to the nephrology division while patient’s serum creati-
nine concentration elevation of at least 1.5-fold or 0.3 mg/dL from baseline. This study
reported that the early consultation with a nephrologist was greater (adjusted OR, 6.13;
95% CI, 4.80–7.82) and odds of a severe AKI event were reduced (adjusted OR, 0.75; 95%
CI, 0.64–0.89) after introducing the e-alert system. However, mortality was not affected
(adjusted HR, 1.07; 95% CI, 0.68–1.68) [53]. Another study used an e-alert system in ICU
patients, clinician received a “pop-up” message while the e-alert system screened the serum
creatinine data and detected possible AKI events following the KDIGO criteria definition.
Although the sensitivity, specificity, Youden Index and accuracy of the AKI e-alert system
were 99.8, 97.7, 97.5 and 98.1%, respectively, in this study, and the prevalence of diagnosis
AKI and the prevalence of nephrology consultation in the e-alert group was higher than
that in the non-e-alert group. There was no significant difference in the prevalence of
dialysis, rehabilitation of renal function, or death in the two groups [54]. In 2017, a sys-
temic review concluded that an e-alerts system neither reduced mortality (odds ratio [OR],
1.05; 95% CI, 0.84–1.31) nor reduced the incidence of dialysis treatment (OR, 1.20; 95% CI,
0.91–1.57) [55,56]. All six studies included in this meta-analysis used only serum creatinine
change as the trigger for e-alerts, and serum creatinine change is neither a sensitive nor
specific marker of kidney injury, as mentioned in the preceding paragraph. Beyond the
limitation of serum creatinine as an AKI marker, e-alerts systems face challenges when
used in patients without baseline renal function and those with CKD who have higher
baseline creatinine levels and more significant changes in renal function following small
changes in creatinine level; a wide variety of further care is provided by clinicians to
patients after the receipt of e-alerts. To prescribe standardized and evidence-based clini-
cal care after the receipt of e-alerts, a care bundle was built. The most recent guidelines
prescribe no specific management options for AKI, and the treatment strategy is mainly
supportive. In critically ill patients, the occurrence and severity of AKI were reduced
following adherence to KDIGO guidelines detailing the management of fluids, avoidance
of nephrotoxins, monitoring of serum creatinine levels and hemodynamics, and referral
to a specialist. Several studies have reported a decrease in hospital-acquired AKI and
AKI-associated mortality and hospitalization days when the e-alert system was combined
with a care bundle, the patient’s history was analyzed, the patient’s urine samples were
tested, a clinical diagnosis of AKI was established, the course of treatment and testing was
planned, and advice was sought from a nephrologist [57–59]. Machine-learning algorithms
are in high demand and require large volumes of data. With large EMR databases and
powerful computing hardware, scholars have extended the application of machine learning.
Recently, AI has also been applied with various machine-learning algorithms, especially
deep neural networks.
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2. Methods

In order to get a closer look at the investigating of machine-learning studies on AKI
prediction, we searched PubMed for clinical trials and conference abstracts discussing
how machine learning and AI can be used to predict AKI. Online literature searches
of the PubMed database were performed, and the database search was last updated
on 1 December 2020. The search strategy targeted published clinical trials, including
conference abstracts that described the use of machine learning for predicting AKI in adults.
The search strategy and results are detailed in Supplementary Table S1. Two investigators
(T.H. Lee and J.J. Chen) independently evaluated the titles and abstracts of the retrieved
studies, and articles were excluded upon initial screening if their titles or abstracts indicated
that they were clearly irrelevant to the objective of the current study. Full-text reviews were
then performed for the articles deemed potentially relevant to assess their eligibility for
inclusion. The study inclusion criteria were as follows: (i) a study population consisting of
adults and the study having a prospective or retrospective design and (ii) AKI prediction
through machine learning. Case series and reports, conference abstracts, comments on
other studies, and review articles were excluded.

3. Results

In total, 31 studies reported the discriminating ability of machine learning for predict-
ing AKI (Table 1).

As shown in Table 1, the included studies predicted AKI adequately, some studies
had AUROC > 0.8, and the study conducted by Koola et al. had the highest AUROC of
0.93 in logistic regression. The models outperformed diagnosis through novel biomark-
ers. Machine-learning models that were used to predict AKI had four to 57 covariates.
These covariates were epidemiological factors, comorbidities, laboratory data, medications,
and surgery types. We summarize the most commonly used covariates in these machine-
learning prediction models in Figure 1. In the 31 studies, the five most commonly used
covariates were creatinine, age, blood pressure, gender, and diabetes mellitus. Among
these 31 studies, eight studies focused on patients’ undergoing surgery (surgeries were
cardiac or aortic surgeries in five studies), and the most commonly used covariates in
surgical patients are illustrated in Figure 2; the five most common used covariates were
gender, body mass index, age, creatinine, and surgery type.

