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Abstract: Dietary studies showed that dietary problems such as obesity are associated with other
chronic diseases, including hypertension, irregular blood sugar levels, and increased risk of heart
attacks. The primary cause of these problems is poor lifestyle choices and unhealthy dietary habits,
which are manageable using interactive mHealth apps. However, traditional dietary monitoring
systems using manual food logging suffer from imprecision, underreporting, time consumption, and
low adherence. Recent dietary monitoring systems tackle these challenges by automatic assessment
of dietary intake through machine learning methods. This survey discusses the best-performing
methodologies that have been developed so far for automatic food recognition and volume estimation.
Firstly, the paper presented the rationale of visual-based methods for food recognition. Then, the core
of the study is the presentation, discussion, and evaluation of these methods based on popular food
image databases. In this context, this study discusses the mobile applications that are implementing
these methods for automatic food logging. Our findings indicate that around 66.7% of surveyed
studies use visual features from deep neural networks for food recognition. Similarly, all surveyed
studies employed a variant of convolutional neural networks (CNN) for ingredient recognition due
to recent research interest. Finally, this survey ends with a discussion of potential applications of food
image analysis, existing research gaps, and open issues of this research area. Learning from unlabeled
image datasets in an unsupervised manner, catastrophic forgetting during continual learning, and
improving model transparency using explainable AI are potential areas of interest for future studies.

Keywords: food recognition; feature extraction; automatic diet monitoring; image analysis; volume
estimation; interactive segmentation; food datasets

1. Introduction

Despite recent advancements in medicine, the number of people affected by chronic
diseases is still large [1]. This rate is primarily due to their unhealthy lifestyles and irregular
eating patterns. As a result, obesity and weight issues are becoming increasingly common
around the globe. Some of the more notable diseases caused by obesity include hyper-
tension [2], blood sugar [3], cardiovascular diseases [4], and different kinds of cancers [5].
The main reported obesity issues are in developed and middle-income countries. In 2016,
1.9 billion adults 18 years and older were overweight, while 650 million were obese. With
time, children are also becoming affected by obesity at an alarming rate. According to
World Health Organization (WHO), over 340 million children and adolescents between 5
and 19 years were overweight or obese [6].

The prevalence of these alarming statistics poses a serious concern. However, de-
termining the effective remedial measures depends on different factors, ranging from a
person’s genetics to their lifestyle choices. To cope with chronic weight problems, people
often keep notes to track their dietary intake. In turn, dieticians require these records to
estimate a patient’s nutrient consumption. However, these methods pose a challenge for
users and dieticians, especially when they have to record time and estimate nutrients of
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diet intake [7]. For these reasons, recent research efforts have explored sophisticated vision-
based methods to automate the process of food recognition and volume estimation [8,9].
The advancement in smartphone applications and hardware resources has made this more
convenient, and present studies also show a higher retention rate of these mHealth apps
than traditional methods [10]. Recent advancements in machine learning methods have
further paved the way for more robust mHealth apps. Some dietary mobile applications
such as DietLens [11], DietCam [12], Im2Calories [13], etc. integrate their apps with AI
models for food recognition and ingredients detection to automate food logging. The
Dietcam app also estimates nutrients from smartphone camera pictures.

However, automatic food recognition using a smartphone camera in the real world
is considered a multi-dimensional problem, and the solution effectiveness depends upon
several factors. Firstly, the model can achieve optimal classification performance by training
with many food images for each class. Other than that, food recognition is a complex task
that involves several domain-specific challenges. There is no spatial layout information
that it can exploit like, in the case of the human body, the spatial relationship between
body parts. The head is always present over the trunk of the human body [14–16] and
feet towards the lower end. Similarly, the non-rigid structure of the food and intra-source
variations make it even more complicated to classify food items correctly as preparation
methods and cooking styles vary from region to region. Moreover, inter-class ambiguity
is also a source of potential recognition problems as different food items may look very
similar (e.g., soups). Moreover, in many dishes, some ingredients are concealed from view
that can limit the performance of food ingredient classification models.

In addition to this, image quality from the smartphone camera is dependent on
different types of cameras, lighting conditions, and orientations. As a result, the poor
performance of food recognition models is highly susceptible to image distortions.

Despite these challenges, many food images possess distinctive properties to distin-
guish one food type from another. Firstly, the visual representations of food images are of
fundamental importance as it significantly impacts classification performance. Therefore,
many food-recognition methods employ handcrafted features such as shape, color, texture,
and location. Recent techniques are using deep visual features for image representations.
Some of these methods implement a combination of handcrafted and deep visual features
for image feature representations. Secondly, for enhanced classification performance and
reduced computational complexity, an appropriate selection of attributes is essential for
removing redundant features from feature vectors. Finally, wisely selecting classification
techniques is crucial to address food recognition challenges effectively.

Similarly, manual logging of food volume is a tedious task and involves a high rate
of human error by as much as 30% [17–22]. Several solutions are proposed whose aim is
to estimate food volume from smartphone camera pictures. Previous studies [23] show
that using a mobile phone camera for food volume estimation increases the accuracy of
the estimation of calories. Some methods involve capturing a single image, while multiple
views are needed to determine accurate volume in other techniques. The food volume
estimation process involves the following two steps (1) multiple images or a single image
from a mobile camera is needed (2) computation of food volume from 3D construction or
calibration object. Regardless of other volume estimation tasks, food volume estimation
is a complex task with factors such as variations in shape and appearance due to various
shapes of food and eating conditions affecting its performance.

The following research paper aims to scrutinize state-of-the-art vision-based ap-
proaches for dietary assessment to give researchers a summary of this area. Figure 1
represents the detailed scope and taxonomy of our survey study. The contribution of this
survey is summarized as follows:

(1) The article briefly explores food databases for evaluating vision-based approaches
and performance measures to thoroughly investigate food recognition, ingredient
detection, and volume estimation methods.
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(2) It presents an extensive review of food recognition techniques, including traditional
methods with handcrafted features and modern deep-learning-based approaches.

(3) It provides deep insight into multi-label methods for food ingredient classification.
(4) This study surveyed most performing single-view and multi-view methods for food

volume estimation.
(5) This study presents existing mobile applications that implement these approaches

and other potential applications of vision-based methods in health care.
(6) The article analyzes open issues and suggests possible solutions to overcome the

limitations of the existing methodologies.

Figure 1. Scope and taxonomy of this survey paper.

It should be noted that the article is related to vision-based methods for food image
analysis and their applications in the field of healthcare currently being discussed in the
literature. However, the methodology of this article seeks to examine the systems more
broadly by describing their important aspects similar to narrative overview [24] instead of
a systematic review, some related works to the topic, or adopted search followed by a brief
discussion.

Section 1 has presented the introduction of the study. The rest of the article is organized
as follows. Sections 2 and 3 examine evaluation metrics and existing datasets. Section 4
examines feature extraction methods for food image representation including handcrafted
and deep visual features. In Sections 5 and 6, we presented the most performing classifiers
for food categorization and ingredient detection. Section 7 represents the food-volume-
estimation methods. In Section 8, we provide brief information about mobile applications
implementing these methods and other potential applications. Sections 9 and 10 summa-
rize statistical analysis and open issues. To conclude, we highlight our findings and future
works related to this topic.

2. Evaluation Metrics
2.1. Evaluation Metrics for Food Categorization

The performance of automatic food recognition models is highly dependent on the
correct mapping of food images into their respective categories. Therefore, confusion-
matrix and evaluation metrics play an essential role in determining the correctness of
food recognition models. Several metrics have been discussed in the literature, and their
appropriate selection depends on the requirements of specific applications. It has also been
observed that a classifier may perform well under one metric but poorly under another
metric. For example, in the context of an imbalanced food dataset, the data samples from
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one or more classes outnumber data samples from the remaining food classes. Then a
model trained on an imbalanced data set can have higher accuracy because of its good
performance on the majority classes despite having bad classification performance on
minority classes. Confusion matrix and other intrinsic metrics (Accuracy, Precision, Recall,
and F1-score) generally used for detailed comparisons are discussed in detail below.

2.1.1. Confusion Matrix

Confusion matrices are a widely used approach to summarize the performance of a
classification model in machine learning. In some cases, classification accuracy alone can
be misleading, especially when there are more than two classes in a dataset or if there were
an unequal number of observations present in food classes. Therefore, the confusion matrix
provides a clear picture of actual and predicted classes obtained by the classification model.
The confusion matrix is basically a two-dimensional matrix where each row represents an
example of an actual food class and each column represents a state of the predicted food
class. TP stands for true positive, TN represents the number of true negatives, FP is the
number of false positives, and FN represents false negatives in the confusion matrix shown
in Figure 2.

Figure 2. Confusion matrix.

2.1.2. Accuracy

The accuracy of a model determines whether the model is able to predict food classes
correctly or how well a certain model can generally perform. Equation (1) represents the
mathematical form of accuracy. However, accuracy cannot be used as a major performance
metric, as it does not serve the purpose when there is an imbalanced dataset. Therefore, we
have incorporated Precision, Recall, and F1 score to provide better insights into the results.

Accuracy =
(TP + FN)

(TP + FP + FN + TN)
× 100 (1)

Here TP refers to the true positive. True positive is an outcome where the model has
correctly predicted a positive class. For example, in the case of food recognition, it refers
to the food class that the model is trying to predict. TN refers to the true negatives: the
prediction is correct, and the actual value is negative. In the case of food recognition, it
refers to images from those food classes that the model is not trying to predict. FP refers
to the false positive, and FP prediction results are wrong. For example, in the case of
Food/NonFood recognition, FP refers to images that are non-food but are predicted as
food. FN refers to the false negatives. It refers to those data samples which are positive but
wrongly classified as negative class. For example, those food images that are classified as
non-food images by model.
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2.1.3. Precision

The Precision score can be defined as how often a model can correctly predict values
classified as positives. In simpler words, out of all predicted positive food classes, it
indicates what percentage is truly positive. This score is beneficial when the cost of false
positives is high. It is calculated by Equation (2).

