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Abstract: (1) Background: Chest radiographs are the mainstay of initial radiological investigation
in this COVID-19 pandemic. A reliable and readily deployable artificial intelligence (AI) algorithm
that detects pneumonia in COVID-19 suspects can be useful for screening or triage in a hospital
setting. This study has a few objectives: first, to develop a model that accurately detects pneumonia
in COVID-19 suspects; second, to assess its performance in a real-world clinical setting; and third, by
integrating the model with the daily clinical workflow, to measure its impact on report turn-around
time. (2) Methods: The model was developed from the NIH Chest-14 open-source dataset and
fine-tuned using an internal dataset comprising more than 4000 CXRs acquired in our institution.
Input from two senior radiologists provided the reference standard. The model was integrated
into daily clinical workflow, prioritising abnormal CXRs for expedited reporting. Area under the
receiver operating characteristic curve (AUC), F1 score, sensitivity, and specificity were calculated
to characterise diagnostic performance. The average time taken by radiologists in reporting the
CXRs was compared against the mean baseline time taken prior to implementation of the AI model.
(3) Results: 9431 unique CXRs were included in the datasets, of which 1232 were ground truth-labelled
positive for pneumonia. On the “live” dataset, the model achieved an AUC of 0.95 (95% confidence
interval (CI): 0.92, 0.96) corresponding to a specificity of 97% (95% CI: 0.97, 0.98) and sensitivity
of 79% (95% CI: 0.72, 0.84). No statistically significant degradation of diagnostic performance
was encountered during clinical deployment, and report turn-around time was reduced by 22%.
(4) Conclusion: In real-world clinical deployment, our model expedites reporting of pneumonia in
COVID-19 suspects while preserving diagnostic performance without significant model drift.
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1. Introduction

An outbreak caused by the SARS-CoV-2 (severe acute respiratory syndrome coron-
avirus 2) was first identified in Wuhan, China in December 2019 [1]. The World Health
Organisation first established COVID-19 as a global pandemic on 11 March 2020 [2]. Singa-
pore is an independent city-state with one of the highest testing [3] and vaccination rates
in the world [4], with the National Centre for Infectious Diseases (NCID) at the heart of
the nation’s response to COVID-19. At the time of writing, Singapore has seen more than
280,000 confirmed cases with 835 COVID-19-related deaths [5].

Although reverse transcription polymerase chain reaction (RT-PCR) is the gold stan-
dard for diagnosing COVID-19, the process can be time consuming and sometimes results
in delay in diagnosis. Computed tomography (CT) findings have been shown to correlate
well with RT-PCR result [6], and since the pandemic began, deep learning algorithms have
been developed to diagnose COVID-19 through CT scans [7–9] or through predictive mod-
els built around laboratory results [10]. However, the American College of Radiology (ACR)
cautioned against using CT as a first-line test to diagnose COVID-19 given the non-specific
imaging findings of the disease and the fact that a normal chest CT does not preclude
COVID-19 [11]. Thus, most ambulatory care facilities still rely on the chest radiograph
as the mainstay of initial radiological investigation in COVID-19 screening workflows,
as these are more easily acquired, and X-ray machines are logistically more amenable to
infection control measures.

The clinical value of CXRs is less for diagnosis of COVID-19 but more for identification
of imaging signs of pneumonia and assessment of severity for clinical decision making,
as more groups utilise CXRs to analyse the severity of disease and to predict clinical out-
come [12–14]. Published recommendations of the Flesichner Society [15] and the European
Society for Thoracic Imaging are in line with this approach [16]. Several groups have
applied deep learning methods for detection of COVID-19 pneumonia on CXRs often with
accuracies of over 90% [17–23]. However, most of these models were tested in simulated
environments, and their diagnostic performance in the real-world setting has not been
validated. It is known that the diagnostic performance of algorithms can degrade signifi-
cantly when deployed in clinical practice [24]. Furthermore, the clinical impact of these
image-based deep learning models is not often measured in the same setting.