In Table 2, we summarized the method of feature selection, data splitting and machine
learning algorithm choices in enrolled studies. Different performances on predicting AKI
by using different machine learning algorithms were also listed in this table. More than
half of the enrolled studies used LASSO, XGBoost, or other feature selection methods to
choose the covariates for machine learning, but some studies chose covariates according to
clinical experience or previous reports.
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Table 1. Summary of machine-learning studies on acute kidney injury (AKI) prediction.

Scheme Year Design Population AKI
Definition Timing of AKI AKI Incidence

(%)
Patient

Number
External

Validation
Continuous
Prediction

Kate et al. [60] 2016 retrospective medical and surgical AKIN during hospitalization 8.9% 25,521 no no
Thottakkara et al. [61] 2016 retrospective surgical KDIGO post operation 36.0% 50,318 no no

Davis et al. [62] 2017 retrospective medical and surgical KDIGO during hospitalization 6.8% 2003 no no
Cheng et al. [63] 2018 retrospective medical and surgical KDIGO during hospitalization 9.0% 60,534 no no

Ibrahim et al. [64] 2018 prospective PCI KDIGO pre and post intervention 4.8% 889 no no

Koola et al. [65] 2018 retrospective medical and surgical KDIGO during hospitalization NR
(41.6% HRS) 504 no no

Koyner et al. [66] 2018 retrospective medical and surgical KDIGO 24 h post admission 14.4% 121,158 no no
Huang et al. [67] 2018 retrospective PCI KDIGO during hospitalization 7.4% 947,091 no no

Lin et al. [68] 2019 retrospective ICU KDIGO during hospitalization 14% 19,044 no no
Simonov et al. [69] 2019 retrospective medical and surgical KDIGO 24 h post admission 11.4–19.1% 169,859 yes no
Huang et al. [70] 2019 retrospective PCI AKIN pre and post intervention 6.4% 2,076,694 no no

Tomašev et al. [71] 2019 retrospective medical and surgical KDIGO during hospitalization 13.4% 703,782 no yes
Adhikari et al. [72] 2019 retrospective surgical KDIGO post operation 46.0% 2901 no no
Flechet et al. [73] 2019 prospective ICU KDIGO during hospitalization 12% † 252 no no
Parreco et al. [74] 2019 retrospective medical and surgical KDIGO during hospitalization 5.6% 151,098 no no

Xu et al. [75] 2019 retrospective medical and surgical KDIGO during hospitalization NR 58,976 no no
Tran et al. [76] 2019 prospective burn KDIGO during hospitalization 50.0% 50 no no

Zhang et al. [77] 2019 retrospective ICU KDIGO 24 h post admission 58.1% 6682 no no
Zimmerman et al. [78] 2019 retrospective ICU KDIGO 72 h post admission 16.5% 46,000 no no

Rashidi et al. [79] 2020 retrospective
and prospective burn and trauma KDIGO 1st week post ICU

admission 50.0% 101 no no

Zhou et al. [80] 2020 retrospective TAAAR NR post operation 12.7% 212 no no
Martinez et al. [81] 2020 retrospective medical and surgical KDIGO emergency department 7.9% 59,792 no no

Lei et al. [82] 2020 retrospective TAAR KDIGO post operation 72.6% 897 no no
Lei et al. [83] 2020 retrospective hepatectomy KDIGO post operation 6.6% 1173 no no
Qu et al. [84] 2020 retrospective acute pancreatitis KDIGO during hospitalization 24.0% 334 no no

Tseng et al. [85] 2020 retrospective Cardiac surgery KDIGO post operation 24.3% 671 no no
Sun et al. [86] 2020 retrospective PCI KDIGO during hospitalization 15.1% 1495 no no

Churpek et al. [87] 2020 retrospective medical and surgical KDIGO during hospitalization 14.3% 495,971 yes no
Hsu et al. [88] 2020 retrospective medical and surgical KDIGO Community acquired AKI 8.4% 234,867 no no

Penny-Dimri et al. [89] 2020 retrospective Cardiac surgery Other * post operation 6.5% 97,964 no no
Li et al. [90] 2020 retrospective Cardiac surgery KDIGO post operation 37.5% 5533 no no