Precision Score =
TP

(TP + FP)
(2)

2.1.4. Recall

Recall score identifies the model’s ability to correctly classify food classes. It deter-
mines out of total positive food classes what percentage is predicted positives. It provides
better insight when the cost of false negatives is high. It is computed by using Equation (3).

Recall =
TP

(TP + FN)
(3)

2.1.5. F1 Score

F1 score represents the harmonic mean of recall and precision score. It considers both
false positives and false negatives; therefore, it performs great on imbalanced datasets. It is
calculated by following Equation (4).

F1 Score =
(2 ∗ (Precision ∗ Recall))

Precision + Recall
(4)

2.2. Catastrophic Forgetting During Progressive Learning

Food datasets are open-ended due to the large variety of food dishes and different
preparation styles. There are no limitations and constraints on the number of classes, and
the model can progressively adapt domain variations in existing classes while learning
new food classes. However, catastrophic forgetting during progressive learning causes the
neural network to forget previous knowledge while learning new concepts. Catastrophic
forgetting measures compute the algorithm’s ability to retain previous concepts and knowl-
edge while learning new information. Kemker et al. [25] and Chaudry et al. [26] proposed
five measures of catastrophic forgetting to achieve this objective.

2.2.1. Intransigence

This refers to the difference in classification performance between the reference model
trained by batch learning technique and the model trained on feature vectors using incre-
mental learning protocol. The negative intransigence shows that incrementally learning a
new set of food classes improves performance. Equation (5) denotes its mathematical form.

lk = a∗k − ak,k (5)

2.2.2. Forgetting

This refers to the difference between the highest classification performance of a partic-
ular session in previous sessions and its classification performance in the current sessions.
Equation (6) computes the average forgetting of the network up to the kth session.

f k
j = max1∈{1,......,K−1} ai,j − a(k,j), j > k

Fk =
1

k−1 ∑k−1
j=1 f k

j

(6)
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2.2.3. Base Session

This refers to the model’s ability to retain the knowledge of base food classes in current
sessions, as shown in Equation (7).

Ωbase =
1

k− 1 ∑k
j=2

aj,1

aideal
(7)

2.2.4. New Session

This is the ability of a model to recall newly learned food classes, as shown in
Equation (8).

Ωnew =
1

k− 1 ∑k
j=2 aj,j (8)

2.2.5. All Session

This refers to the retention of the previous food classes learned by the network when
learning new food classes, as computed by Equation (9).

Ωall =
1

k− 1 ∑k
j=2

aj,all

aideal
(9)

2.3. Evaluation Metrics for Food Ingredient Classification

Similarly, food ingredient recognition is equally important for dietary assessment
applications. As food categorization is limited to the classification of generic food items
present in the food images, food ingredient recognition and classification provide deep
insights into the caloric content present in the food image. Therefore, food ingredient
recognition applications widely incorporate multi-label classification [27]. Since food
ingredient recognition is considered a multi-label problem as food images usually contain
more than one ingredient. Therefore, evaluation metrics generally used for multi-label
classification are different from traditional single-label classification. The following are the
performance metrics are used by food ingredient recognition models.

Consider xi, Yi with L number of labels as training datasets. Let us assume that MLC
is the training method and Zi = MLC(xi) is the output labels (ingredients) predicted by
the classification method.

2.3.1. Precision

Precision is the ratio of correctly predicted labels to the total number of actual labels,
averaged across all instances. Equation (10) represents precision for food ingredient
classification.

Precision =
1
N

N

∑
i=1

(
MLC(xi) ∩Yi

MLC(xi)

)
(10)

2.3.2. Recall

Recall is computed by Equation (11). It is the ratio of correctly predicted labels to the
total number of predicted labels.

Recall =
1
N

N

∑
i=1

(
MLC(xi) ∩Yi

MLC(Yi)

)
(11)

2.3.3. F1 Score

Finally, F1 score is the harmonic mean of the precision and recall. Equation (12)
represents the F1 score.

F1 Score =
1
N

N

∑
i=1

(
2 ∗ |MLC(xi) ∩Yi|
|MLC(xi)| + |Yi|

)
(12)
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2.4. Evaluation Metrics for Food Volume Estimation

Similarly, various studies related to food volume estimation use ground truth val-
ues to compare the accuracy of their proposed methods to determine the accurate food
volume [28–39]. Unfortunately, there is no dataset available to date for accurate mea-
surement of food volume. Nevertheless, the method proposed by [40] uses controlled
experiments that require participants to click images before and after their meal to com-
pute consumed calories, which are later compared with ground truth values. Similarly,
Ref. [41] incorporated different food models to determine the true volume; however, vari-
ous models failed to provide accurate information. Therefore, they implemented the water
displacement method, which requires a mean of three readings to find out the true volume.
Furthermore, most studies used the following equations to compute the relative error and
estimate the accuracy of the method

e =
∣∣v − vapprox

∣∣ (13)

where v is the actual volume and vapprox is the approximate volume

e =
1
N ∑n

i=1

∣∣wi − wg
∣∣

wg
(14)

where N is the number of food items, wi is the estimated weight of the food item, and wg is
the ground truth value of the food.

3. Datasets Used for Food Recognition

Performance of feature extraction and classification techniques is highly dependent on
the detail-oriented collection of images, which, in our case, happen to be food images. As
consolidated large food image datasets, for example, UECFOOD-100, Food-101, UECFOOD-
256, UNCIT-FD1200, and UNCIT-FD889 are eventually used as benchmarks to collate
recognition performance of existing approaches with new classifiers. Such datasets can be
distinctive in terms of characteristics, such as the total number of images in a particular
dataset, cuisine type, and included food categories.

For instance, UECFOOD-100 contains 100 different sorts of food categories, and each
food category has a bounding box that indicates the location of the food item in the
photograph. Food categories in this dataset mainly belong to popular foods in Japan [42].
Similarly, UECFOOD-256 is another variant of UECFOOD-100. However, it differs in terms
of the number of images as it contains 256 food images of different kinds [42]. Food-101
contains 101,000 real-world images that are classified into 101 food categories. It includes
diverse yet visually similar food classes [43]. Similarly, the PFID food dataset is composed
of 1098 food images from 61 different categories. The PFID collection currently has three
instances of 101 fast foods [44]. UNCIT-FD1200 is composed of 4754 food images of
1200 types of dishes captured from actual meals. Each food plate is acquired multiple times,
and the overall dataset presents both geometric and photometric variability. Similarly,
UNICT-FD 889 dataset has 3583 images [45] of 889 different real food plates captured
using mobile devices in uncontrolled scenarios (e.g., different backgrounds and light
environmental conditions). Moreover, they capture each dish image in UNICT-FD899
multiple times to ensure geometric and photometric variability (changes in rotation, scale,
and point of view) [46].

Several datasets mainly consist of various food images collected through various
sources such as web crawlers and social media platforms such as Instagram, Flickr, and
Facebook. Furthermore, most of these datasets contain images of foods that are specific to
certain regions, such as Vireo-Food 172 [47] and ChineseFoodNet [48]. Both datasets contain
Chinese dishes. Similarly, Food-50 [49], Food-85 [49], Food log [50], UECFOOD-100 [42],
and UECFOOD-256 [43] contain Japanese Foods items. Turkish foods-15 [51] is limited
to Turkish food items only. Furthermore, the Pakistani Food Dataset [52] accommodates
Pakistani dishes, and the Indian Food Database incorporates Indian cuisines. In addition to
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this, few datasets only include fruits and vegetables like VegFru [53], Fruits 360 Dataset [54],
and FruitVeg-81 [55]. Furthermore, Table 1 provides a brief description about food image
datasets. Figure 3 shows the system flow and Figure 4 shows the sample images from the
food datasets.

Table 1. Food image datasets.

Authors Year Dataset Food Category Total # Images/Class Image Source

S. Godwin et al. [56] 2006 Wedge Shape foods dataset American Foods 3 categories Controlled environment

Chen et al. [44] 2009 PFID American Fast Foods 1038(61)
Fast food data captured in
multiple restaurants

Mariappan et al. [57] 2009 TADA
Artificial And
Generic Food 256(11) Controlled environment

Yanai et al. [49] 2010 Food-50 Japanese Foods 5000(50) Crawled from web

Hoashi et al. [49] 2010 Food-85 Japanese Foods 8500(85) Existing food databases

Miyazaki et al. [29] 2011 Foodlog Japanese Foods 6512(2000) Captured by users

Marc Bosch et al. [58] 2011 FNDDS American Foods 7000 Images of food accquired by users

Matsuda et al. [42] 2012 UECFOOD-100 Japanese Foods 14,361(100) Captured by mobile camera

Chen et al. [48] 2012 ChineseFoodNet Chinese dishes. 192,000(208) Gathered from web

M.-Y. Chen et al. [48] 2012 Chen Chinese Foods 5000/50 Crawled from the Internet

Bossard et al. [59] 2014 Food-101 American Foods 101,000(101) Crawled from web

L. Bossard et al. [59] 2014 ETHZ Food-101 American Foods 100,000(101) Crawled from web

Kawano et al. [43] 2014 UECFOOD-256 Japanese Foods 25,088(256) Captured by mobile camera

T. Stutz et al. [60] 2014 Rice dataset Generic (Rice) 1 food type Acquired from user

Farinella et al. [46] 2014 UNCIT-FD889 Italian Foods 3583 (899) Acquired with a smartphone

Meyers et al. [13] 2015 FOOD201-Segmented American Foods 12625 Manually annotated dataset

Xin Wang et al. [61] 2015 UPMC Food-101 Generic 100,000(101) Crawled from web

Cioccoa et al. [50] 2015 UNIMB 2015 Generic 2000(15)
Using a Samsung Galaxy
S3 smartphone