At the height of the first wave of the pandemic in 2020, our team developed a deep
learning model trained with CXRs acquired in a specialised COVID-19 national screening
facility and assessed its ability to detect pneumonia in COVID-19 suspects. To take it a few
steps further, we assessed and validated the model’s diagnostic performance in a real-world
setting before deploying and integrating the model into our daily clinical workflow. In this
study, we measured its performance on a “live” dataset and further evaluated its impact on
the turn-around time.

2. Materials and Methods

This study was approved by the institutional review boards of the respective institu-
tions and compliant with the Health Insurance Portability and Accountability Act (HIPAA).
A waiver of consent was granted due to the retrospective nature of the study and minimal
risks involved.

2.1. Datasets

There were three separate datasets included in this study, including the training set,
proof-of-concept (POC) offsite test set, and the “live” clinical deployment set. All CXRs
were acquired in the same hospital and re-sized to a resolution of 224 × 224 pixels. Two
senior radiologists (each with more than a decade of experience) provided the reference
standard. Any disagreement was resolved through discussion of perceived radiological
findings and through consultation with two other senior radiologists not directly involved
in the study. The team chose to adopt radiologists’ inputs as reference standard (instead of
PCR results), as the goal of this project was to create a tool to carry out high-throughput
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screening to triage COVID-19 suspects with radiologically proven pneumonia; as such,
approximating the model’s performance to that of senior radiologists was deemed more
relevant. Furthermore, we know that most patients with COVID-19 do not develop pneu-
monia, especially earlier on in the disease [25]. Therefore, as a point to note, in the following
datasets, the “pneumonia-negative” groups may contain patients who have tested posi-
tive on the SARS-CoV-2 RT-PCR test given that the ground-truth labels are radiological
observations. The converse is also true.

2.1.1. Training Set

The training dataset comprised of frontal CXRs acquired in NCID and NCID’s partner
hospital. A total of 4277 radiographs were included; 971 of these were ground truth-
labelled positive for pneumonia. Out of these pneumonia-positive radiographs, 465 were
culture-confirmed bacterial pneumonia or non-COVID-related viral pneumoniae, while the
other 506 were RT-PCR confirmed COVID-19 cases. Cases that were labelled negative for
pneumonia constituted the negative group even if (1) there were other abnormalities noted
on the chest radiograph (e.g., pneumothorax, atelectasis, etc.), or (2) they tested positive on
the COVID-19 RT-PCR test. One-fifth of the training set was held out as the validation set.

2.1.2. Proof-of-Concept (POC) Offsite Test Set

A total of 1440 frontal CXRs acquired in NCID were used as an offsite test dataset.
Seventy-two of these radiographs were ground truth-labelled positive for pneumonia. With
regards to demographics, 84% of these patients were male (n = 1209), while 16% were
female (n = 231), with an average age of 35.8.

2.1.3. Clinical Deployment Set

The clinical deployment set included 3714 frontal CXRs acquired in NCID, with
189 ground truth-labelled as positive for pneumonia. In terms of demographics, 87% of
these patients were male (n = 3241), while 13% were female (n = 473). The average age of the
patient population for this dataset was 37. Both the offsite test and the clinical deployment
datasets were predominantly made up of young, adult males because Singapore was
experiencing a surge in cases in the foreign worker dormitories at the time the deployment
was carried out.

All patients in the latter two dataset were patients suspected of having COVID-19 at
the time the CXR was acquired. A large majority of the CXRs in these two datasets were
notably unremarkable, as we exclusively utilised CXRs that were acquired in NCID, which
did not attend to patients with non-COVID-related complaints.

While the reference standard we adopted was input from senior radiologists, we
collected the SARS-CoV-2 RT-PCR results from all COVID-suspect patients involved in the
study. This is presented in Appendix A.

2.2. Development of the Deep Learning Model

To rapidly deploy a deep learning model for COVID-19 screening, we constructed
and tested an ensemble model with the training dataset. We leveraged on transfer learning
based on existing trained networks in view of the relative urgent need for increased
efficiency in times of rapidly evolving global pandemic. Several groups have also tapped
into transfer learning to create models for detecting COVD-19 on X-rays, CT, and even
ultrasound [26,27].