* The AKI definition in this study was as follows: (1) new postoperative and in-hospital serum creatinine level > 200 mmol/L AND a doubling or greater increase in creatinine over the baseline preoperative
value AND the patient did not require preoperative renal replacement therapy; and (2) a new inhospital requirement for renal replacement therapy. † Only reported the percentage of AKI stage 2 and stage 3.
AKI: acute kidney injury; ICU: intensive care unit; PCI: percutaneous coronary intervention; TAAR: total aortic arch replacement; TAAAR: thoracoabdominal aortic aneurysm repair.
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Table 2. Summary of data processing and performance of machine-learning algorithm in enrolled studies.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Kate et al. [60] NR NR ten-fold cross-validation

naïve Bayes 0.654
SVM 0.621

decision trees 0.639
logistic regression 0.660

Thottakkara et al. [61] LASSO embedded method
training data (70%); validation

(30%)

naïve Bayes 0.819
generalized additive model 0.858

logistic regression 0.853
support vector machine 0.857

Davis et al. [62]
according to clinical experience

or previous report NR five-fold cross-validation

random forest 0.73
neural network 0.72

naïve Bayes 0.69
logistic regression 0.78

Cheng et al. [63] according to clinical experience
or previous report NR ten-fold cross-validation

random forest 0.765
AdaBoostM1 0.751

logistic regression 0.763
Ibrahim et al. [64] LASSO embedded method Monte Carlo cross-validation logistic regression 0.79

Koola et al. [65] LASSO embedded method five-fold cross-validation

logistic regression 0.93
naïve Bayes; 0.73

support vector machines; 0.90
random forest; 0.91

gradient boosting 0.88
Koyner et al. [66] tree-based method embedded method ten-fold cross-validation gradient boosting 0.9

Huang et al. [67] XGBoost and LASSO embedded method
training data (70%); validation

(30%)
gradient boost; 0.728

logistic regression 0.717

Lin et al. [68] according to clinical experience
or previous report NR five-fold cross-validation SVM 0.86

Simonov et al. [69] according to clinical experience
or previous report NR training data (67%); validation

(33%) discrete-time logistic regression 0.74

Huang et al. [70]
stepwise backward selection,
LASSO, premutation-based

selection
embedded method training (50%); validation (50%) generalized additive model 0.777

Tomašev et al. [71] L1 regularization embedded method training (80%); validation (5%);
calibration (5%); test (10%) recurrent neural network 0.934
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Table 2. Cont.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Adhikari et al. [72] F-test filter method five-fold cross-validation random forest 0.86

Flechet et al. [73] according to clinical experience
or previous report NR NR random forest 0.78

Parreco et al. [74] NR NR NR
gradient boosting; 0.834
logistic regression; 0.827

deep learning 0.817
Xu et al. [75] gradient boosting embedded method five-fold cross-validation gradient boosting 0.749

Tran et al. [76] NR NR Scikit-learn cross validation k-nearest neighbor 0.92
Zhang et al. [77] XGBoost embedded method bootstrap validation gradient boosting 0.86

Zimmerman et al. [78] logistic regression embedded method five-fold cross-validation
logistic regression 0.783

random forest 0.779
neural network 0.796

Rashidi et al. [79] according to clinical experience
or previous report NR Scikit-learn cross validation recurrent neural network 0.92

Zhou et al. [80] NR NR five-fold cross-validation

logistic regression 0.73
linear kernel SVM 0.84

Gaussian kernel SVM 0.77
random forest 0.89

Martinez et al. [81] LASSO embedded method ten-fold cross-validation random forest not provided

Lei et al. [82] NR NR training data (70%); validation
(30%) Gradient boosting 0.8

Lei et al. [82] NR NR
training data (70%); validation

(30%)

Gradient boosting 0.772
Light gradient boosted machine 0.725

random forest 0.662
DecisionTree 0.628

Qu et al. [84] NR NR ten-fold cross-validation

random forest 0.821
classification and regression tree 0.8033

logistic regression 0.8728
extreme gradient boosting 0.9193

Tseng et al. [85] tree-based method embedded method five-fold cross-validation
random forest 0.839

random forest with extreme gradient
boosting 0.843

Sun et al. [86] Boruta algorithm wrapper method ten-fold cross-validation
random forest 0.82

logistic regression; 0.69
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Table 2. Cont.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Churpek et al. [87] gradient boosting embedded method ten-fold cross-validation gradient boosted machine 0.72
Hsu et al. [88] XGBoost and LASSO embedded method five-fold cross-validation logistic regression; 0.767