Shaobo Fang et al. [62] 2015 TADA(19 foods) American Foods 19 categories Controlled environment

Xu et al. [63] 2015 Dishes Chinese Restaurant Foods 117,504(3832) Download from dianping

Beijbom et al. [64] 2015 Menu-Match Generic Restaurant Food 646(41) Captured from social media

Zhou et al. [65] 2016 Food-975 Chinese Foods 37,785(975) Collected from restaurants

J. chen et al. [47] 2016 Vireo-Food 172 Chinese Foods 110,241(172) Downloaded from web

Cioccoa et al. [66] 2016 UNIMB 2016 Italian Foods 1027(73)
Captured from
dining tables

Hui Wu et al. [67] 2016 Food500 Generic 148,408(508) Crawled from web

Singla et al. [68] 2016 Food-11 Generic 16,643(11) Other food datasets

Farinella et al. [45] 2016 UNCIT-FD1200 Generic 4754(1200) Acquired using smartphone

Jaclyn Rich et al. [69] 2016 Instagram 800k Generic 808,964(43) Social Media

Liang et al. [70] 2017 ECUSTFD Generic 2978(19) Acquired using smartphone

Güngör et al. [51] 2017 Turkish-Foods-15 Turkish Dishes 7500/15 Collected from other datasets

Pandey et al. [71] 2017
Indian Food
Database Indian Foods 5000(50) Downloaded from web

Termritthikun et al. [72] 2017 THFood-50 Thai Foods 700/50 Downloaded from web

Ciocca et al. [73] 2017 FOOD524DB Generic 247,636(524) Existing food database

Hou et al. [53] 2017 VegFru Generic (Fruit and VEG) 160,731(292) Collected from search engine

Waltner et al. [55] 2017 FruitVeg-81 Generic (Fruit and VEG) 15,630(81) Collected using mobile phone

Muresan et al. [54] 2018 Generic (Fruits 360 Dataset) Fruit Dataset 71,125(103) Camera

Qing Yu et al. [74] 2018 FLD-469 Japanese Foods 209,700(469) Smart Phone camera

Kaur et al. [75] 2019 FoodX-251 Generic 158,000(251) Collected from web

Ghalib et al. [52] 2020 Pakistani Food Dataset Pakistani Dishes 4928(100) Crawled from web

Narayanan et al. [76] AI-Crowd Swiss Foods 25,389 Volunteer Users

Bolaños M. et al. [77] 2016 EgocentricFood Generic 5038(9)
Taken by a wearable
egocentric vision camera

E. Aguilar et al. [78] 2019 MAFood-121 Spanish Foods 21,175 Google search engine
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Figure 3. System Flow.

Figure 4. Sample images from few food datasets.

Therefore, it is evident from the survey that there is an immense need for broad and
generic food datasets for better food recognition and enhanced performance. This necessity
is because region-specific food items or datasets with fewer food categories can undermine
the accuracy and performance of classification and extraction methods.

4. Representation of Food Images

Feature extraction plays a vital role in automated food recognition applications due
to its noticeable impact on the recognition efficiency of an employed system. Feature
extractors methods extract different food image representations. The process of feature
extraction involves the identification of visual characteristics like color, shape, and texture.
The main objective of feature extraction is to reduce dimensionality space [79] and extract
more manageable groups from raw vectors of food images.

Moreover, selecting the right set of features ensures that relevant information is
extracted from input images to perform the desired task. We categorized the feature
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extraction techniques into two main types: hand-crafted and deep visual features. The
term ‘handcrafted’ refers to identifying relevant feature vectors of appropriate objects such
as shape, color, and texture. In contrast to that, the deep model provides state-of-the-art
performance due to automatic feature extraction through a series of connected layers. For
this reason, recent studies have adopted combinations of both hand-crafted and deep visual
features for food image representation.

4.1. Handcrafted Features

The existing literature exhibits a large number of methods to employ manually de-
signed or handcrafted features. Handcrafted features are properties obtained through
algorithms using help from information available in the image. Figure 5 categorizes the
handcrafted feature extraction methods. In the scenario of food image recognition, there is
variation among different food types in terms of texture, shape, and color.

Figure 5. Handcrafted feature extraction methods.

The term ‘texture’ refers to homogeneous visual patterns that do not result from single
colors such as sky and water [7]. Textural features usually consist of regularity, coarseness,
and/or frequency. Texture-based characteristics are classified into two classes, namely
statistical and transform-based models. Similarly, shape features attempt to quantify shape
in ways that agree with human intuition or aid in perception based on relative proximity to
well-known shapes. Based on the analysis, these shapes can be declared either perceptually
similar to human perception or different. Furthermore, extracted features should remain
consistent concerning rotation, location, and scaling (changing the object size) of an image.
Unlike shape and texture features, color features are prevalent for image retrieval and
classification because of their invariant properties concerning image translation, scaling,
and rotation. The key items of the color feature-extraction process are color quantization
and color space. Therefore, the resulting histogram is only discriminative when it projects
the input image is to the appropriate color space. Different methods are widely employed
for food classification, including hue, saturation, value (HSV); CIELab; red, green, and
blue (RGB); normalized RGB; opponent color spaces; color k-means clustering; bag of color
features; color patches; and color-based kernel. Although the color features from the food
images distinguish between different food items, due to intra-class similarity, these features
alone are not enough to accurately classify food images. For this reason, most researchers
have used color features in combination with other feature extraction methods.

Hoashi et al. [49] employed bag of features, color histogram, Gabor features, and
gradient histogram with multiple kernel learning for automatic food recognition of 85 dif-
ferent food categories. Similarly, Yang et al. [80] dealt with pairwise statistics between local
features for food recognition purposes using the PFID dataset. For real-time food image
recognition, Kawano and Yanai et al., 2014 [43] utilized handcrafted features such as color,
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histogram of oriented gradient (HoG), and Fisher Vector (FV). Moreover, the cloud-based
food recognition method proposed by Pouladzadeh et al., 2015 [81], involves features like
color, texture, size, shape, and Gabor filter. They evaluated their framework on single food
portions consisting of fruit and a single item of food. Furthermore, mobile food recognition
systems proposed by Kawano and Yanai, 2013 [82], and Oliveira et al., 2014 [83], also used
handcrafted features like color and texture. Table 2 summarizes the details of proposed
methods that employ handcrafted features for food recognition.

However, identification of food involves challenges due to varying recipes and pre-
sentation styles used to prepare food all around the globe, resulting in different feature
sets [84]. For instance, the shape and texture of a salad containing vegetables differ from
the shape and texture of a salad containing fruits. For this reason, we should optimize
the feature extraction process by extracting relevant visual information from food images.
Such data are present in general information descriptors, which are a collection of visual
descriptors that provide information about primary features like shape, color, texture, and
so forth. Some important descriptors used in existing studies include Gabor Filter, Local
Binary Patterns (LBP), Scale-invariant Feature Transform (SIFT), and color information to
extract features of food images [85]. These descriptors can be applied individually or in
combination with other descriptors for enhanced accuracy.

Table 2. Handcrafted features.

Reference Year Visual Features Dataset Recognition Type

Hoashi et al. [49] 2010

Bag-of-features (BoF),
Color histogram, Gabor features,
and gradient histogram
with Multiple Kernel learning.

Used for recognition
of 85 food categories

Automatic
food recognition

Yang et al. [80] 2010
Deals with
pair wise statistics
between local features

Pittsburgh
Food Image Dataset
(PFID)

Food recognition

kong and Tan [86] 2011 SIFT,
Guassian Region detector

Pittsburgh Food Image Dataset (PFID)
and dataset consisting of
food images collected
from local restaurants.

Regular shaped
foods recognition

Bosh et al. [85] 2011

Global feature classes: texture and color
Local features: local entropy color, local color,
Garbor filter, SIFT, Haar, Daisy descriptor,
Steerable filters and Tamura perceptual filter

Database consisting of
food images collected under controlled
conditions, from nutritional studies
conducted at
Prudue University [58]

Food recognition
and quantification

Zhang et al. [87] 2011 Color, SIFT, Shape, RGB histograms

Dataset came from online sources,
which includes three types of
cuisines, two dishes per cuisines were
represented by 76 images

Classification
of cuisines

Matsuda et al. [88] 2012

Gabor texture features,
Histogram of Oriented Gradient (HoG),
Bag-of-features of SIFT and CSFIT
with Spatial pyramid.

Food image dataset
containing 100 different
food categories.

Multiple
food images
recognition

Kawano and Yanai [82] 2013 Bag-of-features and color histogram, HOG
patch descriptor and color patch descriptor. -

Mobile food
recognition

Anthimopoulos et al. [89] 2014 Bag-of-features,
SIFT and HSV color space

Visual dataset consisting of 5000
food images organized
into 11 different classes

Food recognition
system for
diabetic patients

Tammachat and
Pantuwong [90] 2014 Bag-of-features (BoF) , Texture

and Color

Database consisting of 40 types of
Thai food consisting of 100 images
of each food type.

Food image
recognition

Pouladzadeh et al. [91] 2014 Graph cut, Color and Texture
Dataset consisting of 15 different
categories of fruits and food.

Food image
recognition
for calorie estimation

He et al. [92] 2014

Color, Texture, Dominant Color Descriptor (DCD),
Scalable Color Descriptor (SCD), SIFT,
Multi-scale Dense SIFT (MDSIFT),
Entropy-Based Categorization and Fractal Dimension
Estimation (EFD) and Gabor-Based Image
Decomposition and Fractal Dimension
Estimation (GFD)

Food image dataset containing
1453 images

Food image
analysis
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Table 2. Cont.