2.2.1. Transfer Learning on Deep Neural Networks

Transfer learning is a technique for predictive modelling on a different but somehow
similar problem that can then be reused partly or wholly to accelerate the training and
improve the performance of a machine learning model [28]. The most commonly used
transfer learning technique for deep neural network strategies are pre-training based
methods [29]. We utilised the weight initialisation-based method, a common technique
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used in medical image analysis tasks, which reuses the trained weights on a source dataset
as a start point for the target dataset. In this manner, all the weights should be adjusted for
the target task in the fine-tuning step.

2.2.2. Network Architectures

We employed the Dense CNN (DenseNet [30]) as the backbone model to distinguish
CXRs. The workflow of pre-training, initializing, and fine-tuning processes is shown in
Figure 1. In pre-training (Step 1), the networks are firstly trained on the publicly available
ChestX-ray14 dataset [31] to obtain some common features. In Step 2, the pre-trained
weights except the last layer are used to initialise the DenseNet121 model for the hospital’s
dataset. For the final step, we fine-tuned all the layers in the DenseNet121 model using
our hospital’s dataset. To exploit data distribution and representation, our team created
several different models for data ensemble using transfer learning, focal loss, weight cross
entropy loss, and model adaptation. We expected data imbalance between the two classes
(negative or positive for pneumonia), as most of the screening CXRs were likely to be
normal. To tackle this issue of data imbalance, we utilised data augmentation through
multiple sampling of the data and weighted loss to ensure representative results. The
technical details of the network architecture are elaborated upon in Appendix B.
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Figure 1. Workflow of pre-training, initializing, and fine-tuning processes. C1 is a multi-label classifier
with 14 elements, and C2 is a classifier containing two neurons.

2.3. Deployment of Model Ensemble

There are several approaches and flowcharts in diagnosing and ruling out COVID-19,
and CXRs have been widely used as an integral part of the triage process [15,32]. NCID
screening centre utilizes a similar workflow, depicted in Figure 2. The clinicians and
radiologists further agreed upon a 1-h turn-around time (TAT) for interpretation of all
CXRs done in NCID to facilitate patient flow and to minimize chokepoints [33]. The team
calculated the TAT by extracting timestamps from the hospital’s Centricity Radiology
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Information System (RIS) and computing the time elapsed between the completion of the
CXR and final approval of the CXR report.
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Figure 2. NCID Screening Centre Workflow.

We deployed the model in an Ubuntu 18.04 virtual machine (VM) hosted in a Windows
10 workstation with the following hardware specifications: Intel Xeon Gold 6242 processor,
128 GB RAM, and 2 X NVIDIA GeForce RTX 2080 TI GPU, located in the hospital’s Depart-
ment of Diagnostic Radiology. The VM was configured as a Generation 2 Hyper-V VM
with 8 virtual processors and a fixed 16 GB RAM.

The hospital uses the Centricity Radiology Information System (RIS) and Picture
Archiving and Communication System (PACS) from GE Healthcare. A mini-PACS, RA600
(GE Healthcare, Chicago, IL, USA), was installed in a workstation serving as a DICOM
listener to temporarily store DICOM files independently from the hospital’s PACS system.

The X-ray modality used in NCID is the FDR Visionary Suite (Fujifilm Healthcare,
Tokyo, Japan). These machines were configured to send the CXRs to the hospital’s PACS
and the RA600. Only frontal CXRs (anteroposterior and posteroanterior) were sent to the
RA600; other projections were excluded. The RA600 receives and stores incoming DICOM
files sent to the workstation. The local DICOM store is exported as a shared folder and
mounted in the VM via the Server Message Block (SMB) protocol. From here, the model
retrieves and interprets each CXR and assigns a binary value, either “0” for absence of
pneumonia or “1” for the presence of pneumonia. The radiograph is then deleted from
the workstation after processing to minimise the risk of unauthorised access to patients’
identifiers. With regards to computational cost, the model takes less than 3 s for one image
using all the models running on a CPU workstation (Intel Xeon Gold 6242, 2.8 GHz, RAM
256 G). In batch processing using GPU, it takes less than 0.01 s per image per model.