Penny-Dimri et al. [89] tree-based method embedded method five-fold cross-validation
logistic regression; 0.77

gradient boosted machine 0.78
neural networks 0.77

Li et al. [90] LASSO embedded method ten-fold cross-validation Bayesian networks 0.736

AUROC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and selection operator; NR: not reported; SAPS: simplified acute physiology score; SVM: support vector machine;
XGB: eXtreme Gradient Boostin.
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4. Discussion

Among these 31 studies, there were several studies that are worth addressing. By re-
viewing these studies, we found that most of these studies lacked external validation,
which implies that the results cannot be extended to other populations. Two studies per-
formed external validation. Simonov and colleagues established a real-time AKI prediction
model by using an electronic health record (EHR) dataset of 169,859 hospital admissions in
three hospitals. The training dataset contained the data of 60,701 patients, and the internal
validation dataset contained the data of 30,599 patients from the same hospitals; external
validation was performed with the data sets of 43,534 and 35,025 patients from two other
hospitals. The incidence of AKI was similar in the training and external validation datasets
(19.1% and 18.9%, respectively). Discrete-time logistic regression was used to train the
model, a total of 35 covariates were included in the fully adjusted models, and the AUROCs
for predict sustained AKI, dialysis, and death were 0.77 (95% CI, 0.76–0.78), 0.79 (95% CI,
0.73–0.85), and 0.69 (95% CI, 0.67–0.72), respectively [69,91]. This real-time prediction
model was based on large cohorts including patients requiring hospitalization and those in
surgical and ICU settings, and the external validation of this model was performed using
the data from two other institutions, with high predictive performance found across the
three diverse care settings; the subsequent prospective cohort study indicated that the
clinical alert system based on this prediction model was successfully integrated into the
EHR system [91]. However, this real-time prediction model still had several limitations.
First, patients whose creatinine levels were ≥4 were excluded during the development
of this prediction model, but the risk and incidence of AKI and dialysis requirements are
especially high in this population. Second, this prediction model did not include urine out-
put, one of the most sensitive markers of AKI, and thus, could delay diagnosis in patients
who already had oliguria but had increased serum creatinine levels. Third, more than 30
covariates were included in this prediction model; some of these covariates are infrequently
checked laboratory data, such as bicarbonate and chloride levels. Moreover, as mentioned
in this report, only the model containing time-updated laboratory values had similar per-
formance in predicting AKI, sustained AKI, dialysis, and death. Unless all of these items
are regularly checked in the ICU, it is difficult to evaluate AKI risk in a timely manner.
Another study that performed external validation was published by Churpek et al., the data
of 48,463 admissions were included in training and internal validation datasets, and the
data of 447,508 admissions were used for external validation. The AUROC for predicting
development AKI within 48 h was 0.72 for the internal validation cohort and the ARUROC
of the two external validation cohorts were 0.67, 0.69, whereas the AUROC for predicting
the receipt of renal replacement therapy within 48 h was 0.95. However, this study had a
similar limitation to that of the study by Simonov et al.; the study excluded patients with
serum creatinine concentration over 3.0 mg/dL on admission [87]. Higher creatinine levels
and chronic kidney disease are known risk factors for AKI. It is unfortunate that the only
two studies with external validation coincidentally excluded the high-risk population from
the beginning.

In addition to the lack of external validation, most of the enrolled studies only pre-
dicted AKI risk at a single time point and could not provide continual predictions. Given
that patients’ clinical conditions change from time to time, using laboratory, medication,
and vital sign data at a single time point to perform single-point AKI risk prediction
may not reflect the real-time changes of patients. One study investigated continuous
risk prediction by using novel neural network algorithms. Such algorithms can process
time-series data to produce time-dependent forecasts rather than forecasts that depend
on summary data, as is the case in traditional methods. Tomašev et al. used the recurrent
neural network to demonstrate a deep-learning approach for the continuous prediction of
AKI; the approach was based on recent work on modeling adverse events from EHRs. That
study was based on data provided by the United States Department of Veterans Affairs; the
data were the data of 703,782 adult patients across 1243 health care facilities in the United
States. By analyzing 6-hourly EHR data during hospitalization, the model predicted 55.8%
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of all inpatient episodes of AKI and 90.2% of all AKIs that required subsequent dialysis.
The AUROC of predicting AKI within 24-, 48-, and 72-h time windows was 0.934, 0.921
and 0.914, respectively [71]. However, the high discriminative power of this system for
AKI prediction derived from a large manipulated and processed dataset; the total number
of independent entries in the dataset was approximately 6 billion according to the authors,
which means that data cleaning and processing were difficult and had been executed by
experts in data science. External validation of this successful result may be difficult due
to the differing EHR systems, clinical pathways, treatments, and examination frequencies.
Therefore, it may be crucial to establish an AI-assisted prediction model on the basis of
a hospital’s unique clinical practices. Although real-time prediction was not performed,
another study attempted to use time-series variables to improve risk prediction. Before
this investigation, most postoperative AKI prediction models were based on preoperative
variables. Adhikari et al. published MySurgeryRisk, a machine-learning algorithm that
uses random forests to predict the postoperative AKI risk within the 3 and 7 days after
surgery and the overall AKI risk. The data of 2911 patients who underwent surgery were
internally validated. By combining intraoperative physiological time-series covariates
with preoperative variables, machine-learning prediction models achieved an AUROC
of 0.86 for predicting 7-day postoperative AKI outcomes, and AUROC was 0.84 when
only the preoperative covariates of the same cohort were used. That study confirmed that
postoperative AKI prediction had higher sensitivity and specificity when machine learning
was applied for the dynamic incorporation of intraoperative data [72].