Reference Year Visual Features Dataset Recognition Type

Kawano and Yanai [43] 2014 Color, HoG and Fisher Vector UECFOOD-256 food image dataset
Real-time food
image recognition

Oliveira et al. [83] 2014 Color, Texture
Images were gathered using
mobile’s camera

Mobile Food
Recognition

Pouladzadeh et al. [81] 2015 Color, Texture, Size, Shape, Gabor filter

System was tested on single food
portions consisting of fruits and
single piece of food. 100 images were
chosen for training and 100 for
testing purposes.

Cloud-based
food recognition.

Farinella et al. [45] 2016 SIFT, Bag of Textons, PRICoLBP UNICT-FD1200 dataset. Food image recognition

Nonetheless, feature selection remains a complex task for food types that involve
mixed and prepared foods. Such food items are difficult to identify and are not easily
separable due to the proximity of ingredients in terms of color and texture features. In
contrast, the evolution of deep learning methods has remarkably reduced the use of
handcrafted features. This is due to their superior performance for both food categorization
and ingredient detection tasks. However, handcrafted methods for feature extraction may
still serve as the foundation for automated food recognition systems in the future.

4.2. Deep Visual Features

Recently, deep learning techniques have gained immense attention due to their su-
perior performance for image recognition and classification. The deep learning approach
is a sub-type of machine learning, and it trains more constructive neural networks. The
vital operation of deep learning approaches includes automatic feature extraction through
the sequence of connected layers leading up to a fully connected layer, which is eventually
responsible for classification. Moreover, in contrast to conventional methods, deep learn-
ing techniques show outstanding performance while processing large datasets and have
excellent classification potential [93,94].

Deep learning methods such as Convolutional Neural Networks (CNNs) [95], Deep
Convolutional Neural Networks (DCNNs) [96], Inception-v3 [97], and Ensemble net are
implemented by existing food recognition methods for feature extraction. Convolutional
Neural Networks are one of the widely used deep learning techniques in the area of
computer vision due to their impressive learning ability regarding visual data, and they
achieve higher accuracy than other conventional techniques [98]. The DCNN technique
gained popularity owing to its large-scale object recognition ability. It incorporates all
major object recognition procedures such as feature extraction, coding, and learning. There-
fore, DCNN is an adaptive approach for estimating adequate feature representation for
datasets [99]. Similarly, Inception-v3 is also a new deep convolutional neural network
technique introduced by Google. It is composed of small inception modules that are
capable of producing very deep networks. As a result, this model has proved to have
higher accuracy, decreased number of parameters, and computational cost in contrast to
other existing models. Likewise, Ensemble Net is a deep CNN-based architecture and is a
suitable method for extracting features. It is due to the outstanding performance of CNN
feature descriptors as compared to handcrafted features.

Asymmetric multi-task CNN and spatial pyramid CNN [100] provides highly discrim-
inative image representations. Jing et al. [47] proposed ARCH-D architecture for multi-class
multilabel food recognition, and their model provides feature vectors for both food category
and ingredient recognition. Although the feature vectors from multi-scale multi-view deep
network [101] has a very high dimension, they were successful in achieving state-of-art
performance. Ghalib et al. [52] proposed ARCIKELM for open-ended learning. They have
employed InceptionResnetV2 for feature extraction due to their superior performance over
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other deep feature extraction methods such as ResNet-50 and DenseNet201. Table 3 further
provides a brief description of deep visual features.

Table 3. Deep visual features.

Reference Year Features Dataset Recognition Type

Kawano and Yanai, [102] 2014 Fisher Vector and DCNN UECFOOD-100 and
100-class food Dataset Food image recognition

Yanai and Kawano, [96] 2015 DCNN UECFOOD-100
and UECFOOD- 256 Food image recognition

Christodoulidis et al. [103] 2015 CNN Manually annotated dataset
with 573 food items Food recognition

Pouladzadeh et al. [104] 2016 Graphcut and DCNN Database consisting of
10,000 high res images

Food recognition for
calorie measurement

Hassannejad et al. [105] 2016 Inception Food-101, UECFOOD-100
and UECFOOD-256 Food image recognition

Liu et al. [106] 2016 DCNN Food-101, UECFOOD-256 Mobile food image recognition

Chen and Ngo, [47] 2016 Arch-D Chinese Foods Ingredient recognition
and food categorization

Ciocca et al. [66] 2017 VGG UNIMIB 2016 Food recognition

Termritthikun et al. [72] 2017 NU-InNet THFOOD-50 Food recognition

Pandey et al. [71] 2017 AlexNet, GoogLeNet
and ResNet

ETH Food-101 and
Indian Food Image Database Food Recognition

Liu et al. [107] 2018 GoogleNet UECFOOD-100, UECFOOD-256
and Food-101

Food recognition
for dietary assessment

McAllister et al. [108] 2018 ResNet-152, GoogLeNet Food 5k, Food-11, RawFooT-DB
and Food-101 Food recognition

Martinel et al. [109] 2018 WISeR UECFOOD-100, UECFOOD-256
and Food-101 Food recognition

E. Aguilar et al. [110] 2018 AlexNet UNIMIB2016 Automatic food tray analysis

S. Horiguchi et al. [111] 2018 GoogleNet Built their own food dataset FoodLog Food image recognition

Gianluigi Ciocca et al. [112] 2018 ResNet50 Food 475 Food image recognition
and classification

B. Mandal et al. [113] 2019 SSGAN ETH Food-101 and Indian Food Dataset Food Recognition
of Partially Labeled Data

G.Ciocca et al. [114] 2020 GoogleNet, Inception-v3,
MobileNet-V2 and ResNet-50

Own dataset containing 20 different
food categories of fruit and
vegetables.

Food category recognition,
Food state recognition

L. Jiang et al. [115] 2020 VGGNet
UECFOOD-100, UECFOOD-256 and
introduced new
dataset based on FOOD-101.

Food recognition and dietary assesment

C. Liu et al. [116] 2020 VGGNet, ResNet Vireo-Food 172 Food ingredient recognition

H. Liang et al. [117] 2020 ChineseFoodNet and Vireo-Food 172 Chinese food recognition

H. Zhao et al. [118] 2020 VGGNet, ResNet and DenseNet UECFOOD-256 and Food-101 Mobile food recognition

G. A. Tahir and C. K. Loo [52] 2020 ResNet-50, DenseNet201
and InceptionResNet-V2

Pakistani Food Dataset, UECFOOD-100,
UECFOOD-256, FOOD-101 and PFID Food recognition

C. S. Won [119] 2020 ResNet50 UECFOOD-256, Food-101
and Vireo-Food 172

Fine grained
Food image recognition

Zhidong Shen et al. [120] 2020 Inception-v3, Inception-v4
Dataset was created including
hundreds and thousands of images
of several food categories

Food recognition
and nutrition estimation

5. Food Category Classification

The primary requirement of any food recognition system is accurate identification
and recognition of food components in the meal. Therefore, robust and precise food
classification methods are crucial for several health-related applications such as automated
dietary assessment, calorie estimation, and food journals. Image classification refers to
a machine learning technique that associates a set of unspecified objects with a subset
(class) learned by the classifier during the training phase. In the scenario of food image
classification, food images are used as input data to train the classifier. Hence, an ideal
classifier must recognize any food category explicitly included during the learning phase.
The accuracy of a classifier mainly depends on the quantity and quality of images, as there
are several variations in food images such as rotation, distortion, lightning distribution, and
so forth. In this section, we discuss classification techniques used by traditional approaches
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that use handcrafted features. Following that, we analyzed state-of-the-art deep learning
models for food recognition.

5.1. Traditional Machine Learning Methods

Major classifiers used by several traditional approaches in the domain of food im-
age recognition include Support Vector Machines (SVM) [49], Multiple Kernel Learning
(MKL) [49] and K-Nearest Neighbor (KNN) [47]. It is due to their outstanding performance
as compared to other classification methods.

The food recognition method proposed by [121] employs color, SIFT, and texture
features to train the KNN classifier. In contrast to SVM, KNN achieved higher classification
accuracy, i.e., 70%, whereas the accuracy of the SVM classifier was only 57%. Similarly,
treatment of diabetic patients involves a daily insulin prandial dose to compensate for the
effect of a meal, and its estimation is a complex task with carbohydrate counting being a
key element. To assist patients in automating the process of counting CHO from images
captured from a camera, Anthimopoulos et al. [89] applied a bag-of-features model using
SIFT features. A linear SVM classifier trained on food images of 11 different food classes
acquired a classification accuracy of 78%.

Chen et al. [48], employed a multi-class SVM classifier for the identification of 50 dif-
ferent classes of Chinese food. It includes 100 food images in each category. However,
classification accuracy was only 62.7%. They further implemented a multi-class Adaboost
algorithm and increased their classification accuracy up to 68.3%. Furthermore, Bejibom
et al. [64] used LBP, color, SIFT, MR8, and HoG features to train an SVM image classifier.
They evaluated their work on two different datasets and achieved a classification accuracy
of 77.4% on the dataset presented by [48]; their classification accuracy was 51.2% when
applied to the menu-matched dataset. Table 4 summarizes classifiers implemented by
traditional classification methods along with their achieved classification accuracies.

Table 4. Traditional machine learning methods for food category classification.