Finally, the results were retrieved via SSH File Transfer Protocol (SFTP) and updated
automatically into the RIS system and matched by each case’s accession number as the
unique identifier. Cases that were flagged as positive by the algorithm were prioritized
to the top of the radiologist worklist chronologically. This was done using a Health Level
Seven (HL7) compliant script developed by the hospital’s RIS/PACS vendor. A diagram-
matic illustration of the deployment process is shown in Figure 3. Of note, this method
merely provided the prediction of the model to the reporting radiologists; the responsibility
of making the final diagnosis still rested with the radiologists.

To ensure our infrastructure complied with the hospital’s security standards, official
approval was obtained from the Singapore’s Integrated Health Information Systems (IHiS)
committee overseeing the hospital’s IT risk and security.

2.4. Proof of Concept (POC)—Offsite Test

Once our team had the model and infrastructure in place, we conducted an offsite
test over the course of a week to ensure satisfactory model performance before officially
incorporating the model into the daily workflow. The results of this offsite test are presented
in a later segment.
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2.5. Statistical Analysis

As the networks were trained with the probability as output, we used binary cross
entropy or focal loss based on class probability to classify a CXR as pneumonia or non-
pneumonia. We could then use a threshold on the network output to obtain different
sensitivities and specificities to form the ROC curve on any testing dataset. The performance
of the algorithm was expressed in AUC, F1 score, sensitivity, specificity, and accuracy. The
95% confidence intervals (CIs) were computed using MATLAB R2014b. The CIs were
computed by specific functions within the MATLAB interface (perfcurve and bootci) and
used the bias-corrected and accelerated percentile method [34].

3. Results
3.1. Results from Proof of Concept—Offsite Test Set

We validated our trained model with different methods and network architectures.
Comparing each individual network architecture, the DenseNet121 transfer-learned achieved
the best results. Our ensemble of seven models further enhanced the algorithms’ perfor-
mances; this is presented in Table 1. We compared our ensemble algorithm with existing,
published deep learning algorithms using an offsite test dataset as a proof-of-concept
(POC). This POC dataset included a total of 1440 CXRs, of which 72 were labelled positive
for pneumonia. Our ensemble algorithm achieved the highest AUC (AUC = 0.9369) with
maximum F1 of 0.9120. The results of this POC test are depicted in Table 2, with the ROC
curves displayed in Figure 4. Incidentally, the patch-based method [35] shows better result
when the specificity is low and sensitivity is high, and this is better shown in Figure 5.

Table 1. Offsite Test with 1440 CXRs: results of individual models versus model ensemble.

Model 1 2 3 4 5 6 7 Ensemble

AUC 0.9185 0.9120 0.9355 0.9265 0.9163 0.9286 0.8976 0.9369
F1 0.8835 0.8587 0.8938 0.8867 0.8906 0.8981 0.8558 0.9120
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Table 2. Proof of Concept: Results from Offsite Test compared with other published models.

ROC AUC Max F1 Score

Oh et al. (Patch-based) [35] 0.9144 0.8544
Chen et al. (MMDetection) [36] 0.8685 0.8110

Ozturk et al. (Darknet) [37] 0.9051 0.8344
Minaee et al. (SqueezeNet) [38] 0.9002 0.8464

Best performing single DenseNet121 network 0.9355 0.8981
Ensemble of seven models 0.9369 0.9120
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AUC = 0.9369 (marked by red *, indicated by the arrow in the image). The highest individual model
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3.2. Results from Clinical Deployment

A total of 3714 unique CXRs were included in deployment set, with 189 studies
labelled as positive for pneumonia. On this “live” dataset, our algorithm achieved an AUC
of 0.9456, 95% CI (0.9181, 0.9627) and maximum F1 of 0.9118. The ROC curve is illustrated
in Figure 6. By setting a threshold, we have a confusion matrix, as shown in Table 3.

At the height of the pandemic in Singapore, our team saw a dire need to optimise
hospital resources. As such, we opted for a model that did not “over-diagnose” pneumonia,
as that may cloud the opinion of the reporting radiologists and result in unnecessary use of
scarce healthcare resources. Therefore, we set a threshold that resulted in a higher negative
predictive value (NPV).