Most of the enrolled studies used independent cohorts; it is challenging to evaluate
whether machine learning truly improved AKI risk prediction compared with the original
statistics. Under this consideration, Huang et al. used the same cohort and candidate
variables that were used to develop the Cath/PCI Registry AKI model as well as the data
from the American College of Cardiology National Cardiovascular Data Registry collected
in 1694 hospitals. That retrospective study analyzed 947,091 patients receiving PCI and
concluded that the risk prediction model containing 13 variables (age, prior heart failure,
cardiogenic shock within 24 h, cardiac arrest within 24 h, diabetes mellitus, coronary artery
disease, heart failure within 2 weeks, preprocedure GFR and hemoglobulin, admission
source, body mass index, elective or emergency PCI, and preprocedure left ventricular
ejection fraction), which was validated using the generalized additive model, performed
adequately, with an AUROC of 0.752 (95% CI, 0.749–0.754) and performed more highly
than the original Cath/PCI Registry AKI model (AUROC, 0.711; 95% CI, 0.708–0.714). This
machine-learning model also had a significantly wider predictive range than the Cath/PCI
Registry AKI model did (25.3% vs. 21.6%, p < 0.001) and was more accurate than that
model in stratifying patient risk for AKI [67].

Although machine-learning algorithms may not have matured yet and still have
several limitations, they have already shown impressive performance and sensitivity in the
early detection of AKI, giving clinicians useful information regarding further adverse events
and long-term prognosis. By reviewing studies focused on the application of machine
learning to AKI prediction, we showed that machine-learning algorithms have had a high
performance for AKI prediction not only in inpatients but also in the surgical population.
To date, whether the use of machine-learning algorithms for the earlier prediction of
AKI risk can truly improve the prognosis of AKI remains questionable, but its ability on
predicting AKI is recognized.

5. Conclusions

AKI is the most common and adverse potential complication of hospitalization, and it
has a considerable negative impact on short-term and long-term patient outcomes. Al-
though current guidelines use serum creatinine level and urine output rate for defining
AKI and as the staging criteria of AKI, these markers are not sensitive or specific for AKI.
With the advances in techniques, digitization of MISs and EHRs can provide more and
timing information from patients’ underlying disease to real-time vital sign variability



Healthcare 2021, 9, 1662 14 of 18

which increases the performance and sensitivity of machine-learning algorithms. Current
studies reported that the AUROC of machine-learning algorithms on AKI prediction can
be over 0.80. However, most of the studies were retrospective analyses and lacked external
validation which implicated the results of the proposed models cannot be generalized
outside the experimental population, and the variability of EHRs across hospitals may limit
the widespread use of these prediction models. Besides, even though the MISs and EHRs
provide continuous clinical records of patients but only one study performed continual risk
prediction by using the recurrent neural network with a deep-learning approach, and only
one study used time-series covariates to improve risk discrimination demonstrating that
the use of machine learning to address large datasets is not popularized and continuous
prediction of AKI via machine-learning algorithms still needs to be improved. Considering
that the influencing factors, clinical and laboratory parameters might change over the
hospitalization, the longitudinal evaluation to predict AKI continuously might be the
next challenge of application of machine learning on AKI prediction. When the machine
learning algorithms can provide real-time informatics of AKI prediction by dealing with
complex databased of EHR, it might be worthwhile to look forward to the combination of
machine-learning algorithms and e-alert systems. At that time, by using these machine-
learning algorithms but not only serum creatinine level, e-alert systems will have a chance
to provide more accurate and earlier alarm of AKI which might improve the prognosis of
AKI after combining with the care bundle.
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