Reference Year Classification Technique
Classification Accuracy

Top 1 Top 5

Hoashi et al. [49] 2010 Multiple Kernel Learning (MKL) Own Food Dataset = 62.5% N/A

Yang et al. [80] 2010 Support Vector Machine (SVM) PFID = 78.0% N/A

Kong and Tan [86] 2011 Multi-class SVM PFID = 84% N/A

Bosh et al. [85] 2011 Support Vector Machine (SVM)

Dataset collected = 86.1%
using nutritional
studies Conducted
at Prudue University

N/A

Zhang et al. [87] 2011 SVM regression with RBF kernel Own Food Dataset = 82.9% N/A

Matsuda et al. [88] 2012 Multiple Kernel Learning (MKL)
and Support Vector Machine (SVM) Own food Dataset = 55.8% N/A

Kawano and Yanai [82] 2013 Linear SVM and fast tookernel N/A 81.6%

Anthimopoulos et al. [89] 2014 Linear SVM Own Food Dataset = 78.0% N/A

Tammachat and
Pantuwong [90] 2014 Support Vector Machine (SVM) Own Food Dataset = 70.0% N/A

Pouladzadeh et al. [91] 2014 Support Vector Machine (SVM) Own Food Dataset = 95% N/A

He et al. [92] 2014 K-nearest Neighbors
and Vocabulary Trees Own Food Dataset = 64.5% N/A

Kawano and Yanai [43] 2014 One-vs-rest UECFOOD-256 = 50.1% UECFOOD-256 = 74.4%

Oliveira et al. [83] 2014 Support Vector Machine (SVM)
Own Food Dataset
Top 3 classification
achieved between 84 and 100%

N/A

Pouladzadeh et al. [81] 2015 Cloud-based Support Vector Machine Own Food Dataset = 94.5% N/A

Farinella et al. [45] 2016 Support Vector Machine (SVM) UNICT-FD1200 = 75.74% UNICT-FD1200 = 85.68%
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5.2. Deep Learning Models

Deep learning approaches have gained significant attention in the field of food recogni-
tion. This is due to their exceptional classification performance in comparison to traditional
approaches [48,64]. convolutional neural network (CNN), deep convolutional neural net-
work (DCNN), Ensemble Net, and Inception-v3 are some of the most prominent techniques
used as existing methods for food image recognition purposes.

Yanai and Kawano [102] employed a deep convolutional neural network (DCNN)
on three food datasets: Food-101, UECFOOD-256, and UECFOOD-100. They explored
the effectiveness of pre-training and fine-tuning a DCNN model using 100 images from
each food category obtained from each dataset. During evaluation, classification accu-
racy achieved was 78.77% for UECFOOD-100, 67.57% for UECFOOD-256, and 70.4% for
Food-101. Similarly, the study presented by [105] implemented Inception-v3 deep net-
work established by Google [97] on the same datasets, i.e., Food-101, UEC FOOD-100,
and UECFOOD-256. Classification accuracy achieved using fine-tuned model V3 was
greater than classification accuracy of the fine-tuned version of DCNN i.e., 88.28%, 81.45%,
and 76.17% for UECFOOD-100, UECFOOD-256, and Food-101, respectively. The food
recognition method proposed by [106] implemented a CNN-based approach using the
Inception model on the same three datasets.

Classification accuracy achieved was 77.4%, 76.3% and 54.7% for UECFOOD-100,
UECFOOD-256 and Food-101, respectively. Table 5 provides the overview of existing
food recognition methods based on deep learning approaches and their classification
performance.

Table 5. Deep learning models for food category classification.

Reference Year Classification Technique
Classification Performance

Top 1 Top 5

Yanai and Kawano [96] 2015 DCNN UECFOOD-100 = 78.8%
UECFOOD-256 = 67.6% N/A

Christodoulidis et al. [103] 2015 DCNN Own dataset = 84.9% N/A

Chen and Ngo [47] 2016 DCNN

Pouladzadeh et al. [104] 2016 DCNN + Graph cut Own dataset = 99% N/A

Hassannejad et al. [105] 2016 DCNN
ETH Food-101 = 88.3%
UECFOOD-100 = 81.5%
UECFOOD-256 = 76.2%

ETH Food-101 = 96.9%
UECFOOD-100 = 97.3%
UECFOOD-256 = 92.6%

Liu et al. [106] 2016 CNN UECFOOD-100 = 76.3%
Food-101 = 77.4%

UECFOOD-100 = 94.6%
Food-101 = 93.7%

Pandey et al. [71] 2017 Ensemble Net
ETH-Food101 = 72.1%
Indian Food = 73.5%
Database

ETH-Food101 = 91.6%
Indian Food = 94.4%
Database

Ciocca et al. [66] 2017 CNN UNIMIB 2016 = 78.3% N/A

Termritthikun et al. [72] 2017 CNN THFOOD-50 = 69.8% THFOOD-50 = 92.3%

McAllister et al. [108] 2018 CNN+ANN+SVM+
Random Forest

Food-5K = 99.4%
Food-11 = 91.3%
RawFooT-DB = 99.3%
Food-101 = 65.0%

N/A

Liu et al. [107] 2018 DCNN
UECFOOD-256 = 54.5%
UECFOOD-100 = 77.5%
Food 101 = 77.0%

UECFOOD-256 = 81.8%
UECFOOD-100 = 95.2%
Food 101 = 94.0%

Martinel et al. [109] 2018 DNN
UECFOOD-100 = 89.6%
UECFOOD-256 = 83.2%
Food-101 = 90.3%

UECFOOD-100 = 99.2%
UECFOOD-256 = 95.5%
Food-101 = 98.7%

E. Aguilar et al. [110] 2018 CNN+SVM UNIMIB 2016 = 90.0% N/A

Gianluigi Ciocca et al. [112] 2018 CNN Food-475 = 81.6% Food-475 = 95.5%
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Table 5. Cont.

Reference Year Classification Technique
Classification Performance

Top 1 Top 5

S. Horiguchi et al. [111] 2018

Sequential Personalized Classifier
(SPC) with
fixed-class and incremental
classification

FoodLog = 40.2%
(t251-t300)

FoodLog = 56.6%
(t251-t300)

B. Mandal et al. [113] 2019 Generative Adversarial Network ETH Food-101 = 75.3%
IndianFood Database = 85.3%

ETH Food-101 = 93.3%
Indian Food Database = 95.6%

Aguilar-Torres et al. [122] 2019 CNN based on ResNet-50 MAFood-121 = 81.62% N/A

Kaiz Merchant and Yash Pande [123] 2019 Inception V3 ETHZ Food-101 = 70.0% N/A

Mezgec, S. et al. [124] 2019 Deep Learning Own Food dataset = 93% N/A

L. Jiang et al. [115] 2020 DCNN (Faster R-CNN) FOOD20-with-bbx = 71.7% FOOD20-with-bbx = 93.1%

C. Liu et al., 2020 [116]

H. Zhao et al. [118] 2020 JDNet UECFOOD-256 = 84.0%
FOOD-101 = 91.2%

UECFOOD-256 = 96.2%
FOOD-101 = 98.8%

G. A. Tahir and C. K. Loo [52] 2020
Adaptive Reduced Class
Incremental Kernel Extreme
Learning Machine (ARCIKELM)

Food-101 = 87.3%
UECFOOD-100 = 88.7%
UECFOOD-256= 76.51%
PFID = 100%
Pakistani Food = 74.8%

N/A

C. S. Won [119] 2020 Three-scale CNN
UECFOOD-256 = 74.1%
Food 101 = 88.8%
Vireo-Food 172 = 91.3%

UECFOOD-256 = 93.2%
Food-101 = 98.1%
Vireo-Food 172 = 98.9%

Zhidong Shen et al. [120] 2020 CNN Own dataset = 85.0% N/A

Jiangpeng He et al. [125] 2020 18 layer ResNet Own dataset = 88.67% N/A

Eduardo Aguilar et al. [126] 2020 CNN Own dataset = 88.67% N/A

Dario Ortega Anderez et al. [127] 2020 CNN Own dataset = 97.10% N/A

G. Song et al. [128] 2020 CNN Web crawled dataset = 56.47% Web crawled dataset = 60.33

Limei Xiao et al. [129] 2021 CNN Own dataset = 97.42% N/A

Lixi Deng et al. [130] 2021 ResNet-50 School lunch dataset = 95.3% N/A

6. Food Ingredient Classification

Over the past few years, nutritional awareness among people has increased due to
their intolerance towards certain types of food, mild or severe obesity problems, or simply
interest in maintaining a healthy diet. This rise in nutritional awareness has also caused a
shift in the technological domain, as several mobile applications facilitate people in keeping
track of their diet. However, such applications hardly offer features for automated food
ingredient recognition.

For this purpose, several proposed models use multi-label learning for food ingredient
recognition. It can be defined [27] as the prediction of more than one output category
for each input sample. Therefore, food ingredient recognition is known as a multi-label
learning problem. Marc Bolanos et al. have deployed CNN as a multi-label predictor
to discover recipes in terms of the list of ingredients from food images [131]. Similarly,
Yunan Wang et al. [132] used multi-label learning for mixed dish recognition, as they
have no distinctive boundaries among them. Therefore, labeling bounding boxes for
each dish is a challenging task. Another system proposed by Amaia Salvador et al. [133]
regenerates recipes from provided food images along with cooking instructions. On the
other hand, Jingjing Chen and Chong-Wah Ngo [47] proposed deep architectures for food
ingredient recognition and food categorization and evaluated their proposed system on a
large Chinese food dataset with highly complex food images. Food ingredient recognition
is often overlooked and is a challenging task, as it requires training samples under different
cooking and cutting methods for robust recognition. Therefore, methods proposed by Chen
et al. [134] and J. Chen et al. [135] focus on food ingredient recognition. The authors Chen
et al. [134] deploy multi-relational graph convolutional network that was later evaluated
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on Chinese and Japanese food datasets, resulting in 36.7% for UECFOOD-100 and 48.8%
for VireoFood-172. However, Chen et al. [135] proposed DCNN based method for food
ingredient recognition and achieved Top 1 accuracy up to 86.91% and Top 5 accuracy up to
97.59% for Vireo Food-251.

Furthermore, Table 6 provides brief information about accuracy scores of proposed
systems along with methods and dataset used.

Table 6. Proposed methods for food ingredient classification.