Our algorithm attained a high specificity of 97.1% (95% CI (0.9664, 0.9760)) while
maintaining sensitivity of 78.8% (95% CI (0.7246, 0.8435)) with NPV of 98.8% (95% CI
(0.9843, 0.9916)) and positive predictive value (PPV) of 59.1% (95% CI (0.5311, 0.6518)).
Appendix C describes three different examples using saliency maps and probability outputs.
Appendix A shows the distribution of the RT-PCR test results of this “live” dataset.

3.3. Turnaround Time

Turn-around time (TAT) was calculated using the data extracted from the hospital’s
RIS. We measured the average TAT within a three-week window before and after the
deployment of our deep learning model. Radiologists took an average of seven minutes to
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complete a report as opposed to nine minutes prior to the deployment, demonstrating a
22% reduction in TAT.
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Table 3. Confusion matrix on the Clinical Deployment Dataset.

Ground Truth

AI Prediction
Positive Negative

CXR Positive 149 40

CXR Negative 103 3422

4. Discussion

There have been growing efforts from researchers to develop an efficient and reliable
AI solution to help diagnose patients with COVID-19. Most published studies related
to our subject of interest attained good results but did not go on to test their models in
a real-world clinical setting [17–23,35]. Al-Waisy et al. fused results obtained from two
different deep learning methods to achieve accuracy rates of 99.93% [18]. Nayak et al.
conducted a comprehensive review of eight pre-trained CNN models and found ResNet-34
to be the best performing model at 98.33% [19]. This study’s model boasted an AUC of 0.95,
with specificity of 97.1% and moderate sensitivity of 78.8%. The diagnostic performance
was not degraded when deployed in the clinical setting, something which the prior studies
have not demonstrated.

As a proof-of value, our group wanted to establish a model that could carry out high-
throughput screening for COVID-19 pneumonia in large numbers of suspected COVID-19
patients to quickly triage patients with CXR radiographic findings prior to a RT-PCR
diagnosis to stratify for high-risk patient management and optimize hospital resources.
This is especially relevant now with the emergence of Delta and now the Omicron vari-
ants, as healthcare institutions around the world struggle to allocate scarce healthcare
resources [39,40]. This study evaluated the diagnostic performance of our model on a
“live” dataset and demonstrated that it is possible to preserve diagnostic performance of
a deep learning algorithm when transferred to clinical deployment. This is likely due to
an adequate dataset, unbiased in selection and curation, that was used for fine-tuning a
base algorithm.

In this study, the deep learning model performed well utilising radiologists’ input as
reference standard. We chose to adopt senior radiologists’ inputs as reference standard,
as the team envisioned a tool that could help prioritise patients with definite radiological
findings and thus alert the clinicians to these patients who are potentially more vulnerable
to clinical deterioration [41] and should hopefully receive earlier intervention. There-
fore, approximating the model’s performance to that of senior radiologists was deemed
more relevant. While the specific features of COVID-19 on CT have been described ex-
tensively [42,43], the features of COVID-19 on CXRs are more ambiguous. That said, a
frontal CXR remains the mainstay of initial radiological screening in most institutions
in this pandemic, making our model relevant for widespread adoption. In our clinical
deployment dataset, 607 patients had a positive RT-PCR result, and 48 of these patients
had a CXR that was flagged as abnormal by the deep learning algorithm. We postulate
the model fared worse than those that have been published [18,19,44,45] because it was
deployed in Singapore’s national screening facility where a large majority of the patients
were asymptomatic or oligosymptomatic on presentation, with more subtle radiological
findings, thus posing a greater challenge to the model. This is largely secondary to the
active tracing and aggressive testing policy that Singapore pursues.

In our institution, clinicians and radiologists have agreed upon a 1-h turn-around
time (TAT) from the acquisition of a CXR image to the completion of a radiological report.
Even though there was a modest 22% improvement in TAT during the deployment pe-
riod, we believe that the value of the model in increasing radiologist efficiency has not
been fully justified given the relatively low number of positive cases at our institution
during the clinical deployment phase. As a triaging tool, we believe that the model can
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provide greater reduction in TAT in healthcare facilities that face large surges in demand
for radiologist reporting.