Reference Year Dataset Method Recall Precision F1

Chen et al. [47] 2016
Vireo-Food 172

Arch-D
(Multi-task) - -

67.17% (Micro-F1)
47.18% (Macro-F1)

UECFOOD-100
Arch-D
(Multi-task) - -

82.06% (Micro-F1)
95.88% (Macro-F1)

Bolaños et al. [131] 2017

Food-101
ResNet50+
Ingredients 101 73.45% 88.11% 80.11%

Recipe 5k
ResNet50+
Recipe 5k 19.57% 38.93% 26.05%

Recipe 5k
Inception-v3+
Recipe 5k (Simplified) 42.77% 53.43% 47.51%

Wang, Yunan, et al. [132] 2019
Economic Rice

Inception-V4 + NS
(multi-scale) 71.90% 72.10% 71.40%

Economic Behoon
Inception-V4 + NS
(multi-scale) 77.60% 68.50% 69.70%

Salvador, Amaia, et al. [133] 2019 Recipe 1M
CNN
Auto-Encoder 75.47% 77.13% 48.61%

J. Chen et al. [135] 2021 VireoFood-172 DCNN - - 75.77% (Micro-F1)

7. Food Volume Estimation

Automated food volume assessment is a convoluted task involving various challenges.
Highly diverse and varying compositions of food, increasing varieties of ingredients, and
different methods of preparations are only some of the factors that need to be taken into
consideration. Furthermore, the quality of pictures taken for food volume estimation also
impacts the accuracy. Clear pictures taken in good lighting conditions would yield different
results compared to low-resolution or low-light images. Thus, far, several methods have
been proposed for accurate estimation of food volume ranging from simple techniques such
as pixel counting to complex methods such as 3D image reconstruction. They have been
broadly categorized as either ‘single image view’ or ‘multi-image/video view’ methods in
the subsequent sections. Figure 6 shows the types of food volume estimation methods.
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Figure 6. Food Volume Estimation Methods.

7.1. Single Image View Methods

Single-Image-View Methods for food volume estimation require only a single im-
age for food volume estimation. These methods are relatively more user-friendly than
‘multi-image view methods’ because they do not require multiple images from different
viewpoints. However, as a trade-off, most of the single-view methods are less accurate
in contrast to multi-view methods. Table 7 summarizes single view methods for volume
estimation. The following are a few common methods that use the single-view method for
food portion estimation:
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Table 7. Comparison of single-view methods for food volume estimation.

Reference Year Dataset Results (E: Error%) Technique

S. Fang [62] 2015 19 food items E: <6% 3D parameters and reference objects
to compute density for estimating
the weight of food item

Y. He [36] 2013 1453 food images E: 11% (beverages)
63%

“Integrated image segmentation
and identification system”

T. Miyazaki [29] 2011 6512 images E: 40% Linear estimation

Beijbom, O [64] 2015 646 images, with 1386 tagged food
items across 41 categories

E: 232 ± 7.2 Restaurant-specific food recognition
considers meal as a whole entry with
all of its nutrients details in DB to
solve the volume estimation problem
for the restaurant scenario.

Koichi Okamoto [31] 2016 20 kinds of Japanese Foods (60 test
image)

E: 21.30% Single-image-based food calorie esti-
mation system which uses reference
objects to determine food region and
quadratic curve estimation from the
2D size of foods to their calories

Pettitt, C [136] 2016 Test data from N:6 participants
who completed food diary during
pilot sudy by wear micro camera

E: 34% Wearable micro camera in conjunc-
tion with food dairies

Akpa Akpro Hip-
pocrate [34]

2016 119 food images E: 6.87% Image processing with cutlery

Jia, W. Y [35] 2012 224 pictures E: <10% 3D location of a circular feature from
a 2D image

Yang, Y. Q [33] 2011 72 images E: −3.55% Single digital image, plate reference

Huang, J [39] 2015 fruits (n:6) imaging processing

Yue, Y [41] 2012 6 food replicas E: Length (−1.18) A mathematical model based system
involves a camera, circular object in
a 3D space to compute food volume.

Zhang, W [38] 2015 15 different kinds of foods 85% Portion estimation by counting pix-
els

Rob Comber [137] 2016 6 different meals “Beef (E: −13.89 g, σ: 5.10 g),
scrambled egg (E: −9.11 g, σ:
8.29 g), Jam
sponge (E: −12.31 g, σ: 7.03 g)
and fish pie (E: −12.59 g, σ:
5.74 g). Mean: −9.58”

Visual Assessment

S. Fang [30] 2016 10 objects “3D geometric models
and depth images.”

Godwin, S. [56] 2006 Five portions of 9-inch cake, Seven
portions of pizza, Pies were 9 or
10 inches

E: 25% Estimated portion sizes using a ruler
and the adjustable wedge

Hernández, Tere-
sita [37]

2006 101 subjects, 5 foods E: 4.8% ± 1.8% Digital photographs printed onto a
poster.

Yang et al. [138] 2021 Virtual Food Dataset and Real
Food Dataset (RFD) (1500 images)

E: <9% on VFD, E: 11.6% and
20.1% on RFD.

Estimates volume by computing in-
ner product between the probability
vector from modified MobileNetV2
and the reference volume vector.

Graikos et al. [139] 2021 EPIC-KITCHENS and their own
food video datasets

46.32% average MAPE on 16
test foods and 36.90% average
MAPE on 6 combined meals.

Generate 3-dimensional point cloud
by using depth map, segmentation
mask and camera parameters. It
then approximates the volume with
points cloud-to-volume algorithm.

Lo, F.P.W et al. [140] 2019 Test dataset: 11 food items E: 15.32%. 3D point cloud completion from RGB
and depth images.
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7.1.1. Food Portion Estimation by Counting Pixels

This method utilizes pixel count in each relevant image section to estimate food
portion size. Studies [120] show that these methods are less complex than methods that
rely on 3D modeling. Despite its simplicity, it gives a good estimation of portion size, thus
making calculation of caloric content and nutritional facts easier.

7.1.2. Visual Similarities between Target Image and Dictionary of Food Images

This method estimates visual similarities between a given image and an existing food
image dictionary. It is used by many existing systems today [29], where the caloric and
nutrient contents in the food image dictionary are defined by dietary professionals to get a
better approximation. The method selects first ‘n’ images from the dictionary and calculates
the calorie content of the target image based on the average calorie content of dictionary
images.

7.1.3. 3D Modeling for Food Portion Estimation

This method projects a 3D model of food portions onto 2D space or uses 3D geometric
models for volume estimation. Generally, this method gives finer approximation in contrast
to the other methods for single-image-view methods.

7.1.4. Other Methods

Other methods for food-portion estimation include estimating portion sizes using
a ruler and adjustable wedge [56], mobile augmented reality, virtual reality [33], visual
assessment [137] feature extraction, and its matching [29,64].

7.2. Multi-Image View or Video Methods

Multi-Image view or video methods require multiple images for food portion esti-
mation. They are relatively more accurate than single-view-image methods. However,
multi-image methods are less user-friendly as they require multiple images from different
viewpoints in order to provide better results. Table 8 summarizes single-view methods for
volume estimation. The following are a few methods that use multi-image-view techniques
for food volume estimation.

Table 8. Comparison of multi-view methods for food volume estimation.

Reference Year Dataset Results (E: Error%) Technique

F. Zhu [141] 2010 3000 images E: 1%
19 food items (97.2%)

“Camera calibration step and a
3D volume reconstruction step”

Xu Chang [141] 2013 14 to 20 images for multi-view
method

E: 7.4% to 57.3% Multi-view volume estimation using
“Shape from Silhouettes”
to estimate the food portion size

Kong, Fanyu [12] 2015 6 food items 84–91% Multi-View RGB images for 3D recon-
struction to estimate the volume

Trevno, Roberto [142] 2015 120 students (n = 120 meals; 57
breakfast + 63 lunch)

74% (reliability) Digital Food Imaging Analysis (DFIA)

Jia, W. Y [143] 2014 100 food samples E: −2.80%
30%

ebutton is used for taking pictures, and
then portion size is calculated semi-
automatically by using computer soft-
ware

Xu, C [36] 2013 E: 10% 3D MODELLING AND POSE ESTIMA-
TION

Rhyner, D [144] 2016 6 meals 85.10% Multi-View RGB images, reference card
and 3D model for volume estimation

T. Stutz [60] 2014 Rice, blinded servings E: <33% Mobile Augmented Reality System
Makhsous et al. [145] 2020 8 food items tested 40% improvement in the ac-

curacy of volume estima-
tion as compared to manual
calculation.

Employs a mobile Structured Light Sys-
tem (SLS) to measure the food volume
and portion size of a dietary intake.

Yuan et al. [146] 2021 Test dataset: 6 food items E: 0.83 5.23%. 3D reconstruction from multi-view RGB
images.

Lo, F.P.W et al. [140] 2019 Test dataset: 11 food items E: 15.32%. 3D point cloud completion from RGB
and depth images.
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7.2.1. Food Volume Estimation Using 3D Geometric Models

This multi-image-view method uses a shape template method or 3D modeling for
portion size estimation. As a single shape template is not suitable for all food types, the use
of geometric models with correct food classification labels and segmentation masks in the
image is important to index food labels to their respective classes of predefined geometric
models. These can be used later for finding correct parameters of the selected geometric
model [28,40,41,56,62].

Moreover, in 3D modeling and pose estimation, models for food are constructed in
advance by using between 15 and 20 food images captured from several angles or a video
sequence. Finally, food volume is estimated by registering pose from 3D models to 2D
images [36].

7.2.2. Augmented Reality System for Food Volume Estimation

The use of augmented reality is also being widely used by researchers to estimate food
portion size. Many systems such as Eat AR make use of it for portion size estimation [60]
by developing prototypes to aid users. These prototypes generally require fiducial markers
or credit-card-sized objects for overlaying 3D forms. Finally, the volume of the overlaid
forms is computed using a signed volume estimation algorithm for closed 3D objects.

Similarly, the ‘Serv Ar’ augmented reality tool is used to provide guidance about
food serving size [147]. Many of these technologies are being used with object recognition
methods to identify food items and determine their caloric content. Similarly, methods
that use augmented reality in combination with other portion estimation techniques have
enhanced accuracy and much more interactive interfaces, resulting in a high retention rate.

7.2.3. Food Portion Estimation Using 3D Reconstruction (Dense Models)

Portion estimation by constructing dense 3D models usually requires multiple images
or a video segment [139]. Joachim Dehais et al. [148] have shown the use of two views
for volume estimation using 3D construction. In its first stage, the system learns about
the configuration of different views, followed by the construction of a dense 3D model
to extract the volume of each individual food item placed before it. Similarly, Wen Wu
et al. [32] studied the use of fast food videos for caloric estimation. Most of these methods
require images from different viewpoints, and for this reason, more advanced methods
such as 3D construction from accidental motion can be explored for food volume estimation
in the future.

7.3. Strengths and Weakness of the Food Volume Estimation Methods

Automatic food volume estimation method helps people to monitor their dietary
intake suffering from chronic diseases without any expert intervention. It gives a quick
result as compared to the traditional method which generally involves sending food images
to the dietitian. The traditional method involves continuous involvement of dietitians,
which makes it unworkable for dietitians to immediately respond to a large number of
patients. Conversely, automatic food volume estimation is not standardized, as there are no
existing guidelines by experts that refer to the error rate of these applications. Furthermore,
different volume estimation methods vary in terms of accuracy and usability. Most of
these methods are classified into two categories: single-image-view method and multiple-
image-view method. Single-view-image methods are more user friendly, but their accuracy
is compromised compared to multiple image view methods as it requires images from
different. Therefore, standard guidelines are required for food volume estimation, which
should include criteria for a balanced trade between features such as usability and accuracy,
and developed applications must be verified according to the standard guidelines. Figure 7
summarizes the strengths and weaknesses of food volume estimation methods.
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Figure 7. Strengths and weaknesses of automatic food estimation methods.

8. Existing and Potential Applications of Vision-Based Methods for Food Recognition
in Healthcare

We summarized the core applications of vision-based methods for food recognition in
the context of public policy and health care.

8.1. mHealth Apps for Dietary Assessment

Today, several mobile applications have been developed to monitor diet and help
users to choose healthier alternatives regarding food consumption. Initially, these mobile
applications were dependent on manually inputting food items by selecting from limited
food databases. Therefore, such applications were not very reliable as they were prone to
inaccuracies in dietary assessment, mainly extending from limited exposure to numerous
food categories. With the advancement in the area of food image recognition, a large
number of mHealth applications for dietary assessment use images to recognize food
categories. For this purpose, existing mobile applications use different combinations
of traditional and deep visual feature extraction, and classification methods for food
recognition described earlier in Sections 3 and 4. Aizawa et al. [149] developed a mobile
app food log, which uses traditional feature-extraction methods such as color, Bag of
Features, and SIFT and uses an Adaboost classifier for classification purposes. Similarly,
Ravi et al. [150] proposed the ‘FoodCam’ application, which uses traditional methods for
feature extraction (LBP and RGB color features) and SVM for classification. Alternatively,
Meyers et al. [13] employed a deep visual technique (GoogleNet CNN model) for feature
extraction and classification purposes. Similarly, the Food Tracker app proposed by Jiang
et al. [151] uses a deep convolutional neural network for feature extraction and classification.
Furthermore, G. A. Tahir and C. K. Loo [52] utilized deep visual methods such as ResNet-50,
DenseNet201, and InceptionResNet-V2 for feature extraction and Adaptive Reduced Class
Incremental Kernel Extreme Learning Machine (ARCIKELM) as a classification method for
their mobile application “My Diet Cam”. Table 9 summarizes existing mobile applications
in terms of feature extraction and classification methods used. Based on these deep
visual method combinations, food recognition accuracies differ for various existing mobile
applications. Therefore, apps with higher food recognition and classification accuracies
gain more popularity. These apps tend to ease the dietary assessment process. Figure 8
shows the mobile application by Ravi et al. [150].
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Table 9. Summary of feature extraction and classification methods used by existing mobile applications.

Reference Year Application
Name

Food
Segmentation

Feature Extraction
Method

Classification
Method

Aizawa et al. [149] 2013 FoodLog No Color, SIFT and
Bag of Features

Adaboost
Classifier

Oliveira et al. [83] 2014 - Yes Color and Texture Support Vector Machine (SVM)

Probst et al. [152] 2015 - - SIFT, LBP and Color Linear SVM

Meyers et al. [13] 2015 Im2Calories Yes GoogleNet CNN GoogleNet CNN model

Ravi et al. [150] 2015 FoodCam No HoG, LBP and
RGB Color Features Linear SVM

Waltner et al. [55] 2017 - Yes RGB, HSV and
LAB Color values

Random Forest
Classifier

Mezgec and Seljak [153] 2017 - - NutriNet NutriNet

Pouladzadeh et al. [154] 2017 - Yes CNN Caffe
Framework

Waltner et al. [155] 2017 - Yes CNN CNN

Ming et al. [11] 2018 DietLens - ResNet-50 CNN ResNet-50 CNN

Jiang et al. [151] 2018 - Yes
Colors, Lines,
Points, SIFTand
Texture Features

Reverse Image Search
(RIS) and Text Mining

Jianing Sun et al. [156] 2019 Food Tracker Yes DCNN DCNN

G. A. Tahir
and C.K. Loo [52] 2020 MyDietCam Yes

ResNet-50,
DenseNet201
and Inception
ResNet-V2

Adaptive Reduced
Class Incremental
Kernel Extreme
Learning Machine
(ARCIKELM)

8.2. Harnessing Vision-Based Method to Measure Nutrient Intake during COVID-19

As the COVID-19 is a leading global challenge across the world, maintaining good
nutritional status is mandatory for keeping good health to fight against the virus. Automatic
vision-based methods for volume estimation and food image recognition in these nutrition
tracking apps can assist patients in objectively measuring the nutrient intake of vital
vitamins required for boosting the immune system.

8.3. Life’s Simple 7

Life’s Simple 7 health score is recently introduced based on modifiable health factors
that contribute to heart health. Physical activity, non-smoking status, healthy diet, and body
mass index are four modifiable health behaviors in this score. The other three modifiable
factors are biological. They include blood pressure, fasting glucose, and cholesterol details.
Besides cardiovascular health, Life’s Simple 7 also relates to other health conditions such
as venous thromboembolism, cognitive health, atherosclerosis, etc. As dietary intake plays
a vital role in computing Life’s Simple 7, manually measuring these factors and then
calculating a Life’s Simple 7 score is a very tedious process. This makes it very difficult
for both middle-aged patients and elderly patients to keep track of their health. So vision-
based methods can play an important role in automating the diet score. However, there are
no current studies that have explored this research direction.



Healthcare 2021, 9, 1676 24 of 37

Figure 8. The application provides the top prediction result. This picture is taken from the study of
Ghalib et al., 2020 (permission has been obtained from original author).

8.4. Enforcing Eating Ban on Public Places during COVID-19 Pandemic or Other
Restricted Places

Vision-based food recognition can automate the enforcement of an eating ban at
public places by automatically detecting foods from CCTV and wearable cameras to curb
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the spread of the virus. Similarly, vision-based food recognition coupled with CCTV or
wearable cameras and smart apps automate the enforcement of eating bans at workplaces,
laboratories, etc.

8.5. Monitoring Malnutrition in Low-Income Countries

Coupling vision-based methods with wearable cameras can automatically detect foods
from egocentric images with reasonable accuracy while reducing the burden of processing
big data and addressing the user’s privacy concerns. Egocentric images acquired from
these cameras are important to study diet and lifestyle, especially in low-income countries
with a high malnutrition rate. For example, Jia et al. [157] focused on gathering image data
from wearable cameras and discriminating between food/non-food classes based on their
tag from the CNN to study human diets. Similarly, Chen et al. [158] studied malnutrition
in low- and middle-income countries by using the wearable device e-button.

8.6. Food Image Analysis from Social Media

We are in the era of social media, and food is a basic necessity of life, a great deal
of content on social media platforms is related to food items. User’s of these platforms
frequently share new recipes, new methods of cooking, food pictures after restaurant
check-in. Researchers have exploited this data on social media platforms for analyzing
dietary intake. For example, Mejova et al. [159] studied food images from foursquare and
Instagram to analyze the food consumption pattern in the USA. Similarly, food images on
social media platforms are of different cultures. These images can be crawled and then
combined together to prepare a large food database.

8.7. Food Quality Assessment

Evaluating fruit quality and freshness at the marketplace and at the user end is of
increasing interest as opposed to accessing quality at the time of manufacturing. Efforts
to date have focused on accessing the quality of foods using vision-based methods. For
example, Ismail et al. have contributed an Apple-NDDA dataset [160] that consists of
defective and non-defective apple images for food quality assessment.

9. Statistical Analysis

We provide a statistical analysis of our study based on the articles and conference
proceedings gathered to write this survey paper. We surveyed research studies up to 2020
from various reputed sources: IEEE, Elsevier, ACM, and Web of Sciences. Figure 9 shows
a pie chart of the distribution of surveyed food databases according to the country to
which the food dishes belong. In it, generic databases are those that contain food dishes of
multiple countries. We summarized the surveyed studies in two main categories: studies
using handcrafted features, and studies using visual feature representation from convolu-
tional neural networks (CNN), as shown in Figure 10. As discussed in Section 7, volume
estimation methods require a single view or multiple images from different viewpoints.
We presented a pie chart as shown in Figure 11 that describes the percentage of studies
we surveyed according to the number of image viewpoints required to estimate food
volume. For ingredient detection, all included studies used CNN due to recent interest
in this extension. Similarly, for studies that have implemented mobile applications, the
piechart in Figure 12 shows that 46.2% of applications implement CNN for food recognition
while remaining mobile applications from surveyed studies are implementing traditional
methods for feature extraction.
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Figure 9. Percentage of datasets summarized according to the types of food. Generic refers to the
multi-cultural dataset.