The exact impact of the deep learning model on the eventual accuracy of the radi-
ologists is beyond the scope of this study although work is underway in our institution
to investigate this aspect further. Several studies have shown that their AI system can
identify characteristics of COVID-19 on chest radiographs with performance comparable
to experienced radiologists [44,46,47]. Harrison et al. further proved that a well-built AI
system improved radiologists’ performance in distinguishing COVID-19 pneumonia from
non-COVID-19 pneumonia at chest CT [48]. In addition, the team attempted to employ
saliency maps to detect features characteristic of COVID-19 on chest radiographs. The
saliency maps indicate the regions of each radiograph that had the greatest influence on
the model’s prediction. We realised that while some of these maps accurately highlight
diseased lung fields (See Figure A2 in Appendix C), their presence can be confounding
in false-positive, false-negative, or even true-negative cases (See Figures A3 and A4 in
Appendix C). Localisation of the pathology is not the main desired output of our network,
but the utility of saliency maps in localisation models (e.g., detecting lung nodules on CT)
warrants additional scrutiny.

Zandehshahvar et al. reported a deep learning approach to analyse severity of
COVID-19 [12] while Dayan et al. included CXRs as a key component of their clinical
outcome predictive model [13]. In future advancements, a radiographic severity score
can potentially be integrated into our algorithm with relevant outputs that can alert the
clinicians to patients who are more vulnerable to clinical deterioration and therefore inter-
vene earlier.

Even though this was a prospective clinical deployment, there remain several lim-
itations to our study. Firstly, the development, validation, deployment, and testing of
the algorithm were all done within a single institution. While working within a single
institution hastened the relevant processes, cross-institution deployment would be needed
to ensure replicability of our results and reliability of our model. However, the degree of
variation is likely to be low given that our COVID-19 screening centre is the largest national
facility, and it receives referrals from across our country. Secondly, the most frequently
observed distribution patterns of COVID-19 include bilateral involvement, peripheral
distribution, consolidations, and ground-glass opacification, whereas pleural effusions are
rare [49,50]. Many of the features are also seen in bacterial and other viral pneumoniae;
hence, it is not certain if our model can reliably differentiate patients with community
acquired pneumonias from those of COVID-19. Thirdly, our algorithm is purely based
on computer vision even though we know that in clinical practice, history of exposure,
patient’s symptoms, and laboratory results are important factors considered as part of
the clinical diagnostic workup. Finally, our model was trained, validated, and tested on
adult CXRs. As such, these results cannot be extrapolated to the paediatric population.
Fortunately, only a small minority of the known COVID-19 cases are in children, and most
of the confirmed cases in the paediatric population have relatively milder symptoms [51]
and likely minimal CXR findings.

5. Conclusions

In conclusion, even as the global pandemic of COVID-19 evolves, chest radiography
remains a valuable tool in the screening and severity assessment of disease. A reliable
and readily deployable AI algorithm can expedite clinical decision making. Our team
developed a deep learning algorithm that performs well in a simulated environment and
preserves its diagnostic performance when tested with a “live” dataset in real-world clinical
deployment. The algorithm was integrated into the clinical workflow and successfully
reduced report turn-around time by prioritising abnormal cases.

Future work can incorporate non-image-related data into a single model to further
improve performance and could involve cross-institution deployment to ensure replicability
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and reliability. Our team also aims to measure improvement in radiologists’ performance
(if any) following augmentation with our deep learning model.
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Appendix B. Technical Details of the Network Architecture and Performance Matrix

In brief, DenseNets are densely connected neural networks comprised of Dense Blocks
and transition layers with convolutional layers and a max-pooling that connect each
sequential block. In each Dense Block, there can be varying groups of [1 × 1] and [3 × 3]
paired convolutional layers, with a pre-processing layer of Batch Normalization (BN) and
rectified linear unit (ReLU). The original design of the DenseNet121 has a global averaging
pooling layer followed by a 1000-node fully connected (FC) layer for feature mapping.