Figure 10. Percentage of studies summarized according to the type of feature extraction methods.

Figure 11. Volume estimation methods using single images vs. multiple images.
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Figure 12. Percentage of studies summarized according to the type of methods employed for feature
extraction from food images and the category of classifier used for food image analysis in a mobile
application.

10. Open Issues

This study highlighted open issues based on the survey papers and the authors’
first-hand experience with existing methodologies.

10.1. Unsupervised Learning from Unlabelled Dataset

Preparing a large comprehensive annotated data is still a challenge, as manually
annotating a dataset is a difficult task with many challenges. Due to the large variety of food
dishes, different styles of preparation, etc., it is difficult for an expert dietician to correctly
label all the foods, especially in the preparation of a multi-culture food database. Similarly,
it involves high costs and a large number of working hours to prepare such a dataset.
Recent advancements in contrastive learning have opened a new research paradigm of
unsupervised learning. Methods based on contrastive learning such as SimCLR [161] and
SwAV [162] do not require labeled datasets and seem to be interesting potential areas of
research that future works in food recognition should exploit.

10.2. Continual Learning

Food datasets are open-ended, and there is no cap on the number of dishes. So the
network must adapt to continuously evolving datasets. All of these properties of food
datasets have made them a strong use case for continual learning methods. One of the
principal challenges in continuous learning methods is catastrophic forgetting. Catastrophic
forgetting refers to completely or abruptly forgetting previously learned information while
learning new classes. Many neural networks are susceptible to forgetting during continual
learning. It is a prime hindrance in achieving the objective of continuously evolving
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networks similarly to those of humans. Hence, researchers should also study catastrophic
forgetting in the context of food databases.

10.3. Explainability

Although there have been numerous attempts, including activation methods, SHAP
values [163], and distillation methods, there is still a research gap in the context of food
recognition. As food recognition has many domain-specific challenges such as intraclass
variations, and non-rigid structure, visualization of the reasoning behind model predictions
is vital to trust its decisions. Recently, unsupervised clustering methods [164] are exploited
to explain model predictions by distilling knowledge into surrogate models. They provide
similar images to test images for explaining prediction results. Explaining prediction
results by showing images similar to test images seems more friendly as users do not need
any specific domain knowledge to understand these results.

11. Discussion

Our research provides deep insight into computer vision-based approaches for dietary
assessment. It focuses on both traditional and deep learning methodologies for feature
extraction and classification methods used for food image recognition and single- and multi-
view methods for volume estimation. Similarly, this survey also explores and compares
current food image datasets in detail, as vision-based techniques are highly dependent on
a comprehensive collection of food images. In contrast to previous research work, such as
work by Mohammad A. Sobhi et al. [165], Min, Weiqing, et al. [166], our survey scrutinizes
traditional and current deep visual approaches for feature extraction and classification to
enhance clarity in terms of their performance and feasibility. Unlike existing surveys, our
survey emphasizes existing solutions developed for food ingredient recognition through
multi-label learning. We also reviewed existing computer-based food volume estimation
methods in detail, as they have reduced dietitians’ and experts’ intervention and can
accurately determine the portion size of the food in contrast to the self-estimation. Finally,
our research study also explores real-world applications using the prior methodologies for
dietary assessment purposes.

11.1. Findings

Our findings indicate that the ultimate performance of traditional and deep visual
techniques depends on the type of dataset used. This has been observed from the datasets
included from the studies explored in this survey (as shown in Table 1); the three most
commonly used datasets were UECFOOD-256 [43], UECFOOD-100 [42], and Food-101 [59].
UECFOOD-256 (25,088 images and 256 classes) and UECFOOD-100 (14,361 images and
100 classes of food) are Japanese food datasets consisting of Japanese food images captured
by users, whereas Food-101(101,000 images and 101 classes) is an American fast food dataset
containing images crawled from several websites. However, these widely used datasets are
region-specific. Therefore, there is an immense need for generic food datasets for excluding
regional bias from experimental results. In addition, it is also evident from this survey
that deep visual techniques have replaced traditional machine learning methodologies
for food image recognition. As per our survey, systems proposed after the year 2015
mainly use deep learning technologies for food classification purposes. This is due to their
phenomenal classification performance. In the context of classification performance of deep
visual techniques, for food–non-food classification, McAllister et al., 2018 [108] (99.4%),
and Pouladzadeh et al., 2016 [104] (99%), achieved the highest top 1 classification accuracy.
Pouladzadeh et al., 2016 [104], used DCNN and Graph cut on their proposed dataset,
whereas McAllister et al., 2018 [108], used CNN, ANN, SVM, and random forest on the
food 5k dataset. Table 5 further compares classification accuracies of proposed deep visual
models. Recent advancements and exceptional performance of food image classification
methods have now led researchers to explore food images from a much deeper perspective
in terms of retrieval and classification of food ingredients from food images. Therefore,
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we have also explored several proposed solutions for food ingredient recognition and
classification. According to our survey, the system proposed by Chen et al., 2016 [47],
has achieved the highest F1 score, i.e., 95.88% macro-F1 and 82.06% micro-F1, using the
Arch-D method on the UECFOOD-100 dataset (as shown in Table 6). Similarly, automatic
food volume estimation methods have reduced dietitians’ and experts’ intervention and
can accurately determine the portion size of the food in contrast to the self-estimation for
food volume estimation. Single-view methods involve capturing a single image, while
multi-views require multiple images to determine accurate food volumes. The results in
Table 8 show that multi-view methods are mostly better than single-view methods.

Finally, food category recognition, ingredient classification, and volume estimation
techniques helped provide an automatic dietary assessment with reduced human interven-
tion in mHealth apps. For this purpose, we have also surveyed several mobile applications
that employ deep learning methods for dietary assessment.

11.2. Limitations and Future Research Challenges

Despite enhanced performance and classification accuracy, food image recognition and
volume estimation through vision-based approaches may continue to present interesting
future research challenges. This is because the performance of the methodologies used for
food image identification is highly dependent on the source of images in a particular food
dataset. Although a growing number of food categories are being incorporated into food
image datasets such as UECFOOD-256 [43], Food 85 [49], and Food201-segmented [13],
there is still an immense need for generalized, comprehensive datasets for better perfor-
mance evaluation and benchmarking. Moreover, we observed that datasets with a large
number of food images significantly positively impact classification accuracy. However,
keeping these large image datasets updated is another challenge, especially since different
types of foods are being prepared every day.

In addition to this, progressive learning during the classification phase is vital for
food image datasets due to the continuous arrival of new concepts and domain variation
within existing concepts. Similarly, developing frameworks interpretable by highlighting
the contribution of the area of interest will improve the overall human trust level on a
solution in a real-world environment.

Following food recognition, food volume estimation is a particularly complex and
challenging assignment since food items have large variations in shape, texture, and
appearances. Our article categorized food portion estimation methods into single-view
and multi-view methods. Multi-view methods are more accurate; however, most of these
methods also require calibration objects each time and images from different viewpoints,
which makes the usability of these solutions tedious for elderly users.

Finally, there is a need to design and develop solutions that can respond to situations
ethically. In our context, this refers to the removal of any biases concerning region-specific
food preferences. It will help to ensure transparency in existing models.

12. Conclusions

In this work, we explored a broad spectrum of vision-based methods that are specif-
ically tailored for food image recognition and volume estimation. In practice, the food
recognition process incorporates four tasks: acquiring food images from the corresponding
food datasets, feature extraction using handcrafted or deep visual, selection of relevant
extracted features, and finally, appropriate selection of classification technique using ei-
ther traditional machine learning approach or deep learning models followed by food
ingredient classification to provide better insight of nutrient information. The findings
of surveyed studies have shown that 38.1% of datasets are generic, which includes multi-
cultural food dishes. Similarly, 46.2% of surveyed applications implemented CNN for food
recognition, while 45.2% of mobile applications have implemented traditional methods for
feature extraction. For ingredient detection, several studies used CNN due to its superior
performance and recent interest. In addition, 34.5% of techniques for volume estimation
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require multiple images, while the remaining methods used a single image to estimate
food volume.

Despite impeccable performance exhibited by state-of-the-art approaches, there exist
several limitations and challenges. There is an immense need for comprehensive datasets
for benchmarking and performance evaluation of these models, as incorporating large food
image datasets improves the overall performance. Consequently, when dealing with open-
ended and dynamic food datasets, the classifier must be capable of open-ended continuous
learning. However, existing methods have several bottlenecks, which undermine the
food-recognition ability when it comes to open-ended learning, as proposed methods are
prone to catastrophic forgetting. They tend to forget previous knowledge extracted from
images while learning new information. Such methods work well only for fixed food image
datasets. Moreover, our findings indicate that proposed techniques for food ingredient
classification still struggle with performance issues when applied to prepared and mixed
food items. Survey findings further indicate that CNN models employed for visual feature
extraction require labeled datasets for fine-tuning and training. Preparing a labeled food
dataset is a difficult task due to the large variety of food dishes. To tackle this problem,
unsupervised methods based on contrastive learning seem to have good research potential.

Similarly, automatic food portion estimation methods are categorized into two major
categories: single-view-image methods and multi-view-image methods. As discussed
earlier, most of multi-view image methods are more accurate than single view methods,
but multi-view-image methods require complex processing and images from different
angles, resulting in a reduced user retention rate. Furthermore, most of the single and
multi-view methods require calibration objects each time, which has made the usability of
these solutions tedious for elderly patients.

Therefore, there is substantial room for innovative health care and dietary assessment
applications that can integrate wearable devices with a smartphone to revolutionize this
research area. Moreover, dietary assessment systems should address these challenges to
provide better insights into effective health maintenance and chronic disease prevention.
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