Pre-Training and Fine-Tuning

In the pre-training phase (Step 1), the model is first trained on a large scale dataset
(ChestXray14), which encompassed 14 common thoracic diseases, including pneumonia,
cardiomegaly, pneumothorax, etc. [31]. We utilised a 4:1 training/validation split on the
NIH dataset. We optimised the Binary Cross Entropy (BCE) with Logits Loss, which
combines a sigmoid layer and the BCE Loss in each class.

In the fine-tuning phase (Step 3), we optimised the Weighted Cross Entropy Loss
(WCEL) for the classifier (C2) on the target dataset. For a single sample xi in our TTSH
dataset, we used yi to denote the corresponding label, and yi = [0, 1]T , or yi = [1, 0]T . The
WCEL can thus be defined as:

L (xi, yi) = −(y1i log(ŷ1i) + uy2i log(ŷ2i)), (A1)

where u is a manual rescaling weight given to the positive class; we set u to be the ratio of
the number of negative training samples to the number of positive training samples in this
work. ŷi denotes the network’s prediction for the ith input image xi from the target domain.

The network is trained end-to-end using Adam [52] with standard parameters (0.9,
0.999). The batch size of our model is 32. We used an initial learning rate of 0.0001 and
picked the model with the highest Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) score on the validation set.

To diversify the model representative, we adjusted the CheXnet14 network (Dense121—
121 layers of networks) with two fully connected (FC) layers (added two FCs, with 1024
nodes and 128 nodes, respectively, following a sigmoid node for classification) in the
classification end (C2 in Figure 1) and experimented with different loss function at network
tuning stage. In previous renditions of DenseNet121, Wang et al. adopted a weighted
cross entropy loss [31], while Rajpurkar et al. utilised an unweighted binary cross entropy
loss for network training. [53] To enhance the capability, we modified the loss function
for the DenseNet121 with a Focal Loss (FL), [54] which is designed to handle the large
data imbalance between classes. We also carried our data augmentation through multiple
sampling to better represent the random distribution from the available dataset. We added
an experiment to compare the results before and after data augmentation and weighted loss
and found that the latter effectively improved the classification results. This is especially
relevant in national screening centres, where most of the screening CXRs are expected
to be normal. We also increased the FC layers after feature extraction to give us better
distinguishing power for the classification of CXRs with features suggestive of COVID-19.
The FL is defined by

FL(pt) = −α(1 − pt) γ log(pt) (A2)

where pt =
{

p, i f y = 1
1 − p, i f y = 0

, y is the ground truth of the class, and p is the estimation

output of the network for an input CXR image. We adopted Pydicom [55] for image
pre-processing. We set each CXR image mean to 0 and standard deviation to 1 for image
intensity normalization. The parameter for Focal Loss is set as α = 0.25, γ = 2. Thus far,
we utilised model adaptation and WCEL (Equation (A1), Model A) and transfer learning
and FL (Equation (A2), Model B) to refine two models using the TTSH training dataset.
To exploit the data distribution and representation, we built another five models for data
ensemble, using Model B as backbone model, as it has better performance in AUC and F1.
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The five models were trained using five sub datasets randomly sampled from the TTSH
training data. Experiments showed that with the model ensemble and data ensemble, the
overall AUC and F1 outperformed any single model (Model A and Model B) or combination
of them.

Following with the terms TP, TN, FP, and FN, we can further define the perfor-
mance matrix.

• TP: true prediction on positive cases,
• TN: true prediction on negative cases,
• FN: false prediction on positive cases,
• FP: false prediction on negative cases,
• Sensitivity = TP/(TP + FN),
• Specificity = TN/(TN + FP),
• F1 is the harmonic mean of Sensitivity and Specificity,
• F1 = 2 × Sensitivity × Specificity/(Sensitivity + Specificity), and
• Accuracy = (TP + TN)/(TP + FN + TN + FP).

Appendix C. Examples Using Saliency Maps and Probability Output

The first image of each example shows the annotation by our radiologists, the second
image demonstrates the saliency map generated for that image by our algorithm, and the
last image shows the probability score of the algorithm’s diagnosis. Of note, the red areas
in the saliency maps display areas of interest and may not necessarily focus on the area
of abnormality.
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posing a greater challenge to the algorithm.